
Contradictory Antecedent Debugging
in Bounded Model Checking ∗

Daniel Große Robert Wille Ulrich Kühne Rolf Drechsler
Institute of Computer Science, University of Bremen, 28359 Bremen, Germany

{grosse,rwille,ulrichk,drechsle}@informatik.uni-bremen.de

ABSTRACT
In the context of formal verification Bounded Model Check-
ing (BMC) has shown to be very powerful for large industrial
designs. BMC is used to check whether a circuit satisfies a
temporal property or not. Typically, such a property is for-
mulated as an implication. In the antecedent of the property
the verification engineer specifies the assumptions about the
design environment and joins the respective expressions by
logical AND. However, the overall conjunction may have
no solution, i.e. the antecedent is contradictory. Since in
this case a property trivially holds this situation has to be
avoided. Furthermore, the root cause of a contradictory an-
tecedent has to be identified which is a manual and very
time-consuming process.

In this paper we propose a fully automatic approach for
presenting all reasons of a contradictory antecedent to the
verification engineer, i.e. the approach pinpoints to the sub-
expressions in the antecedent that form a contradiction.
Hence, our approach reduces the debugging time of a con-
tradictory antecedent significantly.

Categories and Subject Descriptors
J.6 [Computer-Aided Engineering]: [Computer-Aided
Design (CAD)]

General Terms
Verification

Keywords
Formal Verification, Bounded Model Checking, PSL, Debug-
ging

1. INTRODUCTION
Model checking [1] is a key verification technique to show

whether a design satisfies the specification or not. In the
last years especially Bounded Model Checking (BMC) [2] has
become very successful in industrial practice. BMC reduces
the verification problem to a Boolean Satisfiability (SAT)
problem and then searches for counter-examples in bounded
executions. If the resulting SAT instance is satisfiable a

∗This work was supported in part by the German Fed-
eral Ministry of Education and Research (BMBF) and by
Concept Engineering GmbH, Freiburg, Germany within the
project Herkules under contract no. 01 M 3082.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GLSVLSI’09, May 10–12, 2009, Boston, Massachusetts, USA.
Copyright 2009 ACM 978-1-60558-522-2/09/05 ...$5.00.

counter-example of length k has been found. However, BMC
can only show that the design is free of errors for the given
property up to the bound k. For proving a property, k has to
finally reach the sequential diameter of the underlying Finite
State Machine (FSM), which is infeasible for large circuits.
Therefore, approaches for BMC have been developed which
can ensure completeness (see e.g. [3, 4]).

In this paper we use the variant of BMC as proposed in [4]
which is characterized as follows: First, only properties over
a fixed time interval – usually specified as implications –
are allowed. Second, the restriction of the starting state for
the unrolled circuit logic to the initial state is replaced by
assumptions formulated explicitly in the antecedent of the
property. As a result, the BMC problem consists only of a
single SAT instance build by synthesizing the property and
unrolling the design as many times as the property requires.
If this SAT instance is unsatisfiable, the property holds.

In practice, during the specification of a property the ver-
ification engineer formulates assumptions about the design
environment in the antecedent of the property and joins
them by logical AND. A typical example for such an as-
sumption is to disable the reset for several cycles. How-
ever, for complex designs and hence non-trivial properties
the verification engineer can be faced with the problem of
a contradictory antecedent, i.e. the antecedent has no so-
lution. Obviously such a situation has to be detected au-
tomatically by the BMC tool, since otherwise the property
trivially holds and the consequent would not be checked.
Typical scenarios that lead to a contradictory antecedent
are, e.g. typos in an expression and/or temporal operator in
the antecedent, misinterpretation of/or incorrect specifica-
tion, bug(s) in the design (whereas the antecedent conforms
to the specification), or too strong assumptions about the
design environment. The latter case can be often observed
in practice, since the verification engineer intentionally spec-
ifies strong assumptions to understand a complex design. At
the beginning it is much easier to focus on a certain design
functionality instead of writing a general property.

A closer inspection of these scenarios reveals that two dif-
ferent kinds of a contradictory antecedent have to be distin-
guished: (1) the contradictory antecedent is solely caused
by one or more conflicts of the antecedent sub-expressions
or (2) the contradictory antecedent results from one or more
conflicts of the antecedent sub-expressions and the design.

For BMC as used here, testing whether the antecedent
is contradictory is straightforward. Instead of checking the
whole property only the antecedent (for case (1)) or the
antecedent including the unrolled circuit logic (for case (2))
is tested for satisfiability. However, in case of a negative
answer, i.e. the SAT instance is unsatisfiable and hence we
have a contradictory antecedent, the verification engineer
has to identify what exactly causes the contradiction. As the
debugging of a contradictory antecedent is done manually so
far, this is a very time-consuming process.

In this paper we present a fully automatic approach to
analyze a contradictory antecedent. The result of the ap-

proach is the presentation of all reasons for the contradic-
tions in the antecedent. A reason is a conjunction of an-
tecedent sub-expressions that evaluates to zero. In addi-
tion a reason is minimal in the sense that removing a sub-
expression from the conjunction resolves the contradiction.
Overall, the methods helps the verification engineer in de-
bugging since he/she understands what exactly causes the
contradiction(s). The approach is based on a reformula-
tion of the antecedent using new free variables such that
sub-expressions of the antecedent can be disabled. From
the assignments to the free variables the approach derives
which sub-expressions are “non-relevant”, i.e. never part of
any contradiction. For the remaining sub-expressions the
logical dependencies of the respective values of the free vari-
ables are analyzed which allow to determine all reasons.

The basic idea of the approach has been considered al-
ready in the context of constraint-based random simulation
for debugging contradictory constraints [5]. Besides the dif-
ferent domain and a pure BDD-based implementation on
top of a constraint-solver, the approach in this paper addi-
tionally has to determine whether a contradiction occurs in
combination with the design or not.

In the literature, a property where the antecedent is con-
tradictory is said to be vacuously satisfied [6]. Beer et al. con-
sidered an antecedent failure – for the first time mentioned
in [7] – as motivation to study the more general question:
can a model or property contain an error if model checking
was executed successfully [6, 8]. Searching for errors in this
direction is called vacuity detection [9, 10]. Improvements
have been investigated in [11, 12]. However, all these ap-
proaches only address the detection of vacuity which in our
work is done by checking if the antecedent is unsatisfiable.

Analyzing contraditions in temporal properties previously
has been investigated in [13] where a method is proposed
to identify a Temporal Antecedent Failure (TAF). The au-
thors consider model checking of temporal implication prop-
erties specified as regular expressions. The proposed method
computes a position in the regular expression that is a rea-
son for a TAF. However, a position may involve a complex
Boolean formula that cannot be further analyzed. Besides
that, methods for diagnosing over-constrained
problems in the area of constraint satisfaction problems ad-
dress a similar question (see e.g. [14]). But these approaches
do not ensure minimality. In the domain of SAT, the com-
putation of so called unsatisfiable cores (i.e. sub-formulas)
is of interest [15, 16]. However, to obtain a minimal reason
the much more complex problem of a minimal unsat core
has to be considered [17, 18, 19]. Note that the approach
of [17] also uses new free variables, but they are introduced
for each clause. In general this would lead to a very time
consuming process (see e.g. [20]).

2. BOUNDED MODEL CHECKING
We use the BMC variant as described in [4, 21]. For-

mally, for a design with the transition relation Tδ, the BMC
instance for a property p over the finite interval [0, c] is given
by: ∧c−1

i=0Tδ(si, si+1) ∧ ¬ p, where p may depend on the in-
puts, states, internal signals and outputs of the circuit in the
time interval [0, c]. This BMC instance can be formulated as
a SAT problem by unrolling the circuit for c time frames and
generating logic for the property. As the property is negated
in the formulation, a satisfying assignment corresponds to a
case where the property fails. For the specification of the
properties, we use a subset of PSL (Property Specification
Language [22]). A property has the form of an implication
A → C. A is the antecedent and C is the consequent of the
property and both consist of a timed expression. A timed
expression is formulated on top of variables that are evalu-
ated at different points in time within the time interval [0, c]
of the property. The operators in a timed expression are the
typical HDL operators like logic, arithmetic and relational
operators. The timing is expressed using the temporal op-
erators next and prev.

3. DEBUGGING APPROACH
In this section we describe our method for determining

the reasons of a contradictory antecedent. A reason is a set
of sub-expressions that is sufficient to cause a contradiction.
Before the details of the approach are presented, some basic
definitions are provided.

3.1 Contradictory Antecedent
Definition 1. For a given design with the transition re-

lation Tδ and a property p = A → C over the finite inter-
val [0, c] let ∧c−1

i=0Tδ(si, si+1)∧¬(A → C) be the correspond-
ing BMC instance. Then, A is a contradictory antecedent
of the property p, iff

• A evaluates to 0 (considering all inputs, states and out-
puts used in p as free variables) or

•
c−1V
i=0

Tδ(si, si+1) ∧ A evaluates to 0 (i.e. the contradic-

tion(s) are caused by both, the antecedent A and the
design).

Remark 1. The fact whether the contradiction(s) are
caused solely by the antecedent or by the antecedent and the
design is important for two reasons: First, in the former
case debugging is simpler as will be shown later. Second, the
size of the SAT instance is much smaller if the design does
not have be unrolled as in the second case.

3.2 Partitioning and Main Flow
We use a partitioning of the antecedent into several sub-

expressions. This partitioning is motivated by the typical
form of an antecedent, i.e. the antecedent consists of assump-
tions that are joined by logical AND. In addition, the cho-
sen partitioning allows the identification of contradictions at
low computational costs. A refinement can easily be done
by performing our analysis again for the first result. The
partitioning of the antecedent of a property is defined as
follows.

Definition 2. Let p = A → C be a property with a con-
tradictory antecedent A. Then, the antecedent A is par-
titioned into n sub-expressions A0, A1, . . . , An−1 such that
A = A0 ∧ A1 ∧ · · · ∧ An−1, where the position of the logical
AND operators is derived from the antecedent according to
the conjunction of different assumptions.

Based on this partitioning, a reason in terms of our ap-
proach is a subset of all sub-expressions, that forms a con-
tradiction and hence has to be considered by the verification
engineer for debugging. The definition for a reason is given
as follows.

Definition 3. Let p = A → C be a property with the
contradictory antecedent partitioned into A = A0∧A1∧· · ·∧
An−1. Then a reason for the contradiction is a non-empty
set R ⊆ {A0, A1, . . . , An−1} such that the conjunction of
all sub-expressions Aj ∈ R (either in combination with the
design or not) form a contradiction, i.e.

c−1̂

i=0

Tδ(si, si+1) ∧
^

Aj∈R

Aj or
^

Aj∈R

Aj

evaluates to 0, respectively.
Additionally all reasons are defined to be minimal, i.e. re-

moving any sub-expression Aj from R resolves the contra-
diction.

Remark 2. In some cases more than one reason for a
contradictory antecedent can occur. If in this case only one
conflict is fixed the antecedent is still contradictory. Thus,
our approach computes all reasons and thereby allows the
verification engineer to fully understand the problem.

1 property MYPROP =
2 always (
3 (A0) x == 1 &&
4 (A1) x > 5 &&
5 (A2) y == 0
6) −> (
7 next [1] (o) == 1
8) ;

(a)

e0 e1 e2

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1

(b)

e0 e1 e2

0 − −
1 0 −

(c)

Figure 1: Simple example for contradiction analysis

To determine the reasons for a contradiction the algorithm
uses a reformulated antecedent A′. This is done such that
each sub-expression Aj can be disabled by the BMC tool
and hence each contradiction can be resolved.

Definition 4. Let A be a contradictory antecedent. Then
A is reformulated to A′ such that

1. for each sub-expression Aj a new free variable ej (called
enable variable) is introduced and

2. Aj is substituted by the implication ej → Aj.

In this way A = A0 ∧ A1 ∧ · · · ∧ An−1 is reformulated to
A′ = (e0 → A0)∧ (e1 → A1)∧ · · · ∧ (en−1 → An−1). For the
reformulated antecedent A′ the following holds:

1. If ej is set to 1, then the sub-expression Aj is enabled.

2. If ej is set to 0, then the sub-expression Aj is disabled
because 0 → Aj evaluates to 1 independently from Aj .

Using this reformulation, the main flow for our extended
BMC approach is as follows: First it is checked whether a
contradiction occurs. In this case, A is reformulated to A′

and the contradiction analysis (as described in the next sec-
tion) is invoked returning the set R of all reasons. After-
wards, for each reason it is checked if the respective sub-
expressions cause the contradiction solely or in combina-
tion with the design. The respective output is given to the
verification engineer, i.e. for each reason all contained sub-
expressions available via a direct link to the syntax tree of
the PSL property (and the information with or without de-
sign) is shown. This differentiation helps the verification en-
gineer to decide whether only the antecedent has to be con-
sidered for debugging or additionally the design as well. If
no antecedent contradiction occurs, the property is checked
as usual.

3.3 Analysis of the Contradictory Antecedent
If the antecedent is contradictory, then our approach de-

termines all reasons. This task is performed by Algorithm 1.
Before the details of the algorithm are provided, we describe
the underlying concepts.

The reformulation of the antecedent from A to A′ as de-
scribed in the previous section allows to enable/disable sub-
expressions. The basic idea for the computation of all rea-
sons is as follows: Since the enable variables are free vari-
ables, we can obtain an assignment to these variables such
that the overall contradiction of the antecedent is resolved.
Such an assignment contains information which assumptions
cannot occur together. But from a single satisfying assign-
ment we cannot conclude which expressions form a contra-
diction. This is illustrated in the following example:

Example 1. Consider the property MYPROP depicted
in Figure 1(a). One satisfying assignment to all enable
variables is e0 = 0, e1 = 0, and e2 = 0 (i.e. disabling
all sub-expressions). Obviously this assignment resolves the
contradiction. However, from this assignment one cannot
conclude the minimal reasons of the contradiction (which is
R = {A0, A1}).

In contrast when all assignments to the enable variables
are available, then all sub-expressions which are either self-
contradictory or never part of a contradiction can easily be
identified just by applying one of the following observations:

Algorithm 1: contradictionAnalysis(Reformulated an-
tecedent A′, unrolled design Tδ, interval [0, c])

Result: Set R of reasons
A = ∅ ; // Set of assignments for ej variables1

while (find new assignment a for ej in2

(
Vc−1

i=0 Tδ(si, si+1) ∧A′)) do
A = A ∪ {a} ;3

R = ∅ ; // Set of reasons4

E = ∅ ; // Set of enable vars for det. analysis5

for (j = 0 . . . n− 1) do6

if (∀a ∈ A : a(ej) = 0) then7

R = R∪ {{ej}};8

else if (∀a ∈ A : a(ej) = don′t care) then9

continue;10

else11

E = E ∪ {ej};12

foreach (X ∈ P(E)) do from smallest to the largest13

if (∃X ′ ∈ R : X ′ ⊂ X) then14

continue;15

else if ((
W

a∈A
∧

V
ej∈X

ej = 1) ≡ 0) then
16

R = R∪ {X};17

return R;18

Observation 1. If ej is 0 for all solutions, then the re-
spective sub-expression Aj is self-contradictory.

Observation 2. If the assignment of ej is don’t care for
all solutions (i.e. the value of ej can be either 0 or 1 in
all solutions), then the respective sub-expression Aj is never
part of a contradiction of A.

Example 2. Again the property MYPROP shown in Fig-
ure 1(a) is considered. Figure 1(b) gives all solutions with
respect to enable variables, while Figure 1(c) shows the sym-
bolic representation of them obtained by using a BDD. As
can be seen the enable variable e2 for the assumption A2 is
always don’t care and hence we can conclude that this ex-
pression is never part of a contradiction.

In both cases (Aj is self-contradictory or never part of a
contradiction) the respective sub-expressions do not have to
be considered any longer. This early classification signifi-
cantly reduces the number of subsets X ⊆ {A0, . . . , An−1}
to be checked as reasons.

Thus, all satisfying assignments for the enable variables
are computed and checked for one of these observations
in Algorithm 1. The first step is done by using an All Solu-
tion SAT solver (line 2), i.e. once a solution has been found
a blocking clause [23] is added to exclude the same solution
for the enable variables from the remaining search space and
the search for another solution continues. Each new solution
of the enable variables is stored in set A (line 3).

After this, for each sub-expression Aj it can be checked
if Aj is either self-contradictory (line 7) or never part of a
reason (line 9). In the former case (ej is 0 for all solutions
and thus Aj is self-contradictory) the enable variable ej is
added as a single reason to a set R storing all reasons for
the contradiction (line 8). Note that R stores the reasons
in terms of ej variables, not in terms of the respective sub-
expressions Aj itself. If the second observation holds (ej is
don’t care for all solutions and thus Aj is never part of
a contradiction), then this sub-expression can be skipped
(line 10). For all remaining cases (line 11) ej is stored in a
set E including all sub-expressions (in terms of enable vari-
ables) which cannot be classified by the two observations and
thus have to be considered in the detailed analysis (line 12).

hold=1,
reset=0

hold=1,
reset=0

hold=1,
reset=0

hold=1,
reset=0

01 10 1100

reset=1

reset=1

reset=1

Figure 2: FSM

1 property P1 = always (
2 (A0) r e s e t == 1 &&
3 (A1) next (c u r r s t a t e == ”10 ”) &&
4 (A2) next a [0 . . 4] (r e s e t == 0) &&
5 (A3) next a [0 . . 4] (hold == 0)
6) −> (next [5] (c u r r s t a t e == ”00 ”)) ;

Figure 3: PSL property

1 property P2 = always (
2 (A0) r e s e t == 1 &&
3 (A1) next a [1 . . 5] (r e s e t == 0) &&
4 (A2) next a [0 . . 5] (! (hold && next (hold))) &&
5 (A3) next [5] (c u r r s t a t e == ”01 ”)
6) −> (next [6] (c u r r s t a t e == ”01 ”) | |
7 next [6] (c u r r s t a t e == ”10 ”)) ;

Figure 4: PSL property

The detailed analysis checks subsets consisting of remain-
ing enable variables (i.e. sub-expressions) for being a reason
of the contradiction. To this end, the respective subsets X
are obtained by creating the power set P(E) of E (line 13).
Thereby, we start forming the subsets with at least two el-
ements. Furthermore, by ordering the subsets according to
their cardinality, the smaller conjunctions of sub-expressions
are checked first. In this way, by excluding all supersets of
reasons determined so far (line 14), minimality is guaran-
teed.

For each remaining subset (i.e. for each combination) the
conjunction of the respective sub-expressions is tested for a
contradiction. Therefore, all variables ej ∈ X are assigned
to 1 to enable all respective sub-expressions of X. Then,
the resulting cube is combined with a disjunction of all so-
lutions a ∈ A as shown in line 16. If the cube of enable
variables (i.e. the enabling of the respective sub-expressions)
leads to a contradiction, then a reason has been found and
thus, X is added to R (line 17). The final result of the
algorithm is the set of all minimal reasons.

4. EXPERIMENTAL RESULTS
The presented techniques have been implemented and eval-

uated during the verification of different designs.
First we illustrate our method for the FSM depicted in

Figure 2. There are four states encoded by two bits. The
FSM falls back to state 00 when the signal reset is set to 1.
Otherwise, it steps through the states in increasing order
and wraps around to state 00 unless the signal hold is set.
For this design we consider the property shown in Figure
3. In the antecedent it is assumed that there is a reset at
time point 0 (line 2), the state should be 10 at time point 1
(line 3) and there is no reset and no hold during the cycles
0 to 4 (lines 4 and 5 respectively). This antecedent leads
leads to a contradiction. For the analysis, the antecedent
is split into the four expressions A0, . . . , A3 as mentioned
above. It is reported that A3 is irrelevant and that there
are two different reasons for the contradiction. The first
reason is R1 = {A0, A2}. This is because the expression
A2 = next a[0..4](reset == 0) implies that there is no reset
at time point 0 which contradicts expression A0. The second
reason is R2 = {A0, A1}, because after the reset at time
point 0 – as demanded by A0 – the state will be 00 at time
point 1, which contradicts A1.

In case of the next a statements the analysis can still be
refined, as the expression next a[i..j](x) can be rewritten as

next[i](x) && next[i + 1](x) && . . . && next[j](x). By
splitting up the next a operator the analysis points exactly
to the expression related to time point 0 for the first reason.

A more complex property is considered in Figure 4. The
antecedent is a conjunction of four expressions A0, . . . , A3.
It is assumed that there is a reset at time point 0 followed
by 5 cycles with no reset (lines 2 and 3). Furthermore there
may not be two consecutive cycles with the hold signal acti-
vated (line 4). Finally, at time point 5 it is assumed that the
FSM is in state 01 (line 5). When checking this property it
is reported that its antecedent is contradictory. The single
reason that is given by our approach is the conjunction of all
four expressions together with the design. This means that
removing any of the assumptions would remove the contra-
diction. In this case it is the combination of the antecedent
with the functionality of the design that makes the scenario
impossible.

Our contradiction analysis approach has also been used
during the formal verification of a RISC CPU. This CPU
implements parts of the MIPS instruction set architecture
[24]. It is based on a 5-stage pipeline and contains 32 gen-
eral purpose registers. The overall design has a gate count of
approximately 300.000. During the design process BMC has
been applied for early debugging of the basic functionality
of the CPU. For this purpose relatively restrictive properties
are written to check aspects of the design that have recently
been implemented. When a contradictory antecedent occurs
our method was able to identify the root cause very fast
(e.g. for the analysis of the property for the “load word” in-
struction the result was obtained in less then a CPU minute
on a Intel Xeon CPU with 3 GHz and 32 GB of main mem-
ory).

5. REFERENCES
[1] E.M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.
[2] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model checking

without BDDs. In Tools and Algorithms for the Construction and Analysis of
Systems, volume 1579 of LNCS, pages 193–207. Springer Verlag, 1999.

[3] M. Sheeran, S. Singh, and G. St̊almarck. Checking safety properties using
induction and a SAT-solver. In Int’l Conf. on Formal Methods in CAD, volume
1954 of LNCS, pages 108–125. Springer, 2000.

[4] K. Winkelmann, H.-J. Trylus, D. Stoffel, and G. Fey. Cost-efficient block
verification for a UMTS up-link chip-rate coprocessor. In Design,
Automation and Test in Europe, volume 1, pages 162–167, 2004.

[5] D. Große, R. Wille, R. Siegmund, and R. Drechsler. Contradiction
analysis for constraint-based random simulation. In Forum on Specification
and Design Languages, pages 130–135, 2008.

[6] I. Beer, S. Ben-David, U. Eisner, and Y. Rodeh. Efficient detection of
vacuity in ACTL formulas. In Computer Aided Verification, volume 1254 of
LNCS, pages 279–290, 1997.

[7] D. L. Beatty and R. E. Bryant. Formally verifying a microprocessor using
a simulation methodology. In Design Automation Conf., pages 596–602, 1994.

[8] I. Beer, S. Ben-David, C. Eisner, and Y. Rodeh. Efficient detection of
vacuity in temporal model checking. Formal Methods in System Design,
18(2):141–163, 2001.

[9] O. Kupferman and M. Y. Vardi. Vacuity detection in temporal model
checking. In Conference on Correct Hardware Design and Verification Methods,
pages 82–96, 1999.

[10] M. Purandare and F. Somenzi. Vacuum cleaning CTL formulae. In
Computer Aided Verification, pages 485–499, 2002.

[11] H. Chockler and O. Strichman. Easier and more informative vacuity
checks. In ACM & IEEE International Conference on Formal Methods and Models
for Codesign, pages 189–198, 2007.

[12] J. Simmonds, J. Davies, A. Gurfinkel, and M. Chechik. Exploiting
resolution proofs to speed up LTL vacuity detection for BMC. In Int’l
Conf. on Formal Methods in CAD, pages 3–12, 2007.

[13] S. Ben-David, D. Fisman, and S. Ruah. Temporal antecedent failure:
Refining vacuity. In CONCUR, pages 492–506, 2007.

[14] R. R. Bakker, F. Dikker, F. Tempelman, and P. M. Wognum. Diagnosing
and solving over-determined constraint satisfaction problems. In
International Joint Conference on Artificial Intelligence, pages 276–281, 1993.

[15] E. Goldberg and Y. Novikov. Verification of proofs of unsatisfiability for
CNF formulas. In Design, Automation and Test in Europe, pages 886–891,
2003.

[16] L. Zhang and S. Malik. Validating SAT solvers using an independent
resolution-based checker: Practical implementations and other
applications. In Design, Automation and Test in Europe, pages 880–885, 2003.

[17] Y. Oh, M. N. Mneimneh, Z. S. Andraus, K. A. Sakallah, and I. L.
Markov. AMUSE: a minimally-unsatisfiable subformula extractor. In
Design Automation Conf., pages 518–523, 2004.

[18] J. Huang. MUP: A minimal unsatisfiability prover. In ASP Design
Automation Conf., pages 432–437, 2005.

[19] M. N. Mneimneh, I. Lynce, Z. S. Andraus, J. P. Marques-Silva, and K. A.
Sakallah. A branch and bound algorithm for extracting smallest minimal
unsatisfiable formulas. pages 467–474, 2005.

[20] M.H. Liffiton and K.A. Sakallah. On finding all minimally unsatisfiable
subformulas. In Theory and Applications of Satisfiablity Testing Conference,
volume 3569 of LNCS, pages 173–186. Berlin: Springer-Verlag, 2005.

[21] M.D. Nguyen, M. Thalmaier, M. Wedler, J. Bormann, D. Stoffel, and
W. Kunz. Unbounded protocol compliance verification using interval
property checking with invariants. IEEE Trans. on CAD, 27(11):2068–2082,
Nov 2008.

[22] Accellera Property Specification Language Reference Manual, version 1.1.
http://www.pslsugar.org, 2005.

[23] K.L. McMillan. Applying SAT methods in unbounded symbolic model
checking. Computer Aided Verification, pages 250–264, 2002.

[24] David A. Patterson and John Hennessy. Computer Organization and Design.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2004.

