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Abstract—Analog-Mixed Signal (AMS) circuits have become
increasingly important for today’s SoCs. The Timed Data Flow
(TDF) model of computation available in SystemC-AMS offers
here a good tradeoff between accuracy and simulation-speed
at the system-level. One of the main challenges in system-level
verification is the quality of the testbench. In this paper, we
present a testbench qualification approach for SystemC-AMS
TDF models. Our contribution is twofold: First, we propose
specific mutation models for the class of filters implemented
as TDF models. This requires to analyze the Laplace transfer
function of the filter design. Second, we present the mutation-
based qualification approach based on the proposed specific
mutations as well as standard behavioral mutations. This allows
to find serious quality issues in the testbench. Our experimental
results for a real-world AMS system demonstrate the applicability
and efficacy of our approach.

I. INTRODUCTION

Internet-of-Things (10T) devices and Cyber Physical Sys-
tems (CPS) have escalated the demand for complex System-on-
Chips (SoCs) comprising of analog, mixed-signal, and digital
circuits tightly integrated on one die. As a consequence thereof
methodologies are required to efficiently design, verify and
produce high quality SoCs at lower costs. In particular, AMS
verification face significant challenges due to the increasing
design complexity. The digital parts are comparatively easier
to verify as fault model based tests can be generalized, but
unfortunately digital methodologies cannot be easily extended
to AMS designs. The main reason for this are the differences
between pure digital and mixed-signal designs: 1) continuous
time signals for AMS systems highlight the need for para-
metric faults which affect the signal values even though the
underlying design is unchanged, 2) there is a large number of
possible test input signals (frequency, amplitude, sine wave,
square wave, impulse etc), hence, careful application specific
response checking is required, 3) frequency response, signal
duration, amplitude variations, and post processing etc. are
crucial in AMS verification, 4) AMS verification requires
functional characterization, and 5) there are also no generic/-
standardized fault models [1] such that each circuit topology
requires a separate fault model. To summarize, these key
differences highlight the compelling need for enhanced AMS
verification methodologies.
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For an early design entry and early system verification,
Virtual Prototyping is nowadays established industrial practice.
The Timed Data Flow (TDF) Model of Computation (MoC)
available in SystemC-AMS [2] offers a good tradeoff between
accuracy and simulation-speed at the system-level. TDF is
used to model the pure algorithmic or procedural description
of the underlying design as well as different types of transfer
functions.

The typical SystemC-AMS verification flow consists of ei-
ther adapting the existing tests for the new circuit by manually
modifying one of the tests from previous circuits with similar
functionality, or by writing a new test from scratch. The
methods used are based on the experience of the test engineer
as well as the circuit specifications. This highlights one of
the main challenges in system-level design verification: the
quality of testbench. Mutation testing [3], [4], [5], [6] is an
established approach for both software and digital hardware
designs to determine the effectiveness of tests and testbenches,
respectively. Essentially, the design is mutated based on a fault
model and it is checked whether this mutation is detected by at
least one test. Mutation testing heavily relies on the mutations
which mimic potential faults. For pure digital designs this
is well understood and strong approaches are available (see
e.g. [71, [8], [9D.

In this paper, we present a testbench qualification approach
for SystemC-AMS TDF models, which to the best of our
knowledge has not been considered before. Our contribution
is twofold: First, we propose specific mutation models for the
class of filters (for both, active and passive filters) implemented
as TDF models. This requires to analyze the Laplace transfer
function of the filter design, and to perform the mutation ac-
cordingly. Second, we present the mutation-based qualification
approach based on the proposed specific mutations as well
as standard behavioral mutations. This allows to find serious
quality issues in the testbench.

II. BACKGROUND

For brevity, we refrain from giving a proper introduction
to SystemC-AMS, and encourage the reader to go through
the SystemC-AMS user guide [2]. Instead, we present here a
simplified example SystemC-AMS program (Fig. 2) extracted
from the RF receiver shown in Fig. la. The RF receiver
includes a RF antenna, Low Noise Amplifier (LNA), a mixer
with Local Oscillator (LO), a Low Pass Filter (LPF), and
Analog-to-Digital Converter (ADC). The digitized signal is
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Fig. 1. RF receiver with filters — LNA: Low Noise Amplifier, LO: Local
Oscillator, LPF: Low Pass Filter, ADC: Analog-to-Digital Converter

then sent out for further processing. The LPF block is ex-
panded to show the RLC (Resistor, Inductor, Capacitor) circuit
diagram. This will be used to showcase the main ideas of our
approach throughout this paper.

The SystemC-AMS constructs and semantics necessary to
understand the example will be explained as needed. We
omitted the SystemC-AMS code required for instantiation
and binding of components, i.e. the elaboration phase. The
example (Fig. la) shows a single input (inp) and a single
output (outp) analog second order passive LPF where L= 470
mH, C= 0.047 pF, and R= 4.3 K(2, and cutoff frequency fc
= 1 KHz. LPF is designed to allow signals with frequency
lower than a certain cutoff frequency, and attenuate the signals
with frequency higher than cutoff frequency. The filter is
implemented in SystemC-AMS TDF MoC, where its Laplace
transfer function (described by the numerator and denominator
coefficients) is shown in Eq. 1.

H(s) !

T LCs2+ RCs+1

The coefficients are declared in Fig. 2, Line 3. SystemC-
AMS provides dedicated solver for continuous time lin-
ear transfer functions in Laplace domain under the class
sca_tdf::sca_ltf_nd, defined here as ltf (Line 4). The library
function initialize (Line 7) sets the initial values of the member
variables, i.e., num and den in this case (Line 8 - Line 13). This
is also reflected in Eq. 2 with components values replaced. The
callback method processing (Line 16) defines the time-domain
behavior of the TDF module i.e., filter, in our case. The num,
den, and inp are given to the solver (I#f) as inputs (Line 17),
and It#f returns the continuous output and assigns it to outp.
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III. TESTBENCH QUALIFICATION APPROACH

In this section we first start with a motivating example
for our approach. Then, we provide the ingredients like fault
models, and qualification flow. At the end, the approach is
illustrated to show its effectiveness.

A. Motivating Example

The general idea of the qualification approach is that if a
mutation is introduced in the LPF design (Fig. 2), the testbench
should be able to detect that mutation. But there exists an
interesting case, when a single mutation changes the complete
behavior of the filter, i.e., transforms the filter from low pass to

1 11 s.den(0) = 1; //s"0
2 struct my_lpf::states{ 12 s.den(l) = 202.1le-6;
3 sca_util::sca_vector<double> //s"1
num, den; 13 s.den(2) = 22e-9; //s°2
2 Tcaftdf::scafltffnd 1tf; 14 }
i 15

6 ) L . 16 void my_lpf::processing() {
7 void my_lpf::initialize() { 17 outp = s.ltf(s.num, s.den,
8 s.num(0) =1 /s”0 inp);
9 s.num(1l) = 0; //s"1 18 }
10 s.num(2) = 0; //s"2 19

Fig. 2. SystemC-AMS second order low pass filter implementation

high pass filter (HPF) or band stop filter (BSF). In this case, the
basic tests included in the initial testbench, specially if testing
the filter around fc, may not able to detect the mutation, and
this can lead to serious problems in the design. For e.g., a
LPF when mutated to BSF (Fig. 1b) will be able to pass all
signals below and above fc, and only attenuate the signal with
frequency equal to fc.

Therefore, careful test selection around fc is required to
detect the mutation.
B. Approach Overview

The approach is shown in Fig. 3. It relies strongly on
the fault models chosen for mutation testing. If the fault
models are weak, or do not represent an interesting case, it
is highly likely that the testbench quality will be low. Sound
testbench qualification can only be carried out when accurate
fault models (derived as closely as possible from underlying
defects) are available.
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Fig. 3.
C. Fault Modeling: Filters and More

We propose fault models for first and second order filters
(both passive and active) implemented using SystemC-AMS
TDF MoC as shown in Fig. 2. First order, and second order
filters serve as primitive blocks for higher order filters, hence,
fault modeling for these two types covers the vast spectrum of
filters. One important thing to note is that the fault model is
independent of the filter topology i.e., components connected
in series or parallel.

Eq. 1 corresponding to LPF can be mutated in several
ways, where each mutation changes the behavior of the filter
completely. The mutations can be carried out in both the
numerator and denominator. For e.g., a first order mutation
in BEq. 1 is carried out by adding LC's? term in numerator.
The result is shown in Eq. 3. This changes filter’s behavior to
band stop filter, which allows all frequencies to pass except
around fc. The mutation is shown in Fig. 4, Line 4.

LCs? +1
H(s) = LCs?+ RCs +1

Interestingly, the circuit topology stays unchanged i.e., the

components, and their order of connection stays the same.

Testbench qualification approach overview
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void my_lpf::initialize() {
1;

1

2 s.num(0) = //s”0

3 s.num(l) = 0; //s”1

4 s.num(2) = 22e-9; //s”2 <—- Mutation performed
5 s.den(0) = 1.0; //s”0

6 s.den(1l) = 202.1e-6; //s"1

g s.den(2) = 22e-9; //s°2

Fig. 4. First order mutation on Fig. 2

void my_lpf::initialize() {

1
2 s.num(0) = 0; //s"0 <-- First mutation
3 s.num(l) = 0; //s"1
4 s.num(2) = 22e-9; //s"2 <-- Second mutation
5 s.den(0) = 1.0; //s"0
6 s.den(l) = 202.le-6; //s"1
g s.den(2) = 22e-9; //s"2

}

Fig. 5. Second order mutation on Fig. 2

The corresponding circuit diagram is shown in Fig. 1b. This
accentuates two problems, 1) visually the circuit looks the
same as in Fig. la, the fault can be missed by test engineer,
2) if the testbench verifies the design around fc, the basic
tests might not be able to detect the fault. Such mistakes
are possible during copy-paste of the code and forgetting to
update the equation coefficients. Hence, this makes a valid
fault model. This also highlights the need for a high quality
testbench.

Similarly, a second order mutation is performed on Eq. 1
by setting num(0) to O (first mutation, Fig. 5, Line 2), and
setting num(2) to 22e—9 (second mutation, Line 4). This is
supported by the coupling effect hypothesis, where simple
mutations couple to form a complex fault. Coupling effect
can help in revealing very serious design issues.

A list of possible first and second order mutations on filter
transfer functions is shown in Table I, when a certain filter type
is implemented. For e.g., given a 2nd Order LPF, it can have
four possible mutations shown under first order mutations,
and second order mutations headings in Table I. The second
order mutations are only applicable on the Laplace transfer
functions in our case. For algorithmic descriptions, only first
order mutations are used.

In addition to proposed filter fault models, SystemC-AMS
TDF MoC models can be mutated using the operators and
syntax from C++ library. Therefore, for sequential modeling
faults, we adopt the comprehensive set of mutation operators
as proposed in [10], where 77 C/C++ mutation operators
are explained. They are primarily based on the competent
programmer hypothesis, i.e. faults are syntactically small and
only few keystrokes away from original program. In case of
the constant mutation fault model (adding/subtracting a value),
only small modifications of the original values are considered
i.e., the mutation is done within +/-10% range. This is to keep
the values within the defined tolerances of the components.
The assumption here is that if this small variation is detected
by the testbench, the larger variations will most likely be
detected.

D. Qualification Flow

The qualification flow is divided into three stages as shown
in Fig. 3. In the first stage, the mutants are generated and
stored in a Mutant Database. Then, the original Design Under
Verification (DUV) is simulated using the given testbench. The

TABLE I
FIRST AND SECOND ORDER MUTATIONS OF FILTERS

2nd Order Mutation
Ist Order HPF
Ist Order LPF
2nd Order HPF
2nd Order BPF
2nd Order LPF
2nd Order BPF
2nd Order LPF
2nd Order BPF

Ist Order LPF

1st Order Mutation
2nd Order LPF
2nd Order BPF
2nd Order BSF
Ist Order LPF

2nd Order BSF

Given Filter
1st Order LPF
1st Order HPF

2nd Order LPF

2nd Order HPF

2nd Order BPF 1st Order HPF

2nd Order LPF
2nd Order HPF

2nd Order BSF

LPF: Low Pass Filter
HPF: High Pass Filter

BPF: Band Pass Filter
BSF: Band Stop Filter

1 void lp_eln_tb_stim_tcl::stimulus_sequence () {
2 CHECK_RANGE_DYNAMIC (outp, -0.707, 0.707, sc_time(1.0,
SC_MS) ,sc_time (10, SC_MS), >: : SC_ERROR) ;
CHECK_RANGE (s.s_fft_res, 0.7069, 2, sc_c
//TC2
CHECK_RANGE_AFTER (outp,

C yre: : SC_ERROR) ;
E_DYNAMIC (outp,
sin_reference (outp_ref,
sc_time (10, SC_MS), sc_core::SC_ERROR);

//TC1l
_core::SC_ERROR) ;

w

0.105,
//TC3
sin_reference (outp_ref, 10),
-10),sc_time (0.0, SC_SEC),
//TC4

0.690, sc_time (50, SC_US),

(TS

Fig. 6. SystemC-AMS testbench checkers

resulting output (all tests passing) is put aside as Reference-
results. It helps in defining the operating ranges of the DUV,
later to be compared with mutated design results. This stage
needs to be executed only once in qualification flow.

In the second stage, mutants are picked one by one from
the Mutant Database, compiled and executed using the same
testbench used for the original DUV. The output is compared
with Reference-results. If a test in testbench fails, that means
the mutant has been detected, and it is termed as killed”. But
if the mutant passes the tests, there could be several reasons, to
name few; 1) not enough tests available, 2) equivalent mutant.

The third stage calculates the Mutation Score (MS) by using
Eq. 4 on second stage results. MS of 1 is the highest, and
signifies a sound testbench.
F#mutants_detected

MS =
F#total_mutants

“

E. Illustration

To illustrate the qualification approach, consider the LPF
shown in Fig. 2 with fc= 1 KHz. For brevity, we only show
two interesting mutants with initial MS of 0.5. A sine wave
with frequency f= 1 KHz (equal to fc), and amplitude 1.0 V
is used as the input test signal to the LPF. The basic testbench
shown in Fig. 6 containing three test cases (TC) is executed
to get Reference-results. TC1 (Line 2) checks upper and lower
bounds of outp, and also overshoots and undershoots during
the specified time duration. TC2 (Line 3) checks the amplitude
of outp exactly at fc by taking Fast-Fourier Transform (FFT).
TC3 (Line 4) checks if outp has crossed a threshold (0.105
V) after 50 uS.

Case one, a first order mutant shown in Fig. 4 is used, and
the tests are executed. The mutant behaves like a band stop
filter, and attenuates the signal completely at fc, which is 1e3
for the LPF. TC2 kills the mutant as the amplitude of outp
goes below 0.7 V.

Case two, a second order mutant shown in Fig. 5 is used,
and surprisingly all the test cases pass. The reason being, the



mutant is behaving like a high pass filter, and at fc it has the
same magnitude response as the LPF (DUV) i.e., outp = 0.707
V. Hence, a new test case TC4 is added (Fig. 6, Line 5) which
checks the phase deviation of outp in range +10° wrt. the
original signal (outp_ref). Now, the mutant is killed because
of phase difference, and the MS is 1.

IV. IMPLEMENTATION DETAILS

The framework’s first stage is mutant generation, done by
an in-house standalone command line tool from the input
SystemC-AMS source files. The underlying infrastructure is
the LibTooling library of Clang, and the tool compiles new
mutants by traversing different entities of the Abstract Syntax
Tree (AST). The tool supports all mutation operators described
in Section III-C. Second stage integrates the COSIDE [11]
environment for execution and simulation, and the last stage
performs post-processing on results.

V. EXPERIMENTAL RESULTS

In this section we present a real-world AMS system; an
energy efficient buck-boost converter [12], as a case study.
A buck-boost converter can operate in a step-down converter
(buck) or step-up converter (boost) mode.

An overview of the circuit is shown in Fig. 7. The input
voltage at node v/ of the battery is transformed to the voltage
v2 at the output and drives a load. The main principle of the
conversion is to store energy Ix in the inductor (i_//) and to
control the current flowing through it. Using switches within
the buck-boost converter, the battery (i_batteryl) is connected
from v/ to Ix to charge i_lI, or from /x to v2 to discharge it.
Depending on the switching ratio the voltage is regulated. The
main challenge when implementing a buck-boost converter is
thereby the control algorithm which controls the switching
frequency, depending on the current flowing through the nodes
vl and v2. A digital controller sets the mode of the buck-
boost converter and the expected output voltage. In addition,
the maximum current can be set, which flows through the
converter. The converter also uses low pass filters, to filter
out the high frequencies. The buck-boost converter and its
controller are implemented as SystemC-AMS TDF models.

To test the buck-boost converter model it is checked how
fast the expected output voltage is reached and how stable it is.
Therefore, an input voltage vI is applied and a target voltage
v2 is programmed via the controller. In Fig. 8 a test case is
shown. Using a checker framework, part of the COSIDE®
SystemC-AMS tool environment [11], an arbitrary function
f(t) can be specified as expected value. This enables the
creation of analog regression runs with automatic checks. In
the example, it is checked that after 2.5 ms the output voltage
is between 1.8V and 2.2V. It can be seen that the voltage is
not stable enough and the test would fail. The SoC has 10 test
cases in the testbench initially.

The in-house tool (Section IV) generated 46 mutants of
the converter, out of which 4 were filter mutants. 18 mutants
were killed successfully by the testbench, whereas 28 were
undetected. MS using Eq. 4 is 0.39. This low MS highlights
the poor quality of the testbench, and emphasizes the need to
write more test cases to kill the remaining 28 mutants.
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Fig. 7. Buck-boost converter system overview
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Fig. 8. Buck-boost test case with expected output voltage of 2V and allowed
range

VI. CONCLUSION

In this paper we have presented the first testbench qualifica-
tion approach for SystemC-AMS TDF models. The approach
is based on mutation analysis. Due to the specifics of SystemC-
AMS TDF models, we have devised new mutation models
which analyze the Laplace transfer function of filters. Com-
bining these new mutation models with standard behavioral
mutations allows us to check the effectiveness of a SystemC-
AMS testbench. We showed the effectiveness of our approach
on a real-world SystemC-AMS system. In future, we plan
to investigate constrained random techniques e.g., [13], for
testcase improvement.
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