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Abstract—An ESL design flow starts with a TLM descrip-
tion, which is thoroughly verified and then refined to a RTL
description in subsequent steps. The properties used for TLM
verification are refined alongside the TLM description to serve
as starting point for RTL property checking. However, a manual
transformation of properties from TLM to RTL is error prone
and time consuming. Therefore, in this paper we propose a fully
automated TLM-to-RTL property refinement based on a sym-
bolic analysis of transactors. We demonstrate the applicability of
our property refinement approach using a case study.

I. INTRODUCTION

In the recent years, the emergence of the Electronic System
Level (ESL) [1] can be witnessed. It has become an industry
common practice to model hardware designs at this new level
of abstraction using the IEEE standard language SystemC [2],
[3]. At ESL, functional behaviors of a design are described
using the full descriptive power of C++ together with the added
layer of concurrency by SystemC, while its communication
interfaces are abstracted to function calls and parameters. The
synchronization between functional behaviors and commu-
nication interfaces is realized using events. These modeling
techniques are termed as Transaction Level Modeling (TLM)
and standardized as a set of interfaces as TLM-2.0 [2].

In the top-down ESL design flow, SystemC TLM models are
available very early and get successively refined to RTL. TLM
models also serve as reference models to verify the correspond-
ing RTL models later. The verification is commonly performed
by a TLM/RTL co-simulation, where the same input stimuli
are applied to both models and their outputs are checked
for equivalence. This step requires an additional executable
verification component, known as transactor, to bridge the
function calls at TLM with the signal-based interfaces at RTL
and vice versa, as shown in the upper half of Fig. 1.

Obviously, the correctness of TLM models is also of great
importance. In the past few years, a wide body of verifica-
tion techniques at TLM has been developed ranging from
simulation-based (e.g. [4]–[6]) to formal verification (e.g. [7]–
[14]). Please note that we do not try to be comprehensive
but only mention a few representative approaches. Most of
these approaches are based on the principle of Assertion-Based
Verification (ABV) [15], which has been very successful for
RTL verification. Assertions, also known as properties, provide
a mean to formally capture the functional specification of the
design. They specify conditions on design inputs, outputs and
internal variables that are supposed to hold at all times. These
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conditions can also be temporal, i.e. referring to a sequence
of values over time. Assertions can be automatically translated
into executable monitors to be co-simulated with the design to
check the specified conditions. For the specification of TLM
properties, extensions to standardized language such as IEEE-
1850 PSL or IEEE-1800 SVA have been proposed [4], [16].

While the verification step based on TLM/RTL co-
simulation is indispensable, the obtained results are far from
complete and cannot ensure the absence of bugs at RTL.
For some special cases when the TLM models are high-
level synthesizable (e.g. when all used constructs are in the
SystemC Synthesizable Subset), formal sequential equivalence
checking is supported by existing EDA tools such as Calypto
SLEC or Synopsys Hector. For general TLM models, it is
highly desirable that co-simulation is complemented with other
(preferably formal) approaches. A promising direction is to
reuse properties that have been proven on the TLM model.
Due to the semantic differences of the involved abstraction
levels, straight-forward reuse is not possible. The translation
process, i.e. TLM-to-RTL property refinement, is mostly man-
ual, therefore error-prone and time-consuming.

Related Work: Several improvements to the manual
TLM-to-RTL property refinement have been proposed. Ecker
et al. [17] formulated a set of requirements for the refinement
process. In a follow-up work [18], an automated refinement
framework has been introduced. Still, a set of refinement rules
have to be defined by verification engineers before the auto-
mated translation can start. Chen and Mishra [19] proposed
a similar approach that requires a formal (temporal) semantic
mapping between TLM functions and clocked RTL signals.
Pierre and Amor [20] developed a set of pre-defined “pattern-
matching“ rules to ensure that the refined RTL properties
belong to the simple subset of PSL, which is generally easier
to verify. However, the need for a manual semantic mapping is
still not circumvented. Bombieri et al. [21] proposed to reuse
TLM properties in a TLM/RTL co-simulation. Thanks to the
availability of transactors, RTL signals over time are converted
back to TLM transactions and the TLM properties can thus be
checked on the RTL design. This is, however, not a semantic
approach, i.e. no corresponding RTL properties can be derived
to apply, for example, RTL property checking.

Paper Contribution and Organization: To the best
of our knowledge, we propose in this paper the first fully
automated TLM-to-RTL property refinement approach. The
lower half of Fig. 1 shows an overview. The main idea
lies in a better reuse of the readily available transactors.
At the core of our approach is a static transactor analysis
based on symbolic execution (Section III). Essentially, the
analysis reverse-engineers the executable transactors to create
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Fig. 1. TLM-to-RTL Property Refinement Overview
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a formal specification of the underlying protocol as Finite
State Machines (FSM). Then, TLM properties are refined by
relating high-level TLM events with RTL signal combinations
at different clock cycles based on the FSM (Section IV). We
believe that the proposed approach is of great practical interest.
While it is possible to generate transactors automatically from
a formal specification [22], in practice, verification engineers
still develop transactors manually from scratch based on a
textual specification. As the proposed approach can be best
explained on concrete examples, we introduce in Section II a
realistic case study for illustration and also feasibility demon-
stration.

II. UTOPIA CASE STUDY

As case study we consider an UTOPIA-based (universal test
and operations PHY interface for ATM) controller acting as
receiver slave device. It communicates with an Asynchrounous
Transfer Mode (ATM) master device using ATM cells, pro-
vides an internal buffer to store up to two cells, and a DMA
interface to access the buffer. For illustrative purposes, we
use a simplified data model, where a cell consists of 3 bytes
and the DMA controller word size is 16 bits. DMA access is
expected to be word-aligned thus the internal buffer cells are
zero-padded (one byte here). Fig. 2 shows the TLM and RTL
IO interface:

1) TLM Interface: The in function accepts a whole cell and
writes it into the internal buffer. It blocks in case the buffer
is full. The (dma-) read function provides a direct memory
interface for reading a buffer cell (through a char pointer in
dmi data). The (dma-) event signalizes that a cell is available
for reading (condition checked after every in or read call).
For this interface, we have five TLM events for property
specification: in:begin, in:end, read:begin, read:end and (dma-
) event:notified (abbreviated notified as it is the only event).

2) RTL Interface: On the input side clav (cell available)
signals the controller is able to receive a whole data cell, i.e.
buffer not full. The master then starts the transfer by activating
the enb (enable) signal, sets soc (start of cell) to 1 and data
to the first byte of the cell. In subsequent clock cycles, the
remaining cell bytes are transferred, one after another through
data signal. During transfer, soc stays 0 and enb stays 1.

On the output side, sig (read signal) is active iff a whole cell
is available in the internal buffer. DMA controller enables req
(request) when ready to receive. Then, the data is provided
sequentially through the word signal (2 byte steps). Finally,
done is enabled one clock cycle after data transfer has finished.

3) Transactors: Fig. 3 shows the relevant implementation
parts of the input transactor (TLM-to-RTL). Essentially, the
transactor has two functions: a TLM input function to receive
a cell and a RTL interface function to send it out. The TLM
input function receives a cell and stores it internally. It will
block (Line 8) in case a cell has already been received but not
send out (data available=true). The RTL interface function is
sampled at every RTL clock cycle. It mimics the behavior of
an ATM master device. Therefore, the transactor keeps track of
the internal protocol status (Line 18). It starts in status=WAIT
until the clav signal is observed. Then (status=START) it
initiates data transfer once a TLM cell is available. In the
next clock cycles (all status=SEND), the remaining data bytes
are transferred (Line 41). The variable i tracks the next byte
to send. Once the transfer is finished, the internal protocol
data (status and i) are reset and the TLM input function is
unblocked (Line 44-47), i.e. can receive the next cell. Asserts
are used in the transactor to detect illegal signal combinations
(e.g. clav is set to low before data is sent). The implementation
of the output transactor (RTL-to-TLM) is similar to the input
transactor, and therefore omitted.

III. STATIC ANALYSIS OF TRANSACTORS

This section describes our static analysis based on symbolic
execution to extract the underlying transactor protocol between
TLM and RTL as FSMs.

A. Symbolic Execution
Starting with the initial symbolic execution state, the trans-

actor function is repeatedly executed, until all reachable
states are explored. Fig. 4 shows the complete symbolic state
space of the transactor. In total we have 7 distinct states
({S0, ..., S6}), which make up the state space, and 6 addi-
tionally observed states ({∗S7, ..., ∗S12}) that are equivalent
to one of the first 7 and thus are discarded.

The initial execution state S0 is defined as follows: RTL
signals and TLM input are externally provided and therefore
initialized with symbolic values. The protocol data (status
and index i) are initialized with concrete values. Beside
the variable environment, a symbolic execution state has a
path condition (PC, initialized to True, i.e. no constraints in
S0). Constraints are added when executing an assert(C), i.e.
PC = PC ∧ C, or branch with symbolic condition C, e.g.
starting from S0 execution will fork due to symbolic signal
clav resulting in the states S1 and S6 (PC updated as PC
= PC ∧ C and PC = PC ∧ ¬ C, respectively). Between
subsequent executions protocol data is preserved, whereas the
RTL signal values are reset to fresh symbolic values each
time (as they can be modified in each clock cycle). The
TLM input data is preserved between executions where the
TLM input function cannot be called. This is the case for
S3 and S4, since data available is set to true, which will
block the input function. This information is collected by
performing a preliminary static analysis on the input function.
S5 unblocks the input function again by setting data available
to false and notifying the awaited event empty. We annotate



1 struct TLMToRTLTransactor {
2 bool data_available = false;
3 char data[CELL_SIZE];
4 event empty;
5
6 void tlm_input(const Cell &c) {
7 if (data_available) {
8 wait(empty);
9 assert (!data_available);

10 } else {
11 data_available = true;
12 for (i=0; i<CELL_SIZE; ++i)
13 data[i] = c.data[i];

14 }
15 }
16
17 enum State {WAIT, START, SEND};
18 State state = WAIT;
19 i = 1;
20 RTLSignals rtl;
21
22 void rtl_interface() {
23 if (state == WAIT) {
24 rtl.enb = 0;
25 if (rtl.clav) {
26 state = START;

27 }
28 } else if (state == START) {
29 assert (rtl.clav);
30 if (data_available) {
31 rtl.enb = 1;
32 rtl.soc = 1;
33 rtl.data = data[0];
34 state = SEND;
35 } else {
36 rtl.enb = 0;
37 }
38 } else if (state == SEND) {
39 rtl.enb = 1;

40 rtl.soc = 0;
41 rtl.data = data[i];
42 ++i;
43 if (i == CELL_SIZE) {
44 i = 1;
45 state = WAIT;
46 data_available = false;
47 notify(empty);
48 }
49 }
50 }
51 };

Fig. 3. TLM-to-RTL transactor relevant implementation pseudocode
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Fig. 4. Input transactor symbolic execution state space for the RTL interface
function for the input transactor in Fig. 3, path conditions have been optimized
by unused constraint elimination
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Fig. 5. FSM for the TLM-to-RTL transactor (input)

the input related TLM events, i.e. in:b and in:e, to S1 and
S5, respectively. The reason is that the execution of S1 is
the first one to access input related data, and S5 the last
one. Furthermore, we annotate the data mapping between the
internal buffer buf and the RTL data signal in S3,S4 and S5.
Combining it with the data mapping of the input function,
there exists a mapping between the RTL data signal and TLM
input cell at different states.

B. FSM Construction

The symbolic state space is transformed into an FSM by
abstracting away all data except the RTL signal values. The
FSM contains the same states and edges as the symbolic state
space, but the edges are annotated with RTL signal values. For
example starting from S0 either S1 (with clav=1 and enb=0)
or S6 (with clav=0 and enb=0) can be reached. Please note,
that the value of clav is constrained to 1 (S1) and 0 (S6) due to
the path condition. The other signal values are unconstrained
and thus not mentioned. Signal combinations which are not
covered, e.g. clav=0 and enb=1 in S0, are invalid based on
the protocol. By repeating this process for all other edges, the
transactor FSM is obtained. The input transactor FSM is shown
in Fig. 5. We additionally preserve the TLM event annotations
and data mappings in the FSM states. The output transactor
FSM shown in Fig. 6 can be obtained similarly.
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IV. PROPERTY REFINEMENT

This section outlines the refinement process based on the
extracted FSMs. Before going into details, we briefly describe
the used property language as well as the actual TLM prop-
erties for refinement.

A. Property Specification Language
For property specification, we consider the simple subset

of PSL with TLM extensions similar to [4], [16]. For TLM
properties, we use TLM events as atomic boolean propositions.
For every function f we define the events f:begin and f:end
(abbreviated as f:b and f:e). Arguments can be captured
to reason about the data, e.g. in(x):e denotes that the in
function has finished with x being passed as parameter. Finally,
e:notified denotes that event e has been notified. Boolean C++
expressions can be embedded to reason about data relations.
We use SEREs (sequentialized regular expressions) to specify
RTL traces (i.e. signal sequences sampled at clock cycles).

B. TLM Properties for Refinement
We consider two TLM properties P1 and P2, shown in upper

part of Table I. P1 specifies that after a DMA read a DMA
event notification needs to happen before the next DMA read is
started. This ensures that data is available before it is attempted
to read. P2 checks that no packets are lost. It captures the input
packet in the variable x and when the input is completed,
either the next or second next DMA read will read x. The
next event(α, φ) operator requires that φ is true at the next
occurrence of α. The CEQ(y, x) predicate returns true when
the DMA result and input cell are equal. The predicate can be
expressed in C++ syntax as shown in Table I (upper part).

C. Refinement Process
Our refinement works recursively. The operators always,

next, before, |, and next event(α, φ) are preserved. The
implication L -> R is mapped to L |-> R, i.e. first L needs
to be matched and matching of R starts at the clock cycle L
has been matched at. This is a valid refinement thanks to the
monotonic advancement of time required by the simple subset.

A TLM event E is mapped to a sequence of RTL signals
(i.e. traces) by following back all edges starting from FSM
state S, event E is associated with, and collecting the signal
assignments until the resulting traces T uniquely identify S,



TABLE I
MAPPING OF TLM TO RTL PROPERTIES WITH REFINEMENT STEPS

CEQ(y,x) (y.ptr[0] & 0xff == x.data[0]) ∧ (y.ptr[0] >> 8 == x.data[1]) ∧ (y.ptr[1] & 0xff == x.data[2])
P1 always(read:e -> notify before read:b)
P2 always(in(x):e -> next_event(read(y):e, CEQ(y,x) | next(next_event(read(z):e, CEQ(z,x)))))
RTL(notified) done
H1 (!done&&!sig | done ; !done&&!sig) | done ; !done&&sig ; !done&&req
H2 (!done&&!sig | done ; !done&&sig) | !done&&!req&&sig ; !done&&!req&&sig

RTL(read:b) _H1 | _H2 ; !done&&req
RTL(read:e) !done&&sig | !done&&sig&&!req ; !done&&req ; !done ; !done
RTL(in(x):e) (enb&&clav&&soc):NEW(x0:=data) ; (enb&&!soc):NEW(x1:=data) ; (enb&&!soc):NEW(x2:=data)
S4 (done | !done&&!sig ; !done&&sig) | !done&&!req&&sig ; !done&&req ; !done

RTL(read(y):e) _S4:NEW(y0:=word) ; !done:NEW(y1:=word)
RTL(CEQ(y,x)) (y0 & 0xff == x0) ∧ (y0 >> 8 == x1) ∧ (y1 & 0xff == x2)
RTL(P1) always(RTL(read:e) |-> RTL(notify) before RTL(read:b))
RTL(P2) always(RTL(in(x):e) |-> next_event(RTL(read(y):e), RTL(CEQ(y,x))) | next(next_event(RTL(read(z):e), RTL(CEQ(z,x)))))

Upper half shows the TLM properties and equality predicate CEQ, middle half shows mapping of TLM events to RTL signal sequences, and lower half shows the refined results.

i.e. starting from any state Q in the FSM and following any
t ∈ T , only state S can be reached (otherwise there has been
an invalid transition). We call T the distinguishing traces of
state S, and can straightforwardly express T as a SERE by
sequencing (operator ;) all signal assignments within a trace
and then union all traces (operator |). Table I (middle part)
shows the results for the relevant TLM events. For example
notified (associated with state S6 in output FSM) is uniquely
identified by done (i.e. done=1), as S5 is the only state where
done is a valid signal assignment. On the other hand to identify
S5 (associated with read:e) going back one step is not enough,
as many states can be reached with !done. In fact, T for S5
contains two traces of length 4.

Function call events capturing input/output arguments re-
quire an extended refinement procedure. It is not enough to
just visit the FSM state associated with the function begin/end,
but also go through all states where a data mapping to the
arguments exists. The event in(x):end requires to visit the state
sequence [S3,S4,S5] in the input FSM. Therefore, we generate
T for the first state in the sequence and extend it with signal
assignments to reach the subsequent states by following along
the FSM edges. At each state we capture the current data
signals in a new local variable for S3, e.g. NEW(x0:=data)
(see [20]). Based on the data mapping from the FSMs, we
obtain that RTL signal data in S3 (input FSM) is mapped
to buf[0] and following along the data mapping of the TLM
input function, that buf[0] maps to c.data[0] of the input
cell. Similarly, we obtain mappings for the output side. With
the captured data signals and mappings, we can automatically
refine the CEQ(y,x) predicate (Table I lower part).

V. DISCUSSION AND FUTURE WORK

Our proposed fully automated TLM-to-RTL property re-
finement approach is still a work-in-progress. The mono-
tonic advancement of time through the formula allows for
an intuitive recursive refinement algorithm, where evaluation
of subformulas starts at the clock cycle the previous one
finished at. Although the feasibility of our refinement approach
has been demonstrated on a realistic case study with two
representative TLM properties, a formal characterization of
supported properties is still to be defined in a future work. One
limitation is that we assume the next (or SEREs in general)
operator is not used to specify an absolute order of TLM
events. The reason is, that it is unclear how to automatically
refine it (especially when combined with other operators),
as there can be (arbitrary) many clock cycles between TLM
events at RTL. Moreover, it has been suggested that using the
next operator in this way at TLM is not well suited (up to

the point of being unsound) due to its restrictiveness [20].
Rather, the before and next event operators, which specify
precedence, should be used. However, using a single next
operator in combination with -> and next event makes sense
to avoid matching the subformula at the current instant (e.g.
as used in our property P2 in Section IV-C to avoid matching
the same read). This issue needs further investigation.

For property refinement, we compute distinguishing traces
for FSM states. However, this is not possible for FSMs
that have multiple state cycles, which accept the same input
sequence. For a protocol description such an FSM implies that
it is not possible to detect the protocol status by just observing
the IO signals, i.e. there is no synchronization or handshaking
in place. While we believe it is a reasonable assumption to
have distinguishing states, our refinement algorithm can be
extended to handle non-distinguishing states as well by: 1)
accessing internal variables of the model, or 2) generating
additional logic between model and monitor to simulate the
FSM (can be done automatically). We plan to evaluate these
extensions in future work.
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