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Abstract— Virtual Prototypes (VPs) are becoming increasingly at-
tractive for the early analysis of SoC power management, which is
nowadays mostly implemented in firmware (FW). Power and tim-
ing constraints can be monitored and validated by executing a set of
test-cases in a power-aware FW/VP co-simulation. In this context,
cross coverage of power states is an effective but challenging quality
metric. This paper proposes a novel coverage-driven approach to
automatically generate test-cases maximizing this cross coverage. In
particular, we integrate a coverage-loop that successively refines the
generation process based on previous results. We demonstrate our
approach on a LEON3-based VP.

I. INTRODUCTION

Stringent requirements on power consumption and performance have
been putting the emphasis on power optimization already in early design
steps at the system level, as both software (SW) and hardware (HW) have
a significant impact on the overall power consumption. At this level, one
of the main opportunities for power saving is the development of efficient
Power Management (PM) strategies. An efficient strategy will put each
component into an appropriate power state, so that the system will only
consume ”just enough” power to meet the deadline of the current work-
load. Due to the flexibility in adapting for different target applications,
the global PM strategy is implemented in FW in most modern SoCs.

Such a FW-based PM solution must be thoroughly validated before de-
ployment to ensure that it will perform as expected, i.e. neither the power
budget is exceeded or the performance constraint is violated. As an ex-
ample, too aggressive power-down might cause delay in processing and
affect functional correctness. While a validation on the production-level
SW and the target HW platform is unavoidable, one needs to start much
earlier. The reason is that detecting a major power-related HW/SW issue
after the RTL is already written is too late and fixing it will be very costly.

The recent advances at the Electronic System Level (ESL) have laid the
foundation for early validation of FW-based PM. On one hand, SystemC
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Virtual Prototypes (VPs) enable very fast HW/SW co-simulation [1, 2, 3].
On the other hand, emerging ESL power modeling and estimation tech-
niques (see e.g. [4, 5, 6]) allow such high-level co-simulation to be reason-
ably accurate wrt. power and timing. Building on this foundation, con-
strained random (CR) techniques [7, 8], being previously predominantly
used for functional verification, have been lifted to the validation task of
FW-based PM strategies [9]. Instead of real SW applications, system-
level workload scenarios can be described by a set of constraints and then
synthetic SW workloads, in the following we refer to them also as test-
cases, can be generated in a fully automated manner. Each such workload
scenario corresponds to a system-level use-case with an intended power
consumption and performance profile.

Although the constraint-based description enables automated genera-
tion of a large number of different test-cases (corresponding to SW work-
loads), hence reducing the risk of missing a corner case, a coverage metric
to objectively measure the quality aspect as well as to guide the genera-
tion of scenarios is still an important missing piece. At the very least, it is
mandatory that all power states of each component are comprehensively
exercised by the generated test-cases. Recent experience from the indus-
try [10] makes a case for using stronger metrics. The paper argues that the
power states from different components or power domains are not neces-
sarily independent. This also applies to our context of FW-based PM,
since this global management scheme can change the power state of sev-
eral components simultaneously according to the implemented strategy.
Therefore, an appropriate coverage metric must account for all possible
combinations of these interdependent power states. The cross coverage
of power states is such a metric.

This paper proposes a novel coverage-driven validation approach for
FW-based PM. The main contribution is a feedback-directed workload
generation algorithm that generates test-cases in an automated manner
in order to maximize the cross coverage of power states. Our approach
works in two phases: first a bootstrap phase is performed to obtain prelim-
inary coverage information based on randomly generated test-cases and
then a coverage-loop phase to close the remaining coverage gaps. The
coverage-loop works in (two) different generation modes and integrates
a refinement loop to guide the test-case generation process. We demon-
strate the applicability and efficiency of our approach using the open-
source SoCRocket VP [11] and four different PM strategies implemented
in FW.

The rest of this paper is organized as follows: We start by reviewing
related work. Then we provide relevant background information in Sec-
tion II. Next, in Section III, we present our approach on a coverage-driven
maximization of power state cross coverage. In Section IV we present the
results of the case study using the SoCRocket VP with four different PM
strategies. We conclude with a discussion on limitations and future work.

Related Work We are not aware of any other coverage-driven val-
idation approach for FW-based PM. A feedback-directed algorithm for
maximizing cross coverage of power states is therefore, to the best of our
knowledge, completely novel.

In the area of functional verification, automated coverage-driven ver-
ification has been one of the most important research topics and thus
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Fig. 1: Example power FSM of a component implementing an on-
demand PM strategy. L denotes the duty cycle (i.e. load) of the com-
ponent in the last period (time between FW update cycles).

received much attention. Current state-of-the-art approaches, pioneered
by IBM Research [12], are also based on a feedback-directed loop from
achieved coverage to the scenario generator. They often integrate ma-
chine learning techniques, such as Bayesian networks or data mining, to
infer the assumed relationship between coverage and scenario generation
directives. We refer the reader to an excellent survey [13] on this topic
for more details. These approaches are powerful but generic. The specific
context of FW-based PM allows us to develop a specialized, much simpler
feedback-directed algorithm. It would be very interesting to compare the
performance between the proposed approach and those generic solutions.
Unfortunately, they are not publicly available. A more recent and very
promising coverage closure approach is based on assertion mining[14].
However, it requires an output-directed notion of coverage that is not di-
rectly transferable to our context.

Formal techniques have been shown to be feasible for the verification
of FW-based PM, see e.g. [15]. The problem being solved is however
completely different from validation. Such approach aims to ensure the
correctness of a concrete HW/SW implementation of a PM strategy (and
thus can only be applied very late in the design flow), while we want to
evaluate the effectiveness/soundness of this strategy from the system-level
perspective.

II. PRELIMINARIES

In this section we first briefly describe the kind of systems that we con-
sider in this work. In particular we focus on a duty cycle based PM which
is implemented in FW and executed on a VP. This setting represents an
important class of systems. Then in Section B we introduce the concept
of a cross power FSM (finite state machine).

A. Duty Cycle based Power Management in Firmware

In the VP every component (e.g. CPU, bus system, memory, interrupt
controller, etc.) is associated with a set of power states and defines which
transitions between the power states are valid. Besides the obligatory full
power (FP) state, every component is typically associated with various
power save (PS) states (e.g. PS0, PS1, etc) with PS0 being the least power
saving state in the hierarchy. The VP itself does not provide any logic to
initiate a transition between power states. The power management (PM)
strategy is completely implemented in firmware (FW).

Therefore the HW provides a power interface unit (PIU) which acts
as power interface between the HW and FW. The PIU provides mem-
ory mapped addresses to the FW, which the FW can write and read. In
particular the PIU has two tasks:

1. Decode power state change commands written by the FW and then
initiate the power transition of the addressed component.

2. Collect and provide HW performance characteristics to the FW,
which can be read through the memory mapped addresses. In par-
ticular the idle and active times, i.e. the duty cycle, of the HW com-
ponents. The duty cycle (or load) denotes the percentage of time a
component has been active in a given period of time.

The PIU will trigger periodic interrupts that will initiate an update cycle
in the FW (e.g. every 50ms). Essentially, the interrupt handler in the FW
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Fig. 2: Overview of our approach

will read the collected duty cycles and based on this information decide
which (if any) power state transitions to perform. For example Fig. 1
shows a specification of an on-demand PM strategy for a CPU (or some
other component). The states of the FSM denote power states and the
directed edges that a transition is possible. The edges are annoted with
the duty cycle ranges which will trigger the transition. For example if the
CPU is in state PS1 and a duty cycle (i.e. load) L ≥ 60 is observed, i.e.
the CPU has been active between 60% and 100% in the last period, then
the FW will initiate a transition to the full power (FP) state.

B. Cross Power FSM

A power FSM, as introduced in the previous section, can be naturally
extended to a cross power FSM. Essentially, the cross FSM is a prod-
uct machine of the N individual power FSMs. A transition between two
states S = (a1, ...,aN) and G = (b1, ...,bN) in the cross FSM is possible,
if the transitions (a1,b1), ..., (aN ,bN) are defined in the individual power
FSMs, respectively (where a1,...,an and b1,...,bN are power states from the
corresponding individual FSMs). The duty cycles annotated to a cross
transition are simply a combination of the annotations of the individual
FSMs transitions. For example consider a cross FSM, which is a com-
bination of three FSMs, all three as defined in Fig. 1. This cross FSM
has an edge from state (PS0,PS1,FP) to state (PS0,PS2,PS0) annotated
with the load expression (60≤ L1 < 80 and L2 < 60 and L3 < 80) where
L1, L2 and L3 are the load (i.e. duty cycle) annotations from the three
individual FSMs.

III. MAXIMIZING POWER STATE
CROSS COVERAGE

As already mentioned, we assume that the PM strategy is implemented
in FW and updated periodically based on the duty cycles of the compo-
nents in the system. We have described such systems in more detail in the
preliminary Section A.

First we select a number of components from the system and create the
cross power FSM based on the individual power FSMs (see Section B
for more details on this preliminary step). The individual power FSMs
where the (directed) edges are annotated with transition duty cycles (e.g.
as shown in Fig. 1) can be obtained from the specification or extracted
from the FW for each component. Then, we generate test-cases that will
maximize the coverage of the cross FSM states. We describe our proposed
approach in the following.

A. Overview

An overview of our approach is shown in Fig. 2. Our approach works
in two phases: first a bootstrap phase (upper part of Fig. 2) is executed to
obtain preliminary coverage information and then a coverage-loop phase
to close the remaining coverage gaps (lower part of Fig. 2). We keep track



of relevant coverage information in a shared data structure (right side of
Fig. 2). In the following we describe our approach in more detail.

In the bootstrap phase a set of test-cases one after another is linked with
the FW, then cross-compiled and executed on a power-aware VP. These
test-cases can be obtained in various ways, for example created by a test-
ing engineer or using (constrained) random generation techniques. We
assume that each test-case consist of a list of blocks (i.e. the SW work-
load). A block is a list of instructions, potentially including (bounded)
loops. Each block corresponds to a specific instruction execution profile
(e.g. memory, arithmetic, sleep, etc.) and runs only for a short amount of
time compared to the FW-based PM update cycle interval. The number
of blocks can be randomly chosen, but it should be long enough to trigger
(preferably multiple) PM update cycles to obtain useful coverage infor-
mation. For each execution an (execution) report is obtained. The report
contains various informations about the test-case execution, including the
execution time of each block and the power state changes of every com-
ponent in the system during the PM update cycles.

A shared data structure stores the relevant coverage information from
the reports between all execution runs. Essentially, these are two pieces of
information: 1) Based on the observed power state changes in the report,
the visited cross power states are marked. This information is used to
select the next uncovered goal state G. 2) A mapping W from cross power
state S to list of blocks B (i.e. test-case or prefix of a test-case) is updated,
such that the execution of B will lead to the cross power state S. This
information is used to generate a prefix of blocks to reach a specific power
state.

The coverage-loop phase starts after all test-cases of the bootstrap
phase have been executed to close the remaining coverage gap. It will
consider all edges E = S -> G from the cross FSM, where the start S is
covered and the goal G is not, one after another. Based on the mapping
W from the shared coverage data, a prefix P of blocks is available whose
execution will reach the state S. Thus, it is only necessary to generate a
suffix X in order to hit the (cross) power transition S -> G. Therefore,
the test generator first extracts the goal load from the cross FSM. The
goal load is an interval vector (GLIV), where each interval denotes the
expected duty cycle for every component in the cross FSM to apply the
cross power transition S -> G. For example consider a cross FSM for
three components, each using the Fig. 1 power FSM individually, with
the start state S=(PS0, PS1, FP) and the goal state G=(PS0, PS2, PS0).
Then the goal load (cuboid) is defined as (60≤ L1 < 80 and L2 < 60 and
L3 < 80) where L1, L2 and L3 are the duty cycles (i.e. loads) of the three
components. Based on the GLIV (i.e. goal load), the suffix X of blocks
(long enough to reach at least one PM update cycle in order to have an
effect) is generated. As already mentioned, this suffix X should consist of
blocks such that execution of (P + X) will trigger the cross power transi-
tion from S to G, i.e. reach the expected goal load in the next PM update
cycle. Fig. 3 shows the principle1. After executing the test-case (P + X)
there are two possibilities:

1. The cross state G has been covered. In this case simply proceed to
the next uncovered cross state.

2. Otherwise, the suffix X needs to be refined. Refinement is based on
the information that has been collected during execution of (P + X).
In particular the load vector Z, which contains the observed duty cy-
cle for each component (obtained from the first update cycle when
executing X, which is U4 in Fig. 3). Refinement and re-execution
will iterate until G is covered or the test generator gives up on re-
finement, e.g. because the maximum number of refinement steps is
reached. In case refinement is not possible, the goal state G might
still be covered later, because in the cross power FSM there can be
multiple edges with different start states S that reach G.

1The execution of the last block of P can still reach into the execution period
of X (i.e. the beginning of the interval between U3 and U4 in Fig. 3). However,
by keeping the blocks short compared to the length of the periods between update
cycles, this last block of P has only negligible influence on the overall execution
of X.
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We provide more information on the test generation process in the fol-
lowing.

B. Coverage-loop

The coverage-loop test generator starts with a goal load interval vector
(GLIV), as described in the previous overview section, and generates a
suffix of blocks X. The test generation is based on mixing blocks to obtain
specific load intervals for the components within the system. Therefore,
a block calibration is performed once before the coverage-loop starts to
obtain individual block information for every block. Therefore, every (in-
struction) block is executed individually on the virtual prototype (VP) for
a fixed number of times (long enough to trigger an update cycle in FW)
while keeping the system in full power mode. By doing so a concrete load
vector (i.e. duty cycles of each component of the cross FSM) and the (av-
erage) execution time of one individual block is obtained and stored. We
perform the calibration only in full power mode to avoid the state space
explosion of having to consider the exponential many (in the number of
components in the system) different power state configurations of the sys-
tem. Please note, this calibration has only to be done once. In Section IV
we present concrete blocks and calibration results for our case study.

Based on these individual block information obtained from calibra-
tion, the test generator works iteratively through multiple different modes,
starting from simple to more elaborate ones. In this work we consider the
point-mode and line-mode generation.

First the point-mode generation is applied. Therefore, every individ-
ual block load vector V (obtained through initial calibration) is checked
against the goal load interval vector (GLIV). If V is contained in GLIV
(for example with three components V would be a point and GLIV a
cuboid) the corresponding block B of V matches the goal load. In this
case the test generator will generate a suffix X consisting only of B blocks.
The mixing vector is defined as [(1.0, B)], i.e. only a single block is used
with full weight (i.e. a factor of 1.0). The expectation is that the observed
load vector after execution of X will match V and hence cover the GLIV.
In case the execution does not match, the next individual block is con-
sidered. No refinement is performed in point-mode, since only a single
block is used. In case the GLIV cannot be matched using point-mode, the
generator proceeds to line-mode.

In line-mode the generator will consider all lines obtained by combina-
tion of two block load vectors. For every such (finite) line denoted by two
(end-)points L=(V1, V2) the intersection with the GLIV is tested. If there
is an intersection, the closest point P on the line L to the center point of
the GLIV is computed. The mixing vector M is computed based on the
(inverse) distance of P to the edge points V1 and V2 of L. Let d1 and d2
be the distances of P to V1 and V2 with B1 and B2 being the blocks asso-
ciated with V1 and V2, respectively. Then M is defined as M=[(d2 / (d1
+ d2), B1), ((d1 / (d1 + d2)), B2)]. The division ensures that the factors



TABLE I: Example that demonstrates the generation of blocks from a
mixing vector by interlacing them.

step 0 1 2 3 4 5 6 7

budgets B 0 0.5 0.3 0.1 -0.1 0.4 0.2 0
C 0 0.6 0.5 0.4 0.3 0.2 0.1 0

blocks A A A AB A A ABC

sum up to 1.0, i.e. are normalized. The expectation is that the observed
load vector Z after execution of X will match the point P and hence cover
the GLIV. In case the execution does not match, a refinement approach
is started. The refinement approach will modify the block weights of the
mixing vector M. Essentially, it will move P in the direction of either V1
or V2, away from the observed vector Z. Fig. 4 shows the principle. The
new goal vector P2 has a stronger influence of V2 (hence its weight factor
has increased from 0.5 to 0.7) and thus we expect that the next observed
load vector will move towards the original goal vector P and thus be en-
closed by the GLIV.

Further modes can be defined, for example using planes or tetrahedra
in combination with barycentric coordinates to allow for a more flexible
mixing of blocks. However, our experimental evaluation in this paper in-
dicates that using the line-mode can already be sufficient to obtain (close
to) maximal power state cross coverage. Therefore, we leave it for future
work to implement and evaluate more sophisticated mixing modes and
refinement procedures. In the following we describe how to transform a
mixing vector to a concrete list of blocks (i.e. the suffix X).

C. Final Test Generation

Given a mixing vector of blocks, for example M=[(0.7, A), (0.2, B),
(0.1, C)], the final task is the generation of the actual suffix X of blocks.
This happens in two steps:

First the factors are re-scaled by the average individual block execution
time, which has been obtained through the initial calibration. The reason
is that some blocks might execute for a (significantly) longer time than
others, thus it is necessary to divide the factors by the execution time to
keep the proportion of the blocks in the final suffix X intact. After re-
scaling, the factors are normalized again to sum up to 1.0 and passed to
the next step.

Before explaining the next step, please note that the block execution
time can deviate at runtime compared to the calibration result. The reason
is that calibration happens in full power mode only, but during execution
a PM strategy is active, and caching effects can have an impact on block
execution when blocks are mixed. Further, the overall block length need
to be long enough to ensure that an PM update cycle is triggered in the FW
(otherwise no power state transition happens). Therefore, the number of
blocks generated as suffix should be conservatively (over-)approximated.

However, in doing so, one has to be careful when generating blocks.
For example consider the mixing vector M=[(0.7, A), (0.2, B), (0.1, C)]
and assume that 500 blocks should be generated. With an update cycle
interval of for example 50ms and a minimal block execution time of 0.2ms
in full power mode this is a valid approximation. But simply generating
350 (0.7*500) A, 100 (0.3*500) B and 50 (0.1*500) C blocks one after
another will not work as expected. The reason is that the execution time of
350 A may already exceed the 50ms update interval, rendering the mixing
invalid (because the blocks B and C will not influence the duty cycles in
this update interval).

Therefore, we employ an algorithm to interlace all blocks from the be-
ginning. Table I shows the result of the algorithm for the first seven steps.
The first row lists the step number (zero is the initialization). The sec-
ond and third rows shows the budgets for the blocks B and C. The fourth
row shows which blocks are generated in the corresponding step. The
algorithm works as follows: First it obtains the block with the highest
factor, in this case A with 0.7. All other blocks are associated with bud-
gets initialized to zero. In every step a block of A is generated (since it
has the highest factor) and its factor is added to the budgets of all other
blocks. Then the budgets of B and C are decremented by its factors, re-

spectively. If the budgets falls equal or below zero, then a block of B or C,
respectively, is generated. In this example, after seven steps, the budgets
of B and C start repeating, thus the pattern AAAABAAABC of blocks is
repeated until 500 blocks have been generated.

IV. CASE STUDY

We have implemented our proposed approach in Python. As a case
study, we consider the SoCRocket VP [11]2. SoCRocket is a power aware
open-source VP written (primarily) in C++ (around 50k lines of code).
We have extended SoCRocket to include a lightweight power layer that
associates each component in the VP with a power FSM. Further we have
added a Power Interface Unit (PIU) as described in the preliminary sec-
tion which allows the FW to control the power transitions of each com-
ponent in the VP.

The SoCRocket VP consists of various components including a
LEON3-based CPU, an interrupt controller, a UART interface and a mem-
ory with corresponding controller, connected by an AMBA-based bus
system. For this case study we have added a special processing unit (SPU)
which allows to perform special operations independent of the CPU. The
SPU is configured through memory mapped (MM) writes. The CPU can
either actively wait for the result (spin) of the SPU or sleep until the SPU
triggers an interrupt. Further, the SPU is a bus master by itself and thus
can independently access the memory.

We consider a three dimensional cross power FSM combining the
FSMs of the CPU, memory (including memory controller), and the SPU,
respectively. Thus, our goal load interval vector (GLIV) is a cuboid, rep-
resenting the duty cycles of these three components. Every component
can be either in full power mode (FP) or one of four power safe modes:
PS0, PS1, PS2 or PS3, with PS0 being the least and PS3 the most power
saving mode. Thus, the complete cross power state space in this case
study consists of 5*5*5 = 125 (interdependent) states.

In the following we first introduce the individual (instruction) blocks
that we use and provide the pre-computed calibration information. Then
we present the results of our experiments using four different PM strate-
gies.

A. Block Definition and Calibration

Table II shows the individual block informations. The first row shows
the load vector measured on the VP for the CPU, memory and SPU, when
executing the block exclusively with all components of the VP being in
full power mode (so the FW-based PM strategy is switched of for this
measurement). The reason that we do calibration in full power mode
only, is to avoid the state explosion of considering all combinations of
power states for all different components in the system. The second row
shows the average runtime in nanoseconds (NS) for executing only one
block.

In total we have defined eleven different blocks. Two blocks that per-
form arithmetic operations based on addition, subtraction inside of loops.
Four blocks that primarily perform various memory operations, including
swapping and copying memory elements. A sleep block that will power
down the system, hence reducing the duty cycles of the components. Four
blocks to interact with the SPU: The CPU can sleep or spin and the SPU
can either access the memory to perform the computation or not. When
sleeping, the CPU will wakeup by an interrupt triggered from the SPU,
and when spinning, the CPU will actively keep polling the SPU using
memory mapped IO.

For illustration, Fig. 5 shows 1) an arithmetic block, 2) a memory block
and 3) a block accessing the SPU. The first block performs addition and
subtraction inside a loop. A volatile int argument is passed in from the
main function (which is just a local variable initialized with a constant
value) to avoid pre-computing the result by the compiler due to optimiza-
tions. The return value from the function is ignored from within the main

2See www.systemc-verification.org for our most recent VP-based ap-
proaches.

www.systemc-verification.org


TABLE II: Individual block information obtained by running the corresponding block exclusively on the VP (all components in full power mode,
i.e. no PM enabled in FW) and measuring the duty cycles (load) and average runtime.
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Load (CPU, MEM, SPU) (100, 1, 0) (20, 81, 0) (2, 1, 0) (65, 44, 0) (76, 34, 0) (51, 54, 0) (53, 53, 0) (7, 8, 96) (3, 86, 96) (68, 8, 100) (33, 83, 100)

Avg. Runtime in NS 465330 424360 1069000 291080 384950 133850 336990 1123760 1104760 1083230 1155440

1 #define REPEAT_10(x) do { x; x; x;
x; x; x; x; x; x; x; } while (0);

2 #define REPEAT_100(x)
REPEAT_10(REPEAT_10(x););

3
4
5 int ArithmeticBlock(volatile int x) {
6 int sum = 0;
7 int i;
8 for (i=1; i <2500; ++i) {
9 sum += i; sum -= x;

10 }
11 return sum;
12 }
13

14 void MemoryBlock () {
15 volatile int a[1024];
16 int k;
17 int x;
18
19 for (k=0; k<10; ++k) {
20 REPEAT_100(
21 x = a[k];
22 a[512+k] = x;
23 a[k] = a[512+k];
24 );
25 }
26 }
27
28

29 void CpuSpinWithMemBlock () {
30 volatile char in [1024];
31 volatile char out [1024];
32
33 *SPU_inputaddr = (uint)&in[0];
34 *SPU_outputaddr = (uint)&out [0];
35 *SPU_operation = 256;
36 *SPU_running = 1;
37
38 // keep spinning until result is

there
39 while (* SPU_running) {
40 ;
41 }
42 }

Fig. 5: Example instruction blocks with different type for illustration: an arithmetic, memory and SPU access block.

function, it ensures that the computation of the result value is not dis-
carded. In general one has to be careful when writing C code due to
compiler optimizations/re-structuring, which can make it more difficult to
define suitable blocks. This could be circumvented by writing the block
code in assembler directly. Also please note, that writing the blocks has
to be only done once. The second block performs multiple memory swap
operations. The REPEAT macro is used to eliminate some loop checking
and update operations, hence putting more weight on the memory oper-
ation. Again, to avoid compiler optimizations, the array, that is operated
on, is declared volatile. The third block employs the SPU to perform some
special operation. The SPU is configured per memory mapped (MM) ac-
cess to read from and write to a specific memory region. A MM write to
the the running register will start the SPU operation. The CPU is actively
waiting (spins) until the result is available (indicated by a zero in the run-
ning register of the SPU). The SPU is itself a bus master and will perform
various memory operations to perform its computation.

In general the blocks should be defined in such a way, to have different
load values which cover the cross load state space as thoroughly as pos-
sible. This allows to cover the remaining gaps in the cross power state
space by mixing the blocks in different combinations. In this work we
consider lines between blocks (i.e. their load vectors) for mixing, though
this can be further extended to planes or tetrahedra, etc. if necessary.
With 11 different blocks we have a total of

(11
2

)
= 55 line combinations.

A line describes the load of the three components that can be achieved
(in our model, which is a prediction of the actual VP loads) by mixing its
endpoints.

B. Experiments

We have evaluated our approach on four different duty cycle based PM
strategies. The strategies are implemented in FW and executed periodi-
cally during an update cycle:

1. on-demand : This strategy will gradually power down the compo-
nent, but immediately transition to the full power mode when work
is available. Fig. 1 shows the corresponding power FSM.

2. conservative : Will gradually power down (as the on-demand strat-
egy) and also gradually power up the component, visiting each
power state one after another. Thus, it takes multiple update cycles
to fully power up a component which has been in a (deep) power
saving mode.

3. balanced : Gradually powers down from FP to PS1 and gradu-
ally powers up from PS3 to PS1. From the PS1 state immediately
switches to FP or PS3 when work is available or the component is
idling, respectively.

4. combined : Use a different strategy for every of the three consid-
ered components: on-demand, conservative and balanced for the
memory, SPU and CPU component, respectively.

In the on-demand, conservative and balanced setting all three compo-
nents use the same strategy. We run the experiments on a Linux machine
with a 2,4 GHz Intel processor and 32 GB Ram. Table III shows the
results. The right half shows results for the four above mentioned PM
strategies. The table is separated by double lines into two parts and a
header.

The upper part (not the header) shows the information of using a ran-
dom test generator (Random-only). The number of blocks is constrained
to be between 1000 and 2000 for each test. The blocks itself are currently
randomly generated. This table part shows the execution time of all tests
together in seconds, the power state cross coverage achieved by executing
the tests, and the number of tests generated and executed.

The lower part shows results for our proposed approach. It performs
three steps one after another. First it starts by bootstrapping the cover-
age with random testing. This is the same as the Random-only approach
but we only use 100 test-cases for this bootstrapping. The reason is that
adding additional random tests does not increase the coverage very much
(as the Random-only row has demonstrated). Then our coverage-loop
is executed working in point-mode and line-mode as has been explained
in Section B. The test generator is using a suffix X of 600 blocks. For
every step we report the execution time in seconds as well as the total
coverage obtained after the step. The last row in this lower part of the
table shows the total execution time of all steps of our approach together.

It can be observed that random testing does not perform well on this
problem instance. For example increasing the number of tests from
100 (see the bootstrap phase of our approach) to 1000 does increase the
achieved coverage only marginaly (e.g. from 44% to 53.6% and from
18.4% to 21.6%), even though a large part of the cross power state space is
still uncovered, and at the same time the runtime grows (roughly) linearly
by a factor of 10. This result demonstrates that an approach performing
random test generation is not suitable for our use case.

In contrast it can be observed from the results that our coverage-driven
approach works very well to close the remaining coverage gap. Close to
100% power state cross coverage is achieved for every considered PM



TABLE III: Experimental results for our approach

Technique to maximze cross coverage
Duty cycle based power management (PM) strategy implemented in firmware (FW)

on-demand conservative balanced combined

Random-only

time in sec. 14144.81 13795.99 13172.07 13104.20

coverage 67 / 125 (53.6%) 27 / 125 (21.6%) 76 / 125 (60.8%) 61 / 125 (48.8%)

num. tests 1000 1000 1000 1000

O
ur

A
pp

ro
ac

h

1) random

(bootstrap)
time in sec. 1450.97 1381.74 1364.74 1338.39

coverage 55 / 125 (44.0%) 23 / 125 (18.4%) 53 / 125 (42.4%) 49 / 125 (39.2%)

num. tests 100 100 100 100

2) point-mode time in sec. 1617.09 1790.34 1680.92 2210.17

coverage 118 / 125 (94.0%) 111 / 125 (88.8%) 113 / 125 (90.4%) 123 / 125 (98.4%)

3) line-mode time in sec. 3173.76 2698.69 2634.66 1401.87

coverage 124 / 125 (99.2%) 115 / 125 (92.0%) 121 / 125 (96.8%) 125 / 125 (100%)

total time in sec. 6241.82 5870.78 5680.32 4950.43

strategy with reasonable runtime overhead. Already the point-mode strat-
egy is sufficient to achieve very high coverage of around 92% on these
examples. Applying the line-mode strategy afterwards does increase the
coverage further to up to 100% with an average coverage of 97%. For
some PM strategies the coverage is still (slightly) below 100%. In gen-
eral the reason is that either: 1) a stronger mixing model, or 2) different
blocks that cover the cross load state space more thoroughly are required.
In this work, the reason for uncovered cross states has been the second
case, in particular, that we were unable to define blocks with a very high
CPU and memory load at the same time (due to synchronization between
them). Careful analysis reveals that most of these uncovered cross states
are in fact unreachable: 9 out of the 10 uncovered cross states for the
conservative PM strategy and all 4 uncovered cross states for the bal-
anced PM strategy are unreachable. Only one reachable cross state has
been missed for the on-demand and also only one for the conservative PM
strategy by our approach. Thus, our approach achieves optimal and near
optimal results for the considered PM strategies by employing our mixing
model and block definitions. This experimentally proves our approach to
be very effective in maximizing power state cross coverage.

V. DISCUSSION AND FUTURE WORK

Cross coverage of power states is an effective but at the same time chal-
lenging metric to evaluate the quality of a test-set in validating power and
timing constraints. Scalability can be an issue, because the cross FSM
can grow exponentially. However, in general the number of power states
per component (and thus single FSM) is rather small. Furthermore, using
a subset of (important) components, possibly in different combinations of
small cross FSMs, can already provide very useful coverage results. Our
experimental evaluation demonstrated the applicability and efficacy of our
coverage-driven approach in maximizing the power state cross coverage.
Nonetheless, there are still possible directions for further improvements:

1. Currently individual block information (calibration) are obtained
with the system running in full power mode to avoid the state ex-
plosion of calibrating the system with all possible power state com-
binations. However, the real system will switch power states during
execution and thus deviations from the calibration result can be ob-
sered. A viable solution might be to calibrate the system only for
the (cross) states of the considered cross FSM. The cross FSM is
typically based on a small number of components (three in our case-
study) and has arguably the biggest influence on the runtime predic-
tion (since the goal is to maximize coverage of the cross FSM).

2. Caching and potentially other side effects, due to block mixing, can
lead to deviations of the (static) calibration result at runtime. Thus,

it seems useful to integrate dynamic information, observed at run-
time during test-case execution, into the test generation process.

3. Integrate more sophisticated block mixing and refinement proce-
dures. Our line-mode approach can be extended to e.g. plane-mode
or tetrahedra-mode, in combination with barycentric coordinates, to
allow for a more flexible mixing of blocks. This becomes particu-
larly useful for larger and higher-dimensional cross FSMs.

4. Investigate the use of formal verification techniques at the abstrac-
tion level of VPs, e.g. [16, 17], to automatically identify unreachable
cross states and to cover cross states that proved to be very difficult
to reach with simulation-based methods.
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