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Abstract—Approximate Computing (AC) is a design paradigm
that makes use of the error tolerance inherited by many applica-
tions. The goal of AC is to trade off accuracy for performance in
terms of computation time, energy consumption and/or hardware
complexity.

In the field of circuit design for AC, error-metrics are used
to express the degree of approximation. Evaluating these error-
metrics is a key challenge. Several approaches exist, however, to
this day not all relevant metrics can be evaluated with formal
methods. Recently, Symbolic Computer Algebra (SCA) has been
used to evaluate error-metrics during approximate hardware
generation. In this paper, we generalize the idea to use SCA and
propose a methodology which is suitable for formal evaluation
of all established error-metrics. This approach can be divided
into three stages: 1) Determine the remainder of the AC circuit
wrt. the specification using SCA, 2) build an Algebraic Decision
Diagram (ADD) to represent the remainder and 3) evaluate
each error-metric by a tailored ADD traversal algorithm. In the
experiments, we apply our algorithms to a large and well-known
benchmark set.

I. INTRODUCTION

Approximate Computing (AC) is a design paradigm which
makes use of the error tolerance inherited by many applica-
tions, such as machine learning, media processing and data
mining. The goal of AC is to trade off accuracy for per-
formance in terms of computation time, energy consumption
and/or hardware complexity [1], [2].

When designing AC circuits error-metrics are of major
importance. An error-metric evaluates the difference between
the approximation and the specification in terms of a given
metric. The initial methods for error-metric evaluation of AC
circuits were based on simulation and statistical analysis (see
for instance [1]). However, since exhaustive simulation is
not feasible for larger circuits, the user has to trust these
approaches in the sense that “sufficiently representative” sce-
narios have been considered. For this reason formal approaches
have been investigated, since their major advantage is to
enable guarantees wrt. the given metric. In the last years
several approaches for formal error-metric evaluation have
been proposed (e.g. [3], [4], [5], [6]).

Recently, in [7] an alternative has been presented which
is based on Symbolic Computer Algebra (SCA) – the recent
theoretical and practical enhancements of SCA allows to verify
the correctness of large arithmetic circuits. In verification, the
essentials of SCA are to model the gates as polynomials,
and then to divide the specification polynomial of the circuit
stepwise by these gate-polynomials. If the remainder of this
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division becomes zero, the circuit is an exact implementation
of the specification polynomial, otherwise the remainder des-
cribes the error. This principle has been exploited in [7] to
evaluate two error-metrics during hardware generation.

In this paper we generalize the idea to use SCA and propose
a three-stage approach for formal evaluation of all establis-
hed error-metrics in AC. The three stages are: 1.) Determine
the remainder of the AC circuit wrt. the specification using
SCA (Gröbner Reduction). 2.) Build an Algebraic Decision
Diagram (ADD) to represent the remainder. 3.) Evaluate each
error-metric by a tailored ADD traversal algorithm. Besides the
generic three-stage approach, the major contributions of our
work are the error-metric specific ADD traversal algorithms.
We succeeded to develop ADD algorithms which allow to
analyze all established error-metrics. This includes in particu-
lar the Worst-Case-Relative Error and Average-Case-Relative
Error for which no other formal evaluation techniques exist.

II. RELATED WORK

The authors of [3] have presented a BDD-based algorithm
for error-metric evaluation. The proposed approach is limited
to the worst-case error, the average-case error and the error
rate. Further, their approach does not allow incorporating input
probabilities.

In [8] several approximate architectures evaluated for diffe-
rent error-metrics are presented. However, these architectures
are evaluated using a non-formal statistical approach.

[4] presents a miter based method for the evaluation of
sequential circuits, which is based on the miters introduced
in [1]. This approach is limited to the worst-case error, the
average-case error and the error rate. [5] has extended this
approach by simplifying the evaluation process and could
successfully use it to generate approximate 32bit multipliers.
However, again this approach is limited to a few error-metrics
and can not incorporate input probabilities. Recently, in [9]
the methodology of [5] has been integrated into Berkeley-
ABC [10].

The authors of [7] were the first to use SCA for error-
metric evaluation. They presented methods for the evaluation
of the worst-case error and the mean-squared error only, while
we present algorithms for all relevant error-metrics. Their
approach is relatively slower compared to ADDs.

Table I gives an overview of the existing techniques for
error-metric evaluation and compares them to ours. The first
column denotes the formal methods. The 2nd-7th columns
denote which error-metric can be evaluated by each technique
respectively. It can be seen, that we are the first to present an



TABLE I
OVERVIEW OF FORMAL TECHNIQUES FOR ERROR-METRIC EVALUATION

Algorithm wc-error wcr-error ac-error acr-error ms-error error-rate bf-error
BDD-Based [3] x x x
Miter-Based [4], [1], [5] x x x
SCA-Based [7] x x
Proposed Approach x x x x x x x

approach which is applicable for all other error-metrics, giving
a closed technique for error-metric evaluation.

III. PRELIMINARIES

Due to page limitation we cannot give a detailed intro-
duction to the application of SCA to circuits. If the reader
is not familiar with the application of SCA in this context, we
refer to [11], [12], [13]. We give a brief introduction to ADDs
ind Section III-A and introduce the relevant error-metrics in
Section III-B.

A. Algebraic Decision Diagrams

Algebraic Decision Diagrams (ADDs) [14] are word-level
decision diagrams which can be used to represent pseudo-
Boolean functions f : Bn → R and are based on the Shannon
decomposition f = xifxi + x̄ifx̄i (1 ≤ i ≤ n).

B. Error-Metrics

Over the past years several metrics have been used in ap-
proximate computing. A complete list of the most popular ones
can be found in [8]. We give a short recapitulation with f(x)
being the output of the exact implementation and f̂(x) being
the output of the approximate circuit:
• One of the most popular metrics is the Worst-Case

Error (wc-error). It describes the maximum error the
approximation may give.

wce(f, f̂) = max
x
{|f(x)− f̂(x)|}. (1)

• Closely related to the wc-error is the Worst-Case-Relative
Error (wcr-error). It is a measure for the maximum error
in relation to the correct output.

wcre(f, f̂) = max
x
{ |f(x)− f̂(x)|

max(1, |f(x)|)
}. (2)

• The Average-Case Error (ac-error) describes the average
error induced by approximation.

ace(f, f̂) =

∑
x
|f(x)− f̂(x)|

2m
. (3)

• The Average-Case-Relative Error (acr-error) is related to
the ac-error and describes the average error relative to the
amplitude of the correct value. Thus it allows for larger
errors at larger amplitudes.

acre(f, f̂) =

∑
x
|f(x)−f̂(x)|

max(1,|f(x)|)

2m
. (4)

• The Mean-Squared Error (ms-error) describes the
average squared error induced by approximation. This
error-metric is relevant because it is inversely related to

the PSNR, which is a common measure for the quality
of images.

mse(f, f̂) =

∑
x

(f(x)− f̂(x))2

2m
. (5)

• The Error Rate (er) describes the probability that the
output of the approximation deviates from the true result.
It is defined as

er(f, f̂) =

∑
x∈Bm

f(x) 6= f̂(x)

2m
(6)

• The Bit-Flip Error (bf-error) is related to the maximum
Hamming Distance between the approximation and the
true result. It is defined as

bfe(f, f̂) = max
x∈Bm

n−1∑
x=0

|fi(x) 6= f̂i(x)| (7)

All of the above presented metrics are relevant for dif-
ferent applications (sometimes in combination) and refer to
different aspects of the degree of approximation. While for
some applications the maximum error-magnitude (wc-error)
might be limited, the error-rate might be of interest for other
applications.

IV. ADD TRAVERSAL ALGORITHMS

In order to evaluate the error-metrics given a word-level
formulation of the desired behavior and a gate-level descrip-
tion of the circuit, we propose a method which is divided
into three stages: 1.) Determine the remainder of the AC
circuit wrt. the specification using SCA (Gröbner Reduction)
2.) Build an ADD to represent the remainder 3.) Evaluate each
error-metric by a tailored ADD traversal algorithm. In this
section we describe the third stage: The tailored ADD traversal
algorithms. Since most of the proposed ADD traversal algo-
rithms for error-metric evaluation are based on an algorithm
for Minterm (MT) counting, we introduce this algorithm first
and afterwards describe the changes which are to be made to
this algorithm for each error-metric respectively. Algorithm 1
depicts the Pseudocode taken from the implementation of
Cudd CountMinterm in [15].

Given a function f : Bm → R represented as
ADD, the algorithm consists of two functions: A non
recursive function countMT (Line 1) and a recursive
helper function countMTRecur (Line 8). The function
countMinterms first calculates the maximum number of
minterms in Line 4 and consecutively calls the recursive
helper function in Line 5 to calculate the actual number
of minterms. countMintermsRecursive takes the current
node N , the maximum number of minterms max and a
hash table hashTable containing the calculated results for



TABLE II
COMPUTATION TIMES OF ERROR-METRICS FOR APPROXIMATE CIRCUITS

Name Gröbner ADD wc-error wcr-error ac-error acr-error ms-error error rate bf-error
Reduction Creation [ms] [ms] [ms] [ms] [ms] [ms] [ms]

[ms] [ms]
8-bit Adders

ACA I N8 Q5 2.465 12.502 0.044 13.278 (11.653) 0.061 12.591 (10.966) 0.020 0.017 0.016
ACA II N8 Q4 1.236 8.057 0.022 12.629 (11.087) 0.056 13.108 (11.566) 0.020 0.017 0.014
GDA St N8 M4 P2 0.701 5.565 0.016 8.630 (7.598) 0.046 9.694 (8.662) 0.015 0.013 0.010
GDA St N8 M4 P4 1.588 9.539 0.021 11.814 (10.235) 0.041 8.919 (7.340) 0.011 0.010 0.009
GDA St N8 M8 P1 0.520 5.669 0.018 26.098 (24.687) 0.072 30.026 (28.615) 0.046 0.037 0.036
GDA St N8 M8 P2 1.152 6.533 0.053 12.376 (10.795) 0.078 12.616 (11.035) 0.041 0.035 0.029
GDA St N8 M8 P3 1.487 6.232 0.043 10.786 (9.370) 0.046 12.905 (11.489) 0.022 0.017 0.014
GDA St N8 M8 P4 2.701 8.947 0.049 11.737 (10.025) 0.049 10.821 (9.109) 0.019 0.017 0.015
GDA St N8 M8 P5 4.193 13.405 0.049 11.497 (9.733) 0.049 9.440 (7.676) 0.018 0.016 0.014
GeAr N8 R1 P1 0.287 4.578 0.028 15.485 (14.706) 0.056 23.0178 (22.238) 0.033 0.027 0.028
GeAr N8 R1 P2 0.977 7.127 0.053 13.099 (11.454) 0.078 12.986 (11.341) 0.050 0.044 0.038
GeAr N8 R1 P3 1511 7.518 0.048 12.597 (11.004) 0.067 12.952 (11.359) 0.022 0.018 0.015
GeAr N8 R1 P4 2.019 8.559 0.038 10.213 (8.799) 0.048 11.250 (9.836) 0.017 0.014 0.013
GeAr N8 R1 P5 2.872 13.575 0.050 11.704 (9.948) 0.038 11.114 (9.358) 0.018 0.016 0.014
GeAr N8 R2 P2 1.141 6.792 0.024 12.192 (10.554) 0.053 13.201 (11.563) 0.022 0.017 0.014
GeAr N8 R2 P4 2.148 9.304 0.024 11.078 (9.538) 0.040 10.808 (9.268) 0.011 0.010 0.009

16-bit Adders
ACA I N16 Q4 4.810 64.710 0.161 43204.9 (26252.6) 0.454 43704.1 (26751.8) 0.547 0.315 0.256
ACA II N16 Q4 3.312 23.229 0.091 44633.7 (27752.3) 0.195 45476.9 (28595.5) 0.301 0.130 0.083
ACA II N16 Q8 23.691 88.428 0.012 15243.3 (30.9) 0.053 1544.0 (50.6) 0.026 0.017 0.013
ETAII N16 Q4 3.354 24.703 0.099 44775.4 (27818.9) 0.213 45225.9 (28269.4) 0.350 0.124 0.081
ETAII N16 Q8 25.782 90.342 0.013 15360.3 (30.9) 0.079 15379.4 (45.0) 0.023 0.019 0.013
GDA St N16 M4 P4 38.652 104.141 0.017 22379.2 (6121.1) 0.092 22292.1 (6034.0) 0.026 .0214 0.013
GDA St N16 M4 P8 1063.900 3307.99 0.017 19588.0 (4.0) 0.076 19588.6 (4.6) 0.025 0.020 0.012
GeAr N16 R2 P4 11.760 66.208 0.046 24265.0 (9979.6) 0.143 24361.2 (10075.8) 0.091 0.053 0.037
GeAr N16 R4 P4 33.327 104.834 0.013 15419.7 (30.9) 0.054 15438.7 (49.9) 0.026 0.018 0.013
GeAr N16 R4 P8 591.195 2.908.780 0.017 17261.3 (18.0) 0.088 17262.4 (19.1) 0.023 0.020 0.011
GeAr N16 R6 P4 104.718 626.022 0.011 12763.4 (20.2) 0.075 12771.5 (28.3) 0.017 0.012 0.009

32-bit Adders
ACA I N32 Q8 258 5861 3.416 timeout 9.372 timeout 6.916 5.482 5.213
ACA II N32 Q16 133332 1241450 0.166 timeout 2916.94 timeout 7.700 6.776 6.772

Algorithm 1 countMinterms
1: function COUNTMT(f)
2: // f is the function to be approximated represented as ADD
3: var hashTable
4: max = pow(2, f.GetNumberOfV ariables, hashTable)
5: return COUNTMTRECUR(f.rootNode, max, hashTable)
6: end function
7:
8: function COUNTMTRECUR(N, max, hashTable)
9: if isTerminal(N) then

10: if isZero(N) then
11: return 0
12: end if
13: return max
14: end if
15: if hashTable.find(N) then
16: return hashTable.result(N)
17: end if
18: resultT = COUNTMTRECUR(N.T, max, hashTable)
19: resultE = COUNTMTRECUR(N.E, max, hashTable)
20: result = 0.5 · resultT + 0.5 · resultE
21: hashTable.insert(N, result)
22: return result
23: end function

each node as inputs. If a terminal node is reached, the function
either returns 0 if it is the 0 terminal or max otherwise
(Lines 9-14). Otherwise, it checks if a result for the current
node has already been calculated (Line 15) and returns the
corresponding value if that is the case. If this is not the case,

the function is called recursively for each child node and the
result is the sum of the results of the child nodes multiplied
by 0.5 (Line 20). Finally, the calculated result is stored in the
hash table and returned.

We propose to represent the remainder of the Gröbner
Reduction as an ADD and calculate the error-metrics using
the following, tailored ADD traversal algorithms:

a) Worst-Case Error: The wc-error is equal to the largest
absolute value the remainder can attain (see Eq. 1). In order
to calculate the wc-error using the ADD representation it is
sufficient to extract the terminal with the largest absolute value.

b) Worst-Case-Relative Error: For the calculation of
the wcr-error (defined in Eq. 2), we build the ADDs for
the remainder as well as max(1, f(x)) and use the apply
algorithm to calculate the ADD representation for the division.
Subsequently, we use the same algorithm as for the wc-error.

c) Average-Case Error: To calculate the ac-error (Eq. 3),
we count the paths to each possible result. Based on the
ADD representation we modify Line 13 in Algorithm 1.
Instead of returning max, we return max · |value(N)|, where
value(N) is the value of the current terminal node. Finally,
we divide the result by 2m.

d) Average-Case-Relative Error: In order to calculate the
acr-error (see Eq. 4) based on the ADD representation, we
build the ADDs for the remainder as well as max(1, f(x)) and



use the apply algorithm to calculate the ADD representation
for the division. Finally, we use the same algorithm as for the
ac-error.

e) Mean-Squared Error: For the calculation of the ms-
error as defined in Eq. 5 based on the ADD representation,
we modify Line 13 in Algorithm 1. Instead of returning max,
we return max · value(N)2, where value(N) is the value of
the current terminal node. Finally, we divide the result by 2m.

f) Error Rate: In order to calculate the error rate (see
Eq. 6), we calculate the number of minterms and divide it
by 2m. To increase the efficiency of the algorithm, we set
the values of all non-zero terminal nodes to 1 and reduce the
diagram, effectively creating a BDD.

g) Bit-Flip Error: For the calculation of the bf-error
(Eq. 7), we find the terminal node of the ADD representation
with the highest number of 1s in the binary representation
of its value. The result is the number of 1s of the binary
representation of the value represented by this node.

One of the benefits of the SCA-based approach for error-
metric calculation is that the algorithm for the ms-error provi-
ded in [7] allows to evaluate the error-metric wrt. a given
distribution of input probabilities. We incorporate this into
our algorithms by changing Line 20 in Algorithm 1: Instead
of multiplying resultT and resultE by 0.5, we multiply
resultT by p and resultE by (1− p), where p is the proba-
bility of the variable represented by the node N to evaluate
to true (input probability). Using the same modifications as
described in the paragraphs above, we can evaluate the ac-
error, the acr-error, the ms-error and the error rate with respect
to input probabilities.

V. EXPERIMENTAL EVALUATION

All experiments have been carried out on an Intel R© Xeon R©

CPU E5-2630 v3 @ 2.40GHz with 64GB memory running
Linux (Fedora release 22). We have used CUDD 3.0.0 [15] as
a library for ADDs.

Both the Gröbner Reduction and building the ADD has to
be performed only once, even if the same circuit has to be
evaluated for different error-metrics. For this reason we give
the computation time for each step individually in our results.

We apply our algorithms to the well-known KIT-
Benchmarkset [16]. The results are shown in Table II. The first
column denotes the name of the circuit. The second column
gives the computation time of the Gröbner Reduction. The
third column denotes how long it took to build the ADD
using CUDD with activated sifting. Finally, columns 4-11
give the computation times of each error-metric respectively,
given the ADD representation. For the wcr-error and the acr-
error (columns 5 and 7), we show the total computation time
including building the ADD for the original circuit and the
time for evaluating the metric itself (i.e. dividing the ADDs
and applying the algorithms) in brackets.

It can be seen that evaluating the wcr- and the acr-error-
metrics is in general a lot harder than evaluating the other
five error metrics. This is caused by the divisions of the
ADD representations. However for small circuits (8-bit and 16-

bit adders), the computation time is still reasonable (below
60 seconds in total for all cases). For circuits with more
than 32 inputs, building the ADD representation of the correct
behavior can be challenging. We had a timeout for the 32-
bit adders after 4 hours (which have 64 inputs effectively).
However, the computation of the ADD representation of the
correct behavior can in general be done offline for relevant
circuits (such as adders and multipliers) to reduce computation
time of these metrics.

For the other error-metrics, the computation of the Gröber
Reduction and building the ADD representation of the remain-
der are the most time-consuming parts of the evaluation. Since
these tasks have to performed only once no matter how many
error-metrics are to be evaluated, our approach is especially
well suited for applications where more than one error-metric
is relevant.

VI. CONCLUSION

In this paper, we are the first to present a single formal
method for the evaluation of all relevant error-metrics in
approximate computing. Despite existing methods, our three-
stage approach is applicable to all error-metrics.

We have used our approach to evaluate a large set of ben-
chmarks. In our experiments, we have shown that performing
the Gröbner Reduction and computing the ADD representation
of the remainder are the most time-consuming parts of the
evaluation. This makes our approach specially effective for
applications where more than one error-metric has to be
evaluated, since these tasks need to be performed only once.
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