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Abstract—In this paper, we propose the first approach for veri-
fying plans of cognition-enabled autonomous robots that perform
everyday manipulation activities in human environments. Our
methodology is based on the new Intermediate Plan Verification
Language (IPVL) which is used to represent plans, environments,
and robot belief states in one joint formal model. We devise a
symbolic execution engine for IPVL and show the effectiveness
of our overall verification methodology in a case study.

Index Terms—Cognitive robotics, Robot control, Formal veri-
fication

I. INTRODUCTION

For decades, robots have only been used for repetitive tasks
in fixed environments, and their main application was to make
high-volume production in manufacturing facilities cheaper.
Advances in technology, artificial intelligence and engineering
allowed to build autonomous robots, which are able to perform
tasks in unpredictable environments, to learn, and to adjust
their behavior.

Meanwhile, the social acceptance of robotic systems has
increased, and robots have found entrance into the household.
A prominent example are robotic vacuum cleaners. However,
enabling a robot to perform complex everyday manipulation
activities, like e. g. setting the table or preparing a meal au-
tonomously, poses several challenges to the development of the
robot control system. Essentially, robots need to be equipped
with cognitive mechanisms, which allow them to deduce what
kind of action is suitable to achieve a desired task goal. This
includes, but is not limited to, applying different grasp types
for different objects and positioning themselves spatially to
be able to reach out to a location. As a consequence, the
control programs of cognition-enabled autonomous robots use
high-level behavior specification languages, which allow to
infer control decisions instead of requiring pre-programmed
decisions. Several specialized high-level behavior specification
languages have been developed in the past. Examples are
RPL [1], RMPL [2], and CPL [3]. They all share certain
attributes like their inherent concurrency and the ability to
call perception, navigation, and manipulation tasks.

While non-trivial scenarios of everyday manipulation ac-
tivities can be mastered today, the complexity of the plans is
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steadily increasing. At the same time, simulation of these plans
and even testing on physical robots reach computational limits.
This causes concern about the safety of autonomous service
robots; especially those interacting with humans or handling
potentially dangerous items. Hence, formal verification tech-
niques are necessary to ensure the safety of involved humans
and the robots themselves.

Related Work General task planning is a wide research
field. Originally suggested by [4], robot motion planning has
been enriched with requirements logic [5] in the last decade.
As one example, the temporal logic LTL has been used to
express search control knowledge in planning [6], [7]. In the
context of autonomous robotic agents and planing of non-
deterministic actions, several formalisms like e. g. Hierarchical
Task Networks [8], [9], Markov Decision Processes [10], or
Situation Calculus [11] have been developed. On top, logic
languages have been defined (see e. g. GOLOG [12]). For
these robot control programs, also verification of temporal
properties has been investigated [13], [14]. For large state
spaces, [15] proposed coverage-driven verification to validate
robotic code nevertheless. However, no formal verification
approach targeting cognition-enabled robotic plans has been
proposed so far.

Contribution In this paper, we propose the first approach for
verifying plans of cognition-enabled autonomous robots that
perform everyday manipulation activities in human environ-
ments. We use the toolbox Cognitive Robot Abstract Machine
(CRAM) [3] for realizing the cognition-enabled robot con-
trol program. In particular, CRAM provides the CRAM Plan
Language (CPL), which captures high-level plans in Common
Lisp. For the CPL, we envision a verification methodology
based on Symbolic Execution (SE) [16], [17] as it has been
shown that SE is a highly effective technique for finding
deep errors in complex software applications. The foundation
of our approach is the new Intermediate Plan Verification
Language (IPVL) which serves as a formal intermediate
representation. Our approach compiles CPL plans down to
IPVL and integrates environment models as well as robot
belief states into a single IPVL description. We additionally
devised the Symbolic Execution Engine for Cognition-Enabled
Robotics (SEECER), which is tailored for IPVL. SEECER
allows to check plan correctness with respect to environment
models as well as annotated assumptions and assertions.



To keep this paper self contained, the following Section II
recapitulates and defines all concepts used in this work.
Section III presents the main contribution i. e. the approach
for verifying CPL plans. We give a case study in Section IV
and conclude with Section V.

II. PRELIMINARIES

In this section, we give definitions and concepts necessary
for understanding the rest of this paper. At first, we introduce
Common Lisp, followed by the plan language CPL. After-
wards, we give a short overview of symbolic execution and
introduce the Wumpus World, which will be used as a running
example and case study.

A. Common Lisp

The ecosystem around the Lisp programming language is a
de facto standard in many robotics, AI, and general decision
making systems. A lot of code is already available supporting
or written in Common Lisp (a dialect of Lisp). The CPL
introduced in the next section is an extension of Common
Lisp.

To keep this paper self-contained, we give a quick overview
on Common Lisp’s code structure. All of Common Lisp’s
build-in symbols, basic units, and numbers are called atoms.
A list is a sequence of either atoms or other lists separated by
blanks and surrounded by parentheses. With that in mind, we
can define s-expressions (short for symbolic expressions) in a
recursive manner: an atom is an s-expression. If s1, . . . , sn are
s-expressions, then the list (s1 . . . sn) is also an s-expression.
If an s-expression is intended to be evaluated, it is called a
form. Such an evaluation takes the s-expression’s first element
s1 as the function name and all the other elements s2, . . . , sn
as its arguments. A Common Lisp program is a sequence of
forms.

Example 1. Consider the code snippet depicted in Listing 1.
It consists of 9 non-atomic s-expressions, which are nested and
perform simple arithmetic under a condition. Fixed values are
assigned to the variables a and b by the let* keyword, which is
used to define variables in a local scope.

B. CRAM Plan Language

For this work, we consider control programs for the au-
tonomous robots written as high-level plans in the CRAM
Plan Language (CPL) [3]. Plans describe desired behavior in
terms of hierarchies of goals, rather than fixed sequences of
actions that need to be performed. An architectural overview
of the CRAM ecosystem, to which CPL belongs, is depicted
in Fig. 1. A CPL plan receives additional information from
the robots belief state and knowledge base via a query-answer
architecture. It also activates Perception and Manipulation &
Navigation modules, which then get information from or act
on the Environment. These interaction calls happen in the form
of designators.

Designators are a common concept employed in several
reasoning and planning systems. They are often implemented
as data types encapsulating high-level descriptions of entities
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Manipulation &
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Fig. 1: Overview of the CRAM
stack architecture

1 (let* ((a 10) (b 12))
2 (if (> a 0)
3 (* 3 (+ a b))
4 (* 3 b)))

Listing 1: Common Lisp

1 (defun place-object (?target-pose ?arm)
2 (par
3 (perform (a motion (type looking)
4 (target (a location (pose ?target-pose)))))
5 (perform (an action (type placing)
6 (arm ?arm) (target (a location (pose ?target-

pose)))))))

Listing 2: CPL High-Level Plan

familiar to humans, but abstract to robots. Classes of designa-
tors available in CPL are for instance

• location designators: physical locations under constraints
like reachability, visibility, etc.,

• object designators: real world objects on a semantic level
like what they are and what they could be used for,

• human designators: description of a human entity within
an environment, and

• motion and action designators: actions that can be per-
formed by a robotic agent.

In CPL, an action designator contains the action type to
perform (like perceiving or grabbing) and several parameters.
It can be passed to the perform function, which breaks it
down to sub-tasks and takes care of their execution. Both
action designators and the perform function are particularly
important for this work and will be investigated further in
Section III-B. The following example illustrates a typical use
of different designators.

Example 2. Listing 2 shows a typical high-level CPL plan using
multiple designators. Designators are generated using the a
keyword. The plan in Listing 2 performs a motion to turn the
robot’s head to look at a specified target position and places
the robot’s arm to the same location in parallel. As can be seen,
designators may be nested, such as the two location designators
used by the action and motion designator.

Next a brief introduction to symbolic execution is given.

C. Symbolic Execution
Symbolic Execution (SE) analyzes the behavior of a program

pathwise by treating inputs as symbolic values. The (symbolic)
program state is represented by a set of symbolic expressions,
which are assigned to the program variables, and a (Boolean)
path condition pc, which must be satisfied by the instructions.
Initially, pc is set to true, i. e. there are no constraints on the
symbolic expressions. Along an execution path s, the program
state is updated according to the execution semantic of each



instruction. An assignment instruction overwrites the value of
a variable with the right-hand-side expression. At each branch
instruction, the execution path s is split into two independent
paths st and sf due to two possible evaluations of the branch
condition c. The pc for each path is updated accordingly as
pc(st) := pc(s) ∧ c and pc(sf) := pc(s) ∧ ¬c, respectively.
Only feasible paths will be explored further. A path is feasible
iff its pc is satisfiable. For verification purposes, assume(c)
adds c to the current pc to prune irrelevant paths (i. e. a path is
pruned if the new pc := pc ∧ c is not satisfiable) and assert(c)
checks for assertion violations, i. e. pc ∧ ¬c is satisfiable.
Satisfiability checks are performed by an SMT solver. A more
comprehensive overview on SE can be found in [18].

D. The Wumpus World

Autonomous robotic agents find themselves in highly com-
plex environments, which exceed the limits of exhaustive
reasoning. It is incredibly hard to operate within these envi-
ronments; even simulated behavior pushes computing systems
to their limits.

The Wumpus World [19] is an environment that operates on
relatively simple rules, but still poses a challenge due to its
incomplete information available to agents.

Definition 1. The Wumpus World is defined as a rectangular
grid of cells to which cartesian positive integer coordinates are
assigned. We define (0, 0) to be the left-most bottom position.
Position values increase in northern and eastern direction re-
spectively.

The Wumpus World is assumed to be a dungeon where every
cell represents a room. An agent can enter and leave the Wumpus
World in room (0, 0) only. In every room, doors to adjacent ones
can be found. Though, the agent’s perception is limited to events
in its current room.

The agent’s goal is to find a glittery nugget of gold placed
in one of the rooms, pick it up, and leave the dungeon safely.
Attempting doing so, the agent might face obstacles in terms
of the Wumpus, a dangerous creature emitting a bad odor to
adjacent rooms, and a number of deep pits, around which in
adjacent rooms a light breeze can be perceived. Facing either the
Wumpus or a pit, the agent will be eaten alive by the Wumpus or
fall to death respectively. Neither the Wumpus nor the pits change
their positions.

For its defense, the agent is equipped with a single arrow,
which can be shot in any orthogonal direction at any time
within the dungeon. Arrows cross rooms until they hit a wall
or the Wumpus. The latter leads to the Wumpus’ death and the
immediate ending of bad smells in adjacent rooms.

To interact with the world, the agent may perform several
actions: turning, walking, grabbing, shooting, climbing, and
perceiving.

Example 3. Consider the 3 × 3 Wumpus World in Fig. 2a. An
agent equipped with bow and arrow just entered the dungeon
and is located in position (0, 0). A glittery gold nugget is placed
at position (2, 0), whereas there is a Wumpus in room (1, 1) and
one pit at position (2, 2).

0
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0 1 2

(a) A 3 × 3 Wumpus
World

(b) Environment after
one walking action

(c) Agent’s belief state

Fig. 2: Environment vs. belief state

Odors emitted by the Wumpus are depicted as vertical curvy
lines while breezes swirling around pits are horizontal ones. The
glittery shine of gold is represented as twinkling stars.

How the environment looks in reality and how it is perceived
by the agent, can differ. When initially proposed, the Wumpus
World was designed to be a simple to understand concept,
but within its rules providing only incomplete information to
agents.

Example 4. Assume, the agent in the Wumpus World depicted
in Fig. 2a would turn to its right and would walk to room (1, 0).
The resulting world is shown in Fig. 2b. A perceiving action for
bad odors would tell the agent that a Wumpus is close. Though,
they do not know where it is precisely. Moreover, they do not even
know about the size of the world, they found themselves in.

Fig. 2c depicts the agent’s belief state after the first walk
and perception. They know, they started somewhere and walked
in eastern direction. Since there, they detected a bad smell, a
Wumpus might hide in either adjacent room.1

In the next section, we present our approach for verifying
plans of cognition-enabled robots.

III. FORMAL VERIFICATION OF CPL PLANS

In this section, we propose a verification approach for
plans of cognition-enabled autonomous robotic agents based
on symbolic execution. We start with an overview and the
general idea. We then go into detail about how we deal with
plan-environment-interaction via an interface. Afterwards, we
present our own intermediate representation (IR) for plan
verification and finally close with a detailed description of
symbolic execution on that very representation.

A. Overview

This section summarizes the approach proposed in this
paper before we go into more detail in the following sections.
Consider Fig. 3 for an overview. Our goal is to formally verify
that certain safety constraints on a given CPL plan hold.

We start with compiling the CPL plan into our own IR. For
that, we use a language, which we call IPVL and which we
describe in Section III-C.

1In some implementations, the agent does not know on which position they
start, leading to a belief state suspecting a Wumpus even in southern direction.
In case they know they are in (0, 0) in the beginning – like our agent does –
the concern for a Wumpus in southern direction is obviously eliminated.



Compiled
Plan

Belief State
Model

Plan Interface
Mocks

Environment
Model

IR: IPVL
Description

CPL Plan

query /
answer

percept
action
update

update

call /
answer

Verification Engine (SEECER)

+ Verification
Annotations

IR: IPVL
Description

Scheduler

Symbolic
Interpreter

SMT Solver

Init. Symbolic
State

Symbolic
State

SMT Types &
Operations

sym.
state

array of sym.
states

use and
query

transform
into

pass to
scheduler

select
next

compile

Fig. 3: Overview of proposed plan verification approach

Additionally, we integrate environment models as well as
agent belief states into the IR. Integrating the environment
model allows reasoning about the agent’s actions. The IR
plan accesses these IR models by means of mocked functions.
Essentially, these mocks are models of the corresponding
CPL plan interface functions. They enable the IR plan to
perform perception, navigation, and manipulation tasks on the
environment model and query the belief state model.2

For verification purposes, symbolic expressions in combina-
tion with assumptions and assertions (verification annotations)
are embedded into the IR (see lower left yellow box in Fig. 3).
This enables a comprehensive state space exploration.

Finally, the combined IR description is passed to a verifica-
tion engine to check for assertion violations triggered by the
plan execution.

Our contribution includes (1) the IPVL to act as an IR, and
(2) SEECER, which is tailored for IPVL.

IPVL is compact, yet powerful enough to capture the
simulation semantics of cognition enabled robotic plans in
combination with the agent’s belief state and environments.
SEECER checks plan correctness with respect to the environ-
ment model and the specified assumptions and assertions.

In the following, we present more details on modeling plan
interface functions and the environment (Section III-B) as well
as our IPVL (Section III-C) and SEECER (Section III-D).

B. Plan Interface and Environment Modeling
In this section, we describe how we integrate environments

into our verification process and model the interaction between
environments, agents, and plans. We already discussed in
Section II-B that modern robotic agents utilize planning lan-
guages to initiate interaction with environments. CPL defines
the perform (plan interface) function, which can be called
in Common Lisp. perform allows to initiate perception,
navigation, and manipulation tasks. The following example
gives an intuition of how perform calls work.

Example 5. Reconsider the 3 × 3 Wumpus World given in
Fig. 2a with the agent located at the left bottom corner, i. e. po-
sition (0, 0), facing in northern direction. A glittery gold nugget
is still placed at position (2, 0). Assume further, the agent makes
the following sequence of perform calls:

2Note that it is possible to exchange the environment model without
modifying the plan; hence, to verify the same plan’s safety in different
environments.

(perform (an action (type turning) (direction right)))
(perform (an action (type walking)))
(perform (an action (type walking)))
(perform (an action (type perceive) (signal glitter)))

The first call would make it turn to its right (i. e. in eastern
direction). The second and third call would make them walk in
eastern direction (i. e. the direction they face) to position (1, 0)
and (2, 0). The final call would detect a glittery object at that
very location.

Even though perform offers an intuitive interface for pro-
grammers, the underlying complexity of calls like perform
in planning languages is non-trivial in domains of symbolic
execution. As Fig. 3 touches, calls to knowledge bases for
instance are common. By mocking the perform function, we
are able to handle the agent’s initiated actions in a way that
simulates the desired environment without (1) the agent being
actually in it and (2) calling the whole underlying planning
stack. Mocking in this context means creating a function,
which to the plan behaves like perform would do without
calling the underlying stack; and such reducing complexity.
For discrete and finite worlds such as the Wumpus World,
we use the intended behavior for every possible perform
call to dynamically create this mock for that very function in
Common Lisp yielding a complete set of rules for the desired
environment.

This is a general concept that applies to any concrete
environment and planning language. For our ongoing example,
we utilize CPL and the Wumpus World.

In Algorithm 1, we give a pseudo code description of the
perform mock. An input action designator d is checked
for its type in Line 2. Dependent on that type, actions are
performed. In the Wumpus World, these can be of type
turning (Line 3), walking (Line 7), grabbing (Line 10), shoot-
ing (Line 14), climbing (Line 19), and perceiving (Line 21).

A walking action for example makes the agent take one
step in its viewing direction if it is not facing a wall. If they
do, a bump signal is triggered instead, that can be perceived
by the agent to let them know, they walked into a wall. Any
action besides perceiving makes the bump signal disappear
again (Line 1).

Due to page limitations, we cannot go into full detail here
and therefore omit the perceiving implementation in the pseudo
code (Line 22). Implementing perceiving is straightforward as
it contains another switch over the signal to perceive, e. g.
glitter or stench, and returns true iff such a signal is present
in the agent’s current room.

Please Note that our approach allows for the modeling of
both deterministic and non-deterministic environment models
through the use of additional symbolic variables and assump-
tions.

In general, the perform mock can be expressed in any
programming language or formalism and is then translated
to IPVL. This way, we need only one interpreter and no
designated environment model. We introduce our IPVL in the
next section.



Algorithm 1: CPL perform mock
Input: Action designator d

1 if type(d) 6= perceiving then bump ← false
2 switch type(d) do
3 case turning do
4 dir ← direction(d)
5 if dir = right then turn 90° clockwise
6 else turn 90° counterclockwise
7 case walking do
8 if agent faces a wall then bump ← true
9 else go one step in viewing direction

10 case grabbing do
11 if agentx = goldx ∧ agenty = goldy then
12 remove the gold nugget from the world
13 has_gold ← true

14 case shooting do
15 if has_arrow then
16 has_arrow ← false
17 if Wumpus is located in viewing direction then
18 remove Wumpus from world

19 case climbing do
20 if agentx = 0 ∧ agenty = 0 then leave dungeon
21 case perceiving do
22 . . .

C. Intermediate Plan Verification Language
We define the language features of IPVL in this section. We

start with definitions and examples of IPVL’s core and then
introduce compiling Common Lisp to IPVL by linearization.

Whichever planning language might be used by a robotic
system, one only needs to implement a compiler for translating
it to IPVL in order to get symbolic execution and verification
mechanisms with SEECER on top.

1) Core Language: We especially designed the IPVL to
make a translation as easy as possible. IPVL is Turing-
complete, dynamically typed (like Common Lisp and many
other languages in robotics), and incorporates an Assembly-
like paradigm.

IPVL code is a sequential list of instructions. Such a
representation is general and at the same time much more
manageable for a verification back-end (e. g. similar concepts
are adopted by LLVM or CBMC). However, it requires to
linearize functional languages like Common Lisp.

IPVL uses simple arithmetical, logical, comparison, and
conditional instructions. In combination with variable assign-
ments, gotos, function calls, and special verification instruc-
tions, the whole language can already be described.

The instruction set has been designed to be as simple as
possible to allow a compact verification backend. On the other
hand it should be complex enough to express plans written in
higher level robotic languages like CRAM.

The IPVL acts as a interface between a verification frontend
such as annotated CRAM and a verification backend like
SEECER, and allows for both parts to be developed indepen-
dently.

The most common instruction in IPVL is that of an assign-
ment, where the left-hand-side is a variable name and the right-

1 v := 21 * 2;
2 w := v - 4;
3 x := w / 3.8;
4 y := w > x;
5 z := y and true;

Listing 3: Assignments

1 i := 0;
2 loop:
3 i := i + 1;
4 c := i < 10;
5 if c goto loop;

Listing 4: Loops

1 defun sq ( x )
2 r := x * x;
3 return r;
4 end defun;
5 y := sq ( 10 );

Listing 5: Functions

1 x := a < 100;
2 assume x;
3 y := a * b;
4 z := y > 50;
5 assert z;

Listing 6: Verification

hand-side is either a constant or an expression. Expressions of
arithmetical, logical, and comparison type have at most two
parameters.

The following example illustrates IPVL’s core instruction
classes.

Example 6. Listing 3 demonstrates assignment instructions. As
you can see, on the right-hand-side either constants (21, 2, 4,
3.8, true) or variables (v, w, x, y, z) are allowed.

Listing 4 demonstrates the instantiation of a for loop that
counts from 0 to 10 with i as the loop variable. The expression
loop: defines a label called loop at line 2. If the condition c in
line 5 is fulfilled, execution will jump back to that label. This also
allows us to construct while and do while loops.

In Listing 5, a function declaration together with a corre-
sponding call is depicted. The function sq with parameter x
is defined by the block defun . . .end defun. Functions must
incorporate a return instruction to specify a designated return
value.

Finally, Listing 6 shows our special verification annotations
assume and assert. While assume specifies a value as-
sumed to be true as per definition, assert is a request to proof
that the following cannot be false.

2) Linearizing: When compiling functional languages to
IPVL, certain problems arise. In the following, we give an
example of how Common Lisp’s let* function needs special
handling.

Example 7. Reconsider the snippet from Listing 1. It incorpo-
rates a let* function, which assigns some variables. Though,
these variables are only valid within let*’s scope. IPVL does
not incorporate a concept like scopes, leading to a possible
problem when the variables continue being valid.

Therefore, we introduced the unlet instruction to IPVL to get
rid of previously assigned variables. Translating the snippet from
Listing 1 to IPVL yields the code shown in Listing 7, that makes
use of unlet.

We developed a decomposition mechanism to transform
Common Lisp’s tree structure to sequential IPVL code. Of
course, more cases are to be handled than shown in Example 6
and Example 7. Though, due to page limitations, we rather
give an intuition than a full specification of IPVL because this
would be out of scope of this paper.



1 a := 10;
2 b := 12;
3 _temp0 := a > 0;
4 if _temp0 goto then;
5 _result := 3 * b;
6 goto endif;

7 then:
8 _temp1 := a + b;
9 _result := 3 * _temp1;

10 endif:
11 unlet a;
12 unlet b;

Listing 7: Intermediate Linearized Representation

We describe symbolic execution for IPVL in the next
section.

D. Symbolic Execution for IPVL
In this section, we present our Symbolic Execution Engine

SEECER for IPVL, that was mentioned over the previous
sections. The right part of Fig. 3 shows an overview of
SEECER’s architecture. Essentially, SEECER consists of a
scheduler and a symbolic interpreter. The scheduler manages
a set of symbolic execution states and orchestrates the state
space exploration by selecting, which state to consider next.
The selected state is passed to the interpreter for symbolic
execution. IPVL instructions are interpreted one after another
while the symbolic execution state is updated accordingly. The
interpreter returns to the scheduler in one of three cases: (1) the
end of the IPVL program is reached, (2) an unsatisfiable as-
sumption is reached, or (3) a branch instruction with symbolic
condition is executed. In the third case the interpreter will split
the symbolic execution state into two independent states and
return these two states to the scheduler for further processing.
The interpreter employs an SMT solver to check for assertion
violations and check feasibility of symbolic branch instruc-
tions. Besides user specified assertions, our interpreter also
checks for generic execution assertions, e. g. zero divisions.

SEECER starts with a combined IPVL description (which,
as described in Section III-A, integrates the environment
model, the belief state model, and the actual plan). The IPVL
description is transformed into an initial symbolic execution
state, which is then passed to the scheduler. The scheduler
performs a Depth First Search (DFS). DFS is a common
state space exploration strategy that focuses on each path
individually and thus is memory efficient (which is important
in handling large state spaces). SEECER terminates either after
finding a violated assertion or after exploring the whole state
space. In the latter case, the plan is shown to be correct
with respect to the environment model and the specified
assumptions and assertions.

In the following, we present more details on symbolic
execution states and our symbolic interpreter.

1) Symbolic Execution State: A symbolic execution state
can be defined as the tuple (pc, ip, α). pc is the path condition,
which describes the preconditions needed to reach the current
path. The instruction pointer ip points to the next IPVL
instruction to be executed. The mapping α stores the current
value of all variables. It maps each variable name to a cell.

A cell can contain any structure that may be formulated in
current CPL plans. We support integer values, reals, Booleans,

strings, symbols (in the Common Lisp sense), designators,
functions, and lists. Integers, reals, Booleans, and strings
are represented as SMT expressions and may contain both
symbolic or concrete values. Symbols and designators can only
contain concrete values. In a typical CPL plan, those symbols
and designators will be used as constant values, which means
that there is no need to support symbolic values. Functions
consist of a pointer to a segment of IPVL code and a list
of parameter names. The function pointer is also handled
concretely, while the parameters can be symbolic expressions.
Lists are assumed to have a concrete size, contain cells itself,
and may be concrete, symbolic or a mix of both.

The engine starts with ip pointing to the first line of a
given IPVL description. This corresponds to the entry point
of the CPL plan. The path condition pc is set to true and
the mapping α is empty.

2) Symbolic Interpreter: The interpreter executes IPVL
instructions one after another and updates the symbolic execu-
tion state accordingly. Every instruction except for conditional
and unconditional goto instructions increases the ip by one.
Whenever a new variable is introduced via an assignment
or the sym instruction in IPVL, a new cell is added to
α. Symbolic variables introduced via a sym instruction are
mapped to a new symbolic SMT variable. The assume and
assert verification annotations are executed according to
their usual semantic (see Section II-C). If the SMT solver
detects an assertion violation, the engine will terminate and
return a counterexample (CEX). Based on the CEX, it is
possible to retrieve the state of the environment model and
CPL plan as well as the assertion that has been violated.
For branch instructions “if c goto l”, two cases are con-
sidered:

(1) Only one branch direction is feasible. Then, the in-
terpreter will continue with the next instruction (pc ∧ ¬c is
satisfiable, but pc∧c is not) or the instruction at label l (pc∧c
is satisfiable, but pc ∧ ¬c is not). No scheduler interaction is
involved in this case.

(2) Otherwise (both directions feasible). Then, the current
state s is replaced with two new states st and sf, defined as
follows:

pc(st) := pc(s) ∧ c pc(sf) := pc(s) ∧ ¬c
ip(st) := l ip(sf) := ip(s) + 1

α(st) := α(s) α(sf) := α(s)

Essentially, st continues as if c was true and sf as if c was
false. Please note, an SMT solver is only employed if c is
symbolic. Furthermore, only one clone operation is necessary
to obtain st and sf, because the current state s is re-used. The
interpreter returns st and sf to the scheduler.

Other instructions like arithmetic or logical ones will ma-
nipulate the cells in α according to their execution semantics.
They are mapped to SMT expressions in a straightforward
way.

We conducted a case study by assembling all individual
components described in the previous sections. These include
the approach to compile plans and environment models to



IPVL enriched with safety annotations as well as our verifica-
tion engine SEECER to test those annotations. In the following
section, we give an overview of our results.

IV. CASE STUDY: THE WUMPUS WORLD

We have implemented our verification approach for plans of
cognition-enabled autonomous robotic agents as the symbolic
execution tool SEECER and the CPL-to-IPVL compiler in
C++.

As a case study, we consider two CPL plans acting on the
Wumpus World (see Section II-D). Our primary verification
objective is to ensure the safety of the plan execution. All
experiments are performed on a Linux machine with a 3.5 GHz
Intel processor using the Z3 SMT solver [20] (version 4.8.0).
In the following we describe our two plans (Section IV-A),
the verification annotations (Section IV-B) and the results of
the experimental evaluation (Section IV-C) in more detail.

A. CPL Plans on the Wumpus World
We developed two plans with different complexity acting

on the Wumpus World. While certainly not optimal in terms
of finding the gold, we expect both plans to be safe, i. e. the
agent will never die due to a pit or Wumpus. To investigate the
bug-finding capabilities of SEECER, we also consider earlier
faulty versions of both plans.

1) Slalom Plan: This plan explores the dungeon in a slalom
pattern, starting by walking north. Upon perceiving a glitter,
the agent will grab the gold and leave the dungeon by walking
back to room (0, 0) on the same path and eventually climbing
out. After perceiving a stench, it will shoot its arrow. If the
agent has no arrow left or perceives a breeze, it will also leave
the dungeon without further exploration. In its faulty version,
the plan chooses an incorrect path when leaving the dungeon,
potentially sending the agent through unsafe territory.

2) Column-wise Plan: This plan explores more of the
environment even after perceiving a stench or breeze. Similarly
to the Slalom Plan, the agent will avoid taking risks by
exploring potentially dangerous rooms. It will instead try to
walk as far north as safely possible, then return to the southern-
most room in its column, move one column to the right and
repeat the same process there. The agent will also pick up
the gold if it encounters a glitter. After all columns have been
explored, the agent returns to room (0, 0) and climbs out of
the dungeon.

Example 8. The function in Listing 8 is part of the Column-
wise Plan. It is supposed to determine if a room’s neighborhood
is safe. The result of this function is used to guide the agent’s
exploration.

The function first checks for a breeze in the current room,
implicitly updating the belief state (Line 2). If it encounters a
breeze, the current neighborhood is deemed unsafe (Line 3).
Otherwise, it checks for a stench (Line 4). If a stench is perceived,
it shoots an arrow in its current viewing direction (Line 7). After
shooting, the neighborhood is labeled as safe iff the stench has
vanished (Line 9).

The faulty version of this plan misses the negation in Line 9
of Listing 8. This will cause the agent to sometimes label an

1 (defun is-neighborhood-safe ()
2 (if (perform (an action (type perceive) (signal

breeze)))
3 nil
4 (if (perform (an action (type perceive) (signal

stench)))
5 (if has-arrow
6 (progn
7 (perform (an action (type shooting)))
8 (setq has-arrow NIL)
9 (not (perform (an action (type perceive) (

signal stench))))))
10 T)))

Listing 8: Function is-neighborhood-safe

unsafe neighborhood as safe, which might lead to dangerous
exploration.

Next, we consider verification of the presented plans. There-
fore, we first have to specify assertions.

B. Verification Annotations

We formulate three classes of assertions on the Wumpus
World and our CPL plans. Each class corresponds to a different
verification goal:

• Safety assertions: these assertions ensure that the agent
never walks into a pit or Wumpus. These are the most
important assertions, as any plan violating them puts the
agent in danger. Consequently, they will also be the main
focus in our evaluation.

• Consistency assertions: the agents belief state is compared
to the environment model to check for any inconsistencies
such as differing positions. Consistency assertions are
particularly useful during development to avoid safety
risks or unwanted behavior later on.

• Livelock assertions: a maximum number of actions is
imposed on the agent to avoid livelocks, e. g. the agent
walking in circles.

Besides the assertions, we also specify some general as-
sumptions about the environment. More precisely we require
a valid initial environment configuration, e. g. no two pits are
in the same room.

C. Experimental Evaluation

For evaluation, we consider both plans as well as their
faulty versions, each in combination with square Wumpus
Worlds of edge lengths 3 to 10 rooms. Further, we fixed
the number of Wumpus’ and gold nuggets to one, but tried
multiple numbers of pits (0, 1, and 5). The agent always
starts in room (0, 0), while the positions of Wumpus, gold
and pits are fully symbolic. This enables a comprehensive plan
verification for all possible environment configurations within
these boundaries. Finally, we use the verification annotations
described in Section IV-B.

We observed, that SEECER has been highly effective in
finding the bugs in both faulty plan versions. For each
combination of plan and environment setup (i. e. size of the
Wumpus World and the number of included pits) SEECER



TABLE I: SEECER plan verification results

Slalom Plan: safe version
pits 3× 3 4× 4 5× 5 6× 6 7× 7 8× 8 9× 9 10× 10

0 T 1s 3s 7s 14s 27s 46s 1m 2m
#P 10 22 38 58 82 110 142 178

1 T 2s 5s 14s 32s 1m 2m 3m 6m
#P 13 31 55 85 121 163 211 265

5 T 2s 7s 26s 1m 3m 5m 9m 16m
#P 4 19 43 73 109 151 199 153

Column-wise Plan: safe version
pits 3× 3 4× 4 5× 5 6× 6 7× 7 8× 8 9× 9 10× 10

0 T 1s 4s 11s 26s 54s 2m 3m 4m
#P 6 13 22 33 46 61 78 97

1 T 5s 40s 3m 12m 34m 1h33m 3h39m 7h56m
#P 21 102 306 722 1464 2670 4502 7146

5 T 1s 1m 21m 3h49m TO TO TO TO
#P 2 115 1319 10357 — — — —

T: execution time (s=seconds, m=minutes, h=hours)
#P: number of symbolic execution paths, TO: Timeout (8h)

found a counterexample demonstrating the bug on the CPL
plan leading to unsafe behavior in less than a second. In the
following, we focus on the more interesting results, namely
proving safety of the bug-free plans.

Table I shows the results for the safe versions of the Slalom
plan (upper half of Table I) and Column-wise plan (lower half
of Table I). We report the execution time T and the number of
paths #P for each combination of plan and environment setup.
In order to prove desired behavior (i. e. none of the assertion
classes specified in Section IV-B is violated), SEECER needs
to explore the complete symbolic state space.

It can be observed, that the verification time correlates
with the environment complexity. This is to be expected, as
the environment model has a direct influence on the state
space size. Furthermore, the verification time also depends
on the actual plan. While SEECER is able to handle the
Slalom Plan with increasing environment complexity, it can
be observed that the verification runtimes grow exponentially
for the Column-wise Plan. This can be explained with the
significantly larger branching logic in the Column-wise Plan,
which in turn leads to a much larger number of symbolic
execution paths (#P) and SMT solver queries. Symbolic state
merging should be a viable technique to increase the scalability
of SEECER on such problem instances.

Nonetheless, despite currently missing state-of-the-art op-
timizations in the symbolic execution engine, the evaluation
already demonstrates the applicability and effectiveness of
our approach in verifying cognition-enabled robotic plans and
indicates that the general approach can be a suitable foundation
to deal with larger and more complex environments and plans.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed the first formal verification
approach for CPL plans of cognition-enabled robots. There-
fore, we introduced (1) the Intermediate Plan Verification
Language (IPVL) and (2) the Symbolic Execution Engine for
Cognition-Enabled Robotics (SEECER), which is tailored for

IPVL. Our approach compiles CPL plans in combination with
environment models and verification annotations down to a
combined IPVL description and then applies SEECER to
check for assertion violations. Our case study demonstrated
the applicability and effectiveness of our approach in finding
bugs as well as validating safety, consistency, and termination
(convergence) of a plan.

For future work we want to: (1) investigate modeling of
larger and more complex environments such as households,
(2) take the interaction between the plan and knowledge base
of the robot into account, and (3) integrate state merging
and other state-of-the-art symbolic execution techniques, like
compiled symbolic simulation [21], into SEECER to improve
scalability.
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