
Automated Analysis of Virtual Prototypes at
Electronic System Level

Mehran Goli, Muhammad Hassan, Daniel Große, Rolf Drechsler
Cyber-Physical Systems, DFKI GmbH, 28359 Bremen, Germany

Institute of Computer Science, University of Bremen, 28359 Bremen, Germany

{mehran.goli,muhammad.hassan}@dfki.de,{grosse,drechsle}@cs.uni-bremen.de

ABSTRACT
The exponential increase in functionality of System-on-Chips (SoCs)
and reduced Time-to-Market (TTM) requirements have significantly
altered the typical design and verification flow. Virtual Prototyp-
ing (VP) at the Electronic System Level (ESL) using SystemC and
its Transaction Level Modeling (TLM) framework is an industry-
accepted solution. VP design exploration, review, debugging, and
integration of ever changing functional requirements can be made
faster with the help of design understanding and visualization meth-
ods. Hence, in this paper, we propose a fully automated structural,
and behavioral analysis approach for visualization of ESL VPs in-
cluding TLM-2.0 VPs. At the heart of the analysis is a hybrid ap-
proach which uses static and dynamic methods to extract structural
and behavioral information of the VP. Afterwards, the extracted
information is translated into structural and graphical represen-
tations such as UML diagrams (specifying TLM-2.0 transactions’
protocols), and XML format (describing designs’ structure). Experi-
mental results including a real-world VP shows the effectiveness of
our approach.
ACM Reference Format:
Mehran Goli, Muhammad Hassan, Daniel Große, Rolf Drechsler. 2019. Au-
tomated Analysis of Virtual Prototypes at Electronic System Level. In Great
Lakes Symposium on VLSI 2019 (GLSVLSI ’19), May 9–11, 2019, Tysons Cor-
ner, VA, USA. ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/
3299874.3318024

1 INTRODUCTION
The increasing functionality of System-on-Chips (SoCs) and reduced
Time-to-Market (TTM) constraints have significantly altered the
design and verification flow to meet the high market demand. This
has led to the rapidly-growing adoption of Virtual Prototypes (VPs)
at Electronic System Level (ESL) abstraction in the last decade. Essen-
tially, a VP is an abstract, and executable software model written in
SystemC [1] using its Transaction Level Modeling (TLM) [2] frame-
work. The much earlier availability as well as the significantly
faster simulation speed in comparison to the Register Transfer Level
(RTL) models are among the main benefits of VPs. These enable
hardware/software co-design and verification very early in the de-
velopment flow. As a consequence, VPs are heavily used for early
architecture exploration for the next generation of SoCs. This al-
lows the systems architects to test new features and validate the
capabilities of the SoC, i.e. to decide where to reuse existing Intel-
lectual Properties (IPs) and where to create new hardware blocks.
However, this decision making requires design understanding of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
GLSVLSI ’19, May 9–11, 2019, Tysons Corner, VA, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6252-8/19/05. . . $15.00
https://doi.org/10.1145/3299874.3318024

the SoC, which includes both, structural as well as behavioral in-
sight. For a complex SoC with hundreds of IPs it is very hard and
time consuming to understand the interfacing, and communication
patterns of the VP. Therefore, the first logical step is to consult the
available documentation, but, there may be scenarios, e.g., third
party IPs, or legacy models, where the documentation is poorly
written, or not available at all [14]. Thus, the development team
members spend significant time to reverse engineer the design,
hence, increasing time-to-market. This has raised the need for de-
sign understanding and visualization methods which enhance the
design experience, debugging facilities, and integrated development
environments. However, one major challenge specific to behavioral
understanding of the TLM-2.0 models is the communication inter-
face. The VP models communicate through thousands of TLM-2.0
transactions which are difficult to follow, redundant, and unnec-
essary from the perspective of design understanding. A concise
visualization of the underlying VP transactions flow can accelerate
the revisions and additions, while helping significantly in design
understanding. While several approaches exist; static [5, 9, 10, 14],
and hybrid [4, 6–8, 11, 13, 16], for information extraction, analysis,
and visualization of SystemC VPs, they have the following draw-
backs: 1) no support for TLM-2.0 constructs [4, 6, 7, 13], 2) lack of
precise behavior extraction (the extracted information mostly de-
scribes the designs’ structure and do not trace their transactions or
variable’s state) [4, 6, 13, 14, 16], 3) low degree of automation [11],
and 4) scalability [7, 8].

In this paper, we propose an automated hybrid data extraction
and analysis approach for visualization of ESL VPs. Our approach
extracts the structural, and behavioral information of the VP using
static and dynamic methods. The analysis reduces the amount of re-
dundant transactions generated by VPs to a small amount of unique
transactions. This gives the designer a concise view of the complete
VP model. Our approach consists of two phases, and focuses on
TLM-2.0 constructs in particular. In phase one, static analysis is per-
formed on the given VP to extract the structural information, and
VP instrumentation is done for dynamic run-time behavioral infor-
mation extraction. In phase two, the instrumented VP is executed,
and run-time information is analyzed. For design understanding
intention, the retrieved structural information is presented in an
XML format. The extracted behavioral information is translated
into a set of Unified Modeling Language (UML) diagrams. The UML
diagrams defined in this paper reflect the behavioral information
in a big scale view to empower designers to easily trace both trans-
actions’ data and flow at the same time. Moreover, the retrieved
intermediate structured logs allow designers to use them for tasks
of debugging, validation and verification off-the-shelf or with mini-
mum translation effort into their desired forms. The approach is
applied to several case studies including a real-world VP to show
its precision, scalability, and advantages.

2 MOTIVATION
Consider the third Party AT_BUS VP (inspired from [3]) shown in
Fig. 1 where the documentation is not available (or poorly written).

https://doi.org/10.1145/3299874.3318024
https://doi.org/10.1145/3299874.3318024
https://doi.org/10.1145/3299874.3318024

A
T
_B

U
S

Target_C
Initiator_B

Target_B

Initiator_A
Target_A

Figure 1: The architecture of the AT_BUS VP.

The VP includes six modules which differentiate on the basis of
underlying base protocol transactions: two initiators (Initiator_A,
Initiator_B), one interconnect (AT_BUS), and three targets (Target_A,
Target_B, Target_C). Initiator_A communicates with target modules
through AT_BUS by generating four types of Approximately-timed
(AT) transactions. Two types T1 and T2 to access Target_A which
is a memory (each type for different memory address ranges), and
types T3 and T4 to access Target_B and Target_C, respectively. Ini-
tiator_B only generates transactions of type T4 to communicate
with all target modules. For example, consider the communication
between Initiator_A and Target_A (the gray components in Fig. 1).
The Initiator_A module generates transaction types T1 and T2 to
access memory address range (0x00 to 0x0A) and (0x0B to 0xFF) of
the Target_A module based on the function calls and timing phases
described in Table 1, respectively. Now consider a possible scenario
that can happen during the design process.

Scenario: designers decide to reuse or revise some modules of
the VP. For example, they want to modify the AT base protocol
transaction type T1 of the Initiator_A module and change it to T4
including less transition phases to gain performance. This modi-
fication also needs to be applied to the AT_BUS and Target_A to
properly build a communication path between the initiator and
target modules through the interconnect. Before any changes can
be applied to the VP, it needs to be properly understood. However,
lacking a (good) documentation makes the understanding process
very complex.

The first and common solution to handle the aforementioned
scenarios is to use reverse engineering such as analyzing and in-
strumenting the existing source code and SystemC library (if re-
quired). This usually results in incomplete logs, work overhead,
and waste of time in case of complex designs. In order to help de-
signers in understanding the complexity of a given SystemC VP
(especially for the third party or legacy designs), a SystemC ana-
lyzer tool is required that can properly extract and analyze both
structure and behavior of the VP. The former refers to the modules’
names, types (initiator, interconnect or target) and, instances and,
binding information of modules’ sockets. The latter refers to the
three essential elements: transactions’ flow, data, and type. The
transaction’s flow represents the order of TLM modules taking
part in the transaction’s lifetime (i.e. the period of time between
transaction construction and destruction). For example the trans-
action’s flow for both transaction types T1 and T2 generated by
Initiator_A to access data in Target_A is based on the sequence
order (1)→(2)→(3)→(2)→(1)→(2)→(3)→(2)→(1) where: (1) Initia-
tor_A, (2) AT_BUS and, (3) Target_A. The transaction data denotes
the transaction attributes such as data, address, length etc. The
transaction’s type refers to the transaction’s timing model (Loosely-
timed (LT) or AT) and in case of the AT model, it also specifies
which type of the base protocol transactions is used. However, this
element has not been considered by the existing SystemC analysis

Table 1: Transactions timing models of the AT-BUS VP
Type Communication Interface Call Return Status Phase Transition
T1 nb_transport_fw/nb_transport_bw TA→TU BRQ→BRP→ERP
T2 nb_transport_fw/nb_transport_bw TA→TC BRQ→BRP
T3 nb_transport_fw TU→TC BRQ→BRP→ERP
T4 nb_transport_fw TC BRQ

TC: TLM_COMPLETED TA: TLM_ACCEPTED TU: TLM_UPDATED BRQ: BEGIN_REQUEST
BRP: BEGIN_RESPONSE ERP: END_RESPONSE

Source
(.cpp) Clang Static Info

Analysis

Instrumented

Exec
Binary

Dynamic Info
Analysis

UML
Diagram

Run-time
Log

Structure
(XML)

AST Generation

Binding Info

1

2

Analyzing AST:

Trans
Lifetime

I. Finding DEF/USED Locations

I. Transactions Lifetime
II. Variables Value

Translating Information:

 II. Generating Instrumented Source Code

Source
(.cpp)

Trans
Classifier

Classified
Trans

I. Transactions' Fow Analysis
II. Transactions' Type Analysis

Phase 2

Phase 1

Figure 2: The architecture of the proposed approach.

approaches [11, 14] as they only extract the transactions’ flow (but
not their type). The two transaction types T1 and T2 have the same
communication pattern (flow) but their timing phases are differ-
ent, these methods fail to distinguish between them. Therefore, the
proposed method must be able to extract all the aforementioned
elements, distinguish the transactions’ unique type and flow and
finally present them in a proper graphical format (e.g. UML dia-
grams), thus, designers can quickly grasp the VP behavior.

3 METHODOLOGY
3.1 Overall Workflow
Fig. 2 provides an overview of the proposed approach including:

(1) analyzing the AST of a given VP to obtain two goals:
(a) extracting the static information of the model which is

required to describe design’s structure and
(b) using this information as the foundation for retrieving

run-time information (i.e. behavior) by generating an in-
strumented version of the source code.

(2) retrieving the run-time information of the design by execut-
ing the instrumented binary model and translating it into
structural formats.

3.2 Phase 1: Extracting Static Information
The extraction process is performed by visiting relevant nodes in
the AST. As the top level entities of a VP are modules and global
functions, the first entry point of extracting design’s structure is
to find the node including the information of the aforementioned
entities. The information of modules’ sockets (or signal ports), trans-
action (or variable) and member functions is also retrieved in the
same way by visiting the corresponding nodes in the AST. This
information is used to retrieve part of the design’s structure (which
is not available statically) and behavior (i.e. tracing transactions or
variables values) at run-time. To do this, an instrumented version
of the existing source code is automatically generated from the AST
including retrieving statements. The statements are defined based
on hierarchical structure where for tracing e.g. a transaction, the
value of transaction’s attributes and its related parameters such as
timing annotation, phase (e.g. BEGIN_REQ) and functions’ return
status (e.g. TLM_COMPLETED) – for the AT model – are retrieved
during execution. Moreover, the simulation time is extracted to no-
tify the exact time of transaction or variable value changes. To trace
a transaction after any possible change, we define two locations
DEF and USED. The DEF location refers to the line of code where
the transaction is defined (e.g. as a function arguments or a local
variables within the function’s body). In case of TLM-2.0 designs,
the USED location refers to function calls (e.g. transport interfaces
b_transport or nb_transport) where the transaction object is used
as an input argument. Thus, the retrieving statements are inserted
to the source code after the aforementioned locations.

1 s t ruc t I n i t i a t o r _ A : sc_module {
2 t l m _ u t i l s : : s i m p l e _ i n i t i a t o r _ s o c k e t < I n i t i a t o r _A , 32> i n i t _ s o c k e t ;
3 . . .
4 void t h r e a d _p r o c e s s () {
5 t lm : : t lm_gene r i c _p ay l o ad ∗ t r a n s ;
6 t lm : : t lm_phase phase ;
7 s c_ t ime de l ay ;
8 . . .
9 s t a t u s = i n i t _ s o c k e t −>nb_ t r an spo r t _ fw (∗ t r an s , phase , d e l ay) ;
10 Fout << " I n i t i a t o r _ A : : t h r e a d _p r o c e s s : : t r a n s . ID= " << t r an s << "DATA= " << t r an s −>

g e t _ d a t a _ p t r () << "CMD= " << t r an s −>get_command () << "ADR= " << t r an s −>
g e t _ a d d r e s s () << " RSP= " << t r an s −>g e t _ r e s p o n s e _ s t a t u s () << "DL= " << t r an s −>
g e t _ d a t a _ l e n g t h () << " de l ay = " <<de lay << " phase= " <<phase << "
ins tance_name_module= " << t h i s −>name () << " ST= " << sc_ t ime_s tamp () << end l ;

11 . . . }

Figure 3: A part of the instrumented source code of module
Initiator_A of the AT_BUS VP.

For example, consider a part of the source code related to the
module Initiator_A of the AT_BUS VP (Fig. 3). Line 10 is not
initially available. Assume that we want to trace all transactions
generated by the thread_process function of the Initiator_A
module. To do this, the VP’s AST is analyzed by Static Info Analysis
module (Fig. 2, Phase 1) to find DEF and USED locations in the
source code. For example, consider a USED location (Line 9, in
Fig. 3) where transaction trans is used as a function argument of
the nb_transport_fw interface. To properly trace the transactions,
all information related to the transactions’ flow, data, and type must
be extracted. This includes: 1) the module name (Initiator_A) and
the parent function (thread_process) to which this transaction be-
longs and the transactions’ reference address, 2) all attributes of the
transactions which are data, address, response status, data length,
and 3) transactions’related parameters which are the phase and
delay arguments of the nb_transport_fw interface and its return
status stored in the status variable. From the extracted informa-
tion, the retrieving statement Fout (Line 10, Fig. 3) is automatically
generated and inserted after the USED location in the new source
code. The instructions this->name() and sc_time_stamp() are
also added to the retrieving statement to identify that the transac-
tion trans belongs to which instance of the Initiator_A module
and the simulation time when the transaction is sent through the
initiator socket init_socket, respectively.

3.3 Phase 2: Extracting Run-time Information
After generation of the instrumented source code, it is then au-
tomatically compiled with a standard C++ compiler (e.g. GCC or
Clang) and executed to log the run-time information. The extracted
information is translated into two formats XML (to reflect designs’
structure) and UML (TLM-2.0 designs’ behavior).

3.3.1 Structure Presentation. Major part of the designs’ struc-
ture is extracted during the static analysis in the first phase. This
information includes:
• the root name and type (for TLM modules can be initia-
tor, interconnect or target which is identified by analyzing
modules’ sockets type) of each module,
• the name and type of each function,
• the variables (or signals) of each module and
• local variables of each function

The structural data that cannot be extracted during the static analy-
sis is retrieved at run-time. This information (e.g. the instance name
of modules and binding information of modules’ ports and sockets)
is extracted by Dynamic Info Analysis module from the Run-time
Log and bounded to the static data. The final result is presented as
an XML formatted file.

3.3.2 Behavior Presentation. Since the extracted information of
each transaction is scattered over the Run-time Log file, an infor-
mation analysis approach is required to reduce the complexity of
understanding the extracted information.

The first step of this analysis is to describe each extracted trans-
action based on its flow, data, and type within its lifetime. This
requires to isolate for each single transaction its corresponding in-
formation from other transactions. As a transaction object is passed
as a function argument to a communication interface (b_transport
or nb_transport) by reference, this address can be used to trace
the transaction in the Run-time Log. However, the reference ad-
dress may be re-used for new transactions as soon as an old one
is discarded (i.e. no two transactions can share the same address
simultaneously). Thus, the type of modules and transaction’s re-
lated parameters (for AT model) are used to detect its start and end
points. By this, detailed information of each transaction’s lifetime
is stored in the Trans lifetime (Fig. 2, Phase 2).

Since it is possible that many of the extracted transactions in
Trans lifetime have the same flow and type (only their data is differ-
ent), a further analysis step is required to only visualize those which
present a unique behavior. This effectively reduces the number of
generated UML diagrams, allowing designers to quickly understand
the behavior of a given TLM-2.0 design.

Classifying Transactions: The transactions’ classification is
performed in two levels: first based on the transactions’ flow (pro-
viding designers with an abstract view) and then type (an accurate
analysis). In order to classify the transactions based on their flows,
the Trans Lifetime file is analyzed by the Trans Classifier module.
This analysis is performed by generating a Communication Pattern
String (CPS) for each transaction’s lifetime stored in the Trans life-
time. For a given transaction, the CPS is a string of characters gen-
erated by concatenating the root and instance names of all modules
taking part in the transaction’s lifetime. For example, the CPS for
the transactions generated by the Initiator_A (Fig. 1) to access Tar-
get_A through AT_BUS is “Initiator_A:init_0+AT_BUS:bus_0-
+Target_A:target_0”. By this, transactions in the Trans lifetime
are categorized into several sub groups considered as Unique Flow
Group (UFG) where each group presents a unique flow (communi-
cation pattern).

The next step of the transactions’ classification is to perform a
transaction type analysis in each UFG. For each transaction of a
UFG, first the type of timing model is identified (LT or AT) based on
the type of communication interface (b_transport or nb_transport).
While the LT model can only be implemented in one way due to the
TLM-2.0 base protocol, the AT model requires further analysis as it
can be implemented in 13 unique ways. In case of the AT model,
we take advantage of the transactions’ related parameters to distin-
guish different types of the base protocol transactions in each group.
To do this, a Transaction Type String (TTS) is generated for each AT
model transaction’s lifetime in a unique communication group. The
TTS includes a concatenation of the communication interface(s),
return status(es) and transition phase(s) of an AT model transaction.
For example, the TTS of theT1 transaction type (Table 1) generated
by the Initiator_A module (Fig. 1) is “fw/bw+TA/TU+BRQ/BRP/ERP”.
Therefore, each UFG is divided into several sub groups where in
each group the transactions have the same TTS. The UML diagram
is generated for a transaction in each UFG that has a unique type.
The final classified results are stored in the classified Trans by the
Trans Classifier module (Fig. 2, Phase 2).

4 EXPERIMENTAL RESULTS
The Static Info Analysismodule is implemented using the LibTooling
library of Clang compiler [12]. The Dynamic Info Analysis and
Trans classifier modules are implemented using C++ language. The
proposed approach is applied to several standard VPs provided by
Doulos [3] and [15]. All the experiments have been carried out on
a PC equipped with 8 GB RAM and an Intel core i7 CPU running
at 2.4 GHz. The experimental results of applying the proposed

Figure 4: UML diagram of SoCRocket-VP’s LT transaction.

approach to different types of SystemC VPs are shown in Table 2.
The first two columns list names and lines of code for each VP,
respectively. Column TM presents the timing model (LT or AT) of
each VP. Column #Trans illustrates the number of each TLM-2.0
design’s extracted transactions. Column #UTrans shows the number
of unique transactions categorized by the number of unique flows
(F), types (T) and generated UML diagrams (UML). Column ET
list the execution time of the proposed approach followed by the
required time for static (P1) and dynamic (P2) analysis. Column CET
shows the pure compilation (C) and execution time (E) of each VP
by GCC without any instrumentation. In the following we evaluate
the quality of the proposed approach using a real-world case study.

SoCRocket: The proposed approach is utilized to extract both
structure and behavior of the VP and generate UML sequence dia-
grams of the VP’s unique transactions from the extracted run-time
traces. As illustrated in Table 2, the proposed approach retrieved
7k transactions (5k LT and 2k AT model) from the VP. The results
(column #UTrans) of the transactions’ classification analysis (us-
ing Trans Classifier module) on the extracted transactions’ lifetime
(Trans Lifetime file) shows that, the VP includes 19 unique flows
(communication patterns) and overall eight (one LT model and
seven AT model) different types of base protocol transactions. Our
method generated 21 UML diagrams for design understanding goal
in less than a minute. Therefore, instead of reading the 50k lines of
code of the VP distributed over more than 45 files, a simple glance
over the quickly generated UML diagrams can significantly facili-
tate the design understanding and analysis process. The classified
presentation of transactions’ lifetime is stored in the Classified Trans
to help designers for further possible analysis (e.g. debugging or
validation) in the design process.

Fig. 4 shows the UML diagram of a single LT transaction’s type
of the SoCRocket VP in detail. The black shapes present root and
instance name of modules within the design. The role (type) of each
module is shown on top of the modules’ name. The information
on each arrow demonstrates interaction between two modules that
is drawn from the caller to the callee w.r.t the simulation time. In
particular, for a call from an instance of a TLM module, it presents
the number of sequence, the name of the caller function, the timing
phase (for AT model), timing annotation, and the return value of
the callee (if available). Moreover, the generated UML model in-
cludes detailed transaction data. The box under each arrow shows
the transaction’s attributes which is passed as an argument from
caller to callee. The white box illustrates a local transaction object
while the blue boxes demonstrate a transaction object reached the
callee through a function call. E.g. seq-2 in Fig. 4 contains the

Table 2: Experimental Results for all Virtual Prototypes

VP Name LoC TM #Trans #UTrans ET (s) CET (s)
F T UML P1 P2 Tot C E Tot

LT-example1 175 LT 500 1 1 1 1.4 0.53 1.93 1.3 0.1 1.4
Example-41 547 AT 1000 2 4 5 2.5 0.2 2.7 1.8 0.1 1.9
Example-51 650 AT 1000 8 2 9 3.2 0.3 3.5 2.1 0.2 2.2
AT-example1 2942 AT 1000 12 8 14 27.5 1.25 28.75 21 0.2 21.2
Locking-two1 3831 LT/AT 1000 14 10 16 29.2 1.85 31.05 24 0.3 24.3
SoCRocket2 > 50000 LT/AT 7000 19 8 21 53.8 4.79 58.59 27.6 2.29 29.89

1Provided by [3] 2 Provided by [15] LoC: Lines of Code TM: Timing Model LT: Loosely-timed model AT:
Approximately-timed model #Trans: number of Transaction #UTrans: number of Unique Transaction ET: Execution

Time CET: Compilation and Execution Time by GCC without any instrumentation

information related to the response of the target module AHBmem.
This information is the name of the called function (exec_func)
and timing annotation (20 ns). It also includes the transaction data
passed to the callee module (AHBCtrl) including the reference ad-
dress of the transaction (0x7bb3c3), address (b0000000), command
(tlm::TLM_READ), length (4), and response status (tlm::TLM_OK_RE-
SPONSE).

5 CONCLUSION
The proposed approach provides designers with a fast solution to re-
trieve a significant amount of information describing the structure
and behavior of a given VP. The approach is based on analyzing
the AST of the design to extract static information and generate in-
strumented source code for run-time data extraction. The extracted
information is translated into a structural and graphical represen-
tation, allowing designers to quickly understand the intricacies
of VPs. We showed the effectiveness of the approach on several
standard VPs including a real-world system. In future, we plan to
extend the suggested information extraction and analysis approach
for tasks of validation and verification at ESL.

Acknowledgments: This work was supported by the German Federal Ministry
of Education and Research (BMBF) within the projects SATiSFy under grant no.
16KIS0821K, SecRec under grant no. 16K1S0606K, CONVERS under grant no. 16ES0656,
and by the University of Bremen’s graduate school SyDe, funded by the German Ex-
cellence Initiative.

REFERENCES
[1] 2006. IEEE Standard SystemC Language Reference Manual. IEEE Std 1666-2005,

1–423.
[2] John Aynsley (Ed.). 2009. OSCI TLM-2.0 Language Reference Manual. Open

SystemC Initiative (OSCI).
[3] John Aynsley. Accessed: 2018-06-30. TLM-2.0 Base Protocol Checker. https:

//www.doulos.com/knowhow/systemc/tlm2.
[4] Harry Broeders and René Van Leuken. 2011. Extracting behavior and dynamically

generated hierarchy from SystemC models. In DAC. 357–362.
[5] Görschwin Fey, Daniel Große, Tim Cassens, Christian Genz, Tim Warode, and

Rolf Drechsler. 2004. ParSyC: An Efficient SystemC Parser. In SASIMI. 148–154.
[6] Christian Genz and Rolf Drechsler. 2009. Overcoming limitations of the SystemC

data introspection. In DATE. 590–593.
[7] Mehran Goli, Jannis Stoppe, and Rolf Drechsler. 2016. AIBA: an Automated

Intra-Cycle Behavioral Analysis for SystemC-based Design Exploration. In ICCD.
360–363.

[8] Mehran Goli, Jannis Stoppe, and Rolf Drechsler. accepted 2018. Automated
Non-intrusive Analysis of Electronic System Level Designs. TCAD (accepted
2018).

[9] Daniel Große, Rolf Drechsler, Lothar Linhard, and Gerhard Angst. 2003. Efficient
Automatic Visualization of SystemC Designs.. In FDL. 646–658.

[10] Anirudh Kaushik and Hiren D. Patel. 2013. SystemC-clang: An open-source
framework for analyzing mixed-abstraction SystemC models. In FDL. 1–8.

[11] Wolfgang Klingauf and Manuel Geffken. 2006. Design structure analysis and
transaction recording in SystemC designs: A minimal-intrusive approach. In
FDL.

[12] Chris Lattner. 2008. LLVM and Clang: Next generation compiler technology. In
BSD. 1–2.

[13] Kevin Marquet and Matthieu Moy. 2010. PinaVM: a SystemC front-end based on
an executable intermediate representation. In EMSOFT. 79–88.

[14] Tim Schmidt, Guantao Liu, and Rainer Dömer. 2016. Automatic Generation of
Thread Communication Graphs from SystemC Source Code. In SCOPES. 108–115.

[15] Thomas Schuster, Rolf Meyer, Rainer Buchty, Luca Fossati, and Mladen Berekovic.
2014. SoCRocket - A virtual platform for the European Space Agency’s SoC
development. In ReCoSoC. 1–7, http://github.com/socrocket.

[16] Jannis Stoppe, Robert Wille, and Rolf Drechsler. 2013. Data extraction from
SystemC designs using debug symbols and the SystemC API. In ISVLSI. 26–31.

https://www.doulos.com/knowhow/systemc/tlm2
https://www.doulos.com/knowhow/systemc/tlm2

	Abstract
	1 Introduction
	2 Motivation
	3 Methodology
	3.1 Overall Workflow
	3.2 Phase 1: Extracting Static Information
	3.3 Phase 2: Extracting Run-time Information

	4 Experimental Results
	5 Conclusion
	References-0.05cm

