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Abstract—Starting points for design understanding and debug-
ging are generated waveforms. However, waveform viewing is still
a highly manual and tedious process, and unfortunately, there
has been no progress for automating the analysis of waveforms.
Therefore, we introduce the Waveform Analysis Language (WAL)
in this paper. We have realized WAL as a Domain Specific Lan-
guage (DSL). This design choice has many advantages ranging
from a natural expressiveness of a waveform analysis problem
to providing an Intermediate Representation (IR) well-suited as a
compilation target from other languages.

We evaluate WAL in two major case studies. This includes
(i) a WAL-based communication analyzer reporting for example
throughput or latency of AXI communication and (ii) the tracing
of the instruction flow through the pipeline of a RISC-V processor
as well as the extraction of software basic blocks via WAWK,
which is based on the WAL-IR to make complex waveform
analysis as easy as searching in text files.

I. INTRODUCTION

The development of next-generation electronic systems
poses significant challenges to all phases of the design process.
In particular, the verification phase is the most time-consuming
part, which, broken down, is dominated by debugging [1].
Even worse, debugging is rated as least predictable since it
requires a deep design understanding [2]. The cornerstone for
design understanding is the waveform, which is generated dur-
ing simulation of a Hardware Description Language (HDL)
design. A waveform for a simulation run describes the circuit
signals over time together with hierarchy information [3]. In
both, the design phase and the verification phase, waveforms
are heavily used. Initially, directed test stimuli are created to
see that the currently designed hardware blocks are “alive”
and produce some meaningful output. When the design ma-
tures, the verification plan is followed and advanced verifica-
tion techniques, e.g. assertion-based methods together with
coverage-based solutions, are employed. Along this highly
iterative process, waveforms demonstrating expected behavior
or unexpected behavior (in case of a violated assertion) have
to be analyzed and understood. For this task, (commercial)
waveform viewers are utilized. Waveform viewers are software
tools which allow viewing signal values over time. Besides se-
lecting the radix of each signal and grouping signals together,
the user can zoom in and out, can jump to the next time
point where the value of a signal changes, can determine the
time difference between two cursors, etc. However, while all
these features help in understanding and debugging, waveform
viewing is a highly manual and tedious process.

While the above mentioned advanced verification tech-
niques have introduced automation, and led to the generation
of “better” waveforms (e.g. by employing formal methods,
reducing their length, or minimizing the signals involved

in a failing trace) there has been almost no progress for
automating the analysis of waveforms (in related work we
discuss this in more detail). The potential for automation
becomes clear when looking at typical non-trivial analysis
questions raised for waveforms:
• How are the Finite State Machine (FSM) states evolving

during data processing?
• What is the latency of my bus interfaces?
• What throughput is my bus achieving?
• When is the processor pipeline flushed or stalled during

software execution?
• Which software basic blocks are executed on the proces-

sor?
In this work, we bring automation to the analysis

of waveforms and introduce the Waveform Analysis Lan-
guage (WAL)1. We have realized WAL as a Domain Specific
Language (DSL) [4]. First, we identified the essential oper-
ations for processing waveform data: this includes loading
(multiple) waveforms, access to signals, time manipulation,
and logical grouping of signals.

Second, since verification (and regression) environments
differ widely in terms of requirements and work-flows, we
strive to maximize the versatility of WAL. Therefore, we
decided to define the syntax of our proposed WAL DSL
following the established Lisp principle of symbolic expres-
sions (or S-expressions2) [5]. S-expressions have three main
advantages: an extremely regular syntax based on lists, code
(and data) is represented as nested lists, and hence code can
be generated in an arbitrary language as only lists have to
be created. As a consequence, we can (1) feature a minimal
and clean syntax for WAL, (2) easily integrate the above
mentioned essential waveform operations as well as advanced
operations via functions, and (3) provide an Intermediate
Representation (IR) well-suited as a compilation target from
other languages.

We have developed a reference implementation of WAL in
form of an interpreter in Python, which we call WAL core in
the following. Moreover, to demonstrate the quality of WAL
as an IR, we have developed a compiler that reads AWK-like
programs3 and maps them onto the WAL-IR. With the WAL
core, less than 300 lines of code are needed to implement
this new language Waveform AWK (WAWK) making complex
waveform analysis as easy as searching in text files.

1WAL is available open-source at https://github.com/ics-jku/wal
2An S-expression is an atom (also called symbol) or it is a list of

S-expressions.
3AWK, originally developed at Bell Labs, is a data-driven language for text

file processing.



Overall, WAL enables the user to create intuitive and easy-
to-use programs for non-trivial waveform analysis tasks. The
user can either write WAL programs directly or generate them
dynamically. We consider both scenarios in two major case
studies. At first, we present a WAL-based communication
analyzer that generates a detailed report for complex AXI
communication traced in waveforms. With only a few lines
of embedded WAL code, this analyzer is able to generate
advanced textual and graphical performance reports of a
design to aid developers in debugging and optimization.

In the second case study, we present the aforementioned
WAWK language which uses the WAL-IR as a compilation
target. Using WAWK, we (i) visualize the flow of instructions
through a RISC-V processor pipeline in the form of an
interactive HTML website and (ii) extract the basic blocks
of software running on the processor.

Both case studies demonstrate, that WAL enables sophis-
ticated waveform analysis in complex scenarios where infor-
mation is collected, aggregated and suitably presented.

II. RELATED WORK

Design understanding and debugging is an active field of
research. Several methods targeting specific problems as well
as different abstraction levels have been considered [6]. For
example, this includes natural language techniques to derive
assertions from specifications [7], feature localization in ESL
models [8] or in RTL descriptions [9], assertion mining at
RTL [10], and reverse engineering at the gate-level [11],
[12]. However, all these solutions focus on dedicated design
understanding sub-problems and do not provide a generic user-
programmable analysis for waveforms.

In the introduction assertion-based verification [13] has
been mentioned. However, assertion-based verification aims to
determine whether a temporal logic formula evaluates to true
or false on a trace (or waveform); in contrast, WAL allows
a much wider user-programmable analysis and application.
With WAL programs also complex signal relations can be
caught, but then the user can perform arbitrary actions for
all kinds of computations. In principle, a user could perform
certain analysis in the testbench of a design. However, such an
approach is extremely complex and would require significant
effort, quickly reaching the limits of practicability.

To the best of our knowledge no waveform analysis ap-
proach comparable to the user-programmable expressiveness
of WAL is available (also not in the commercial solutions
from Cadence, Synopsys, Mentor/Siemens etc.).

III. PROGRAMMABLE WAVEFORM ANALYSIS PROBLEM

As already stated in the introduction, after the generation
of a waveform, the contained signals and their relations are
traditionally analyzed by visual inspection using waveform
viewers. The major reason is that waveforms are an elegant
method of visually expressing concurrency. Hence, debug-
ging and understanding of sophisticated module behavior and
inter-module interactions can be performed. However, as the
analysis is manual it can quickly become tedious or totally
impractical in case of complex or repeating problems. There-
fore, we introduce user-programmable waveform analysis,

Fig. 1: Request-Acknowledge bus communication

transforming a manual repeating analysis problem into a one-
time-only effort that scales with increasing complexity and
waveform sizes and often is reusable across projects.

In the following, we provide a simple but illustrative
example for such an analysis problem. We will use this
example throughout the paper when introducing the proposed
WAL. Fig. 1 shows the waveform of a bus communication
using the typical request-acknowledge protocol scheme. Two
components (comp1 and comp2) are connected to the bus
and the respective req/ack signals have been traced as can
be seen in the waveform. Assume that the design team has to
determine the average latency for each component attached to
the bus for system optimization. To solve such a problem with
a waveform viewer is practically not possible. More precisely,
the task is to walk through the trace and count consecutive
requests as long as they are acknowledged. Finally, this result
has to be divided by the number of acknowledgments. In
Fig. 1, for comp1 we get 3 + 2 = 5 (see marked lines a to b
and c to d respectively) divided by 2, which gives the average
latency of 2.5. Clearly, manual navigation and calculation
on the waveform is a poor solution only. Even worse, for
waveforms with tens of thousands of cycles this approach fails.
In contrast, this calculation can be easily performed with WAL
as we will show later.

Moreover, the design in the example has two components
and therefore we are interested in the average latency over
all components. This requires to extend the calculation from
comp1 to comp2, which would lead to doubling the code.
For such problems, we added advanced features to WAL which
allow for writing code in a generic and flexible way.

In the next section, we introduce WAL and show that the
average latency can be easily determined using WAL.

IV. WAVEFORM ANALYSIS LANGUAGE (WAL)

First, we consider the requirements on design and imple-
mentation of the WAL DSL. Then, we briefly review symbolic
expressions as proposed by Lisp (Section IV-B), which we
extend by the specifics of symbolic expressions in WAL (Sec-
tion IV-C). We continue with the essential WAL operations
(Section IV-D). Thereafter, the advanced WAL operations are
presented (Section IV-E). Finally, we close this section with
our reference implementation of WAL which we have realized
as an interpreter written in Python, called WAL core.

A. Design and Implementation Requirements

After conceptualizing WALs functional scope and before
starting a first implementation we had to decide upon a
suitable architecture. At first glance it seems advantageous
to implement all functionality in a library of an established
programming language (i.e. Python or C) as this provides



a proven basis and is easy to pick up for most developers.
Unfortunately, this approach has significant drawbacks to
the versatility and expressiveness of WAL as all feasible
languages are geared towards general purpose computing. This
means, that expressing waveform analysis problems would
require large amounts of boilerplate code, for example “getter”
functions for signal access, as many waveform specific actions
are not native to the language. However, we envisioned a
system where all aspects of the waveform and hardware design
domain are first-class citizens of the language. Designing
WAL as a DSL with waveform analysis in mind enables
users to directly express their problems naturally instead of
fitting their problem onto the paradigm of a different language.
Finally, even though we developed a reference implementation
of WAL from the ground up it is possible to implement WAL
on top of other programming languages (e.g. [14]).

B. S-Expression Syntax

Symbolic expressions (abbrev. as S-expressions), are com-
mon in languages related to Lisp, such as Common Lisp [15]
or Scheme [16]. Fundamentally, S-expressions can be of two
kinds: atoms or lists. Atoms are literals like numerical or
string values, e.g. 1, 0xff, "text", or symbols. Lists are
multiple S-expressions separated by white space and enclosed
in parentheses (expr1 expr2 ...). All operators and function
calls are written in prefix notation, e.g. (+ 3 b) to compute
the sum of 3 and b.

C. WAL Specific S-Expressions

Now, let us look at S-expressions in WAL, i.e. we consider
them in the context of waveforms. As a consequence, the
symbols of S-expressions are either signal names contained
in a waveform, e.g. top.module1.out, or variable names
defined in a WAL program. With respect to evaluation of an
S-expression, we define the current time index (or just index)
for a waveform at hand. In Fig. 1 this is nothing else than
the red dashed line shown at position 4. So a signal name
(symbol) is evaluated to the value of the signal at the current
time index, for instance comp1.req = 1 and comp1.ack = 0

at the current time index 4.
Besides the access to signal values, all operations tar-

geting the analysis of waveforms are integrated into WAL
S-expressions using dedicated functions. In the following
sections, we introduce these functions and demonstrate how
they allow formulating compact and easy-to-use programs for
waveform analysis.

D. Essential WAL Operations

We provide an intuitive introduction to the essential opera-
tions of WAL and therefore we incrementally develop a WAL
program to solve the latency analysis problem as presented
in Section III. For the essential WAL operations three main
categories can be distinguished: waveform handling, signal
access, and timing. As a foundation for all WAL expressions,
WAL naturally implements all basic programming constructs
(e.g. variables, loops, user functions).

1) Waveform Handling: First, a waveform must be loaded
in a WAL program in order to have access to the signal
values. The load operator reads the waveform specified by
the first argument and registers it with the id given as the
second argument. Assume the waveform data from Fig. 1
has been dumped to the file "waveform.vcd", as a first step
we load this file into WAL under the id w as following:
(load "waveform.vcd" w).

After a waveform has been loaded, its time index is set to
the beginning at 0, and it is available to WAL expressions. The
step operator can be used to step the time index forwards and
backwards by a variable amount.

For example, (step 2) increases the time index of all
loaded waveforms by 2, while (step -1) decreases the time
index of all loaded waveforms.

2) Signal Access: After loading the waveform containing
the data in Fig. 1, we can start writing our WAL solution
to determine the average latency. In a first basic version of
this program, we want to detect when comp1 requests the
bus and when there is the corresponding acknowledgment.
As mentioned before, waveform signals are first-class citizens
of the WAL language. Therefore, to access the signal value
at the current time index of a waveform, it is sufficient to
write the full signal name (i.e. a global name of the form
top.sub.signal).4

In our problem, a request is said to be acknowledged
when both the req and ack signals are high. This condition
can be expressed by a Boolean conjunction of the signals
comp1.req and comp1.ack using the following WAL expres-
sion: (&& comp1.req comp1.ack).

In the same way we describe pending requests using the
next WAL expression, when the req signal is high but the
ack signal is low:(&& comp1.req (! comp1.ack)). This time,
the signal comp1.ack is inverted using the ! function since
the component has not yet processed the request and thus
comp1.ack is set to 0.

If multiple waveforms are loaded, signal name ambiguities
must be resolved by specifying the waveform id in front of
the full signal name (e.g. w;comp1.req vs. w2;Top.sig). The
id in front of the name can be omitted if only one waveform
is loaded.

Average latency for Component 1 in WAL: Now, we can
combine the presented WAL functions to solve the average
latency problem of Section III for comp1. The WAL program
is shown in Listing 1. First, in Line 1 the waveform is
loaded. As we are interested in the average latency wrt. the
complete waveform, in Line 2 we step forward5 until the
end of the waveform is reached. The “core detection” of
requests and acknowledgments is performed in Line 3-4.
To compute the average latency we have to determine the
number of all acknowledged packets. This is done in Line 3,
where the variable packets is incremented when a request is
acknowledged. For this condition, we inserted the previously
introduced expression for acknowledged requests. In Line 4
the wait variable is incremented when the component has a

4It is also possible to extract specific bits from a signal value using slicing
functions.

5The step size is 2 since we only want to sample data at positive clk edges
located on every other index.



pending, unacknowledged request using the other previously
introduced expression. Finally, after the end of the waveform
has been reached, we calculate the average latency and print
it to the standard output in Line 5.

1 ( load "waveform.vcd" w)
2 ( whi le ( s t e p 2)
3 ( when (&& comp1 . r e q comp1 . ack ) ( i n c p a c k e t s ) )
4 ( when (&& comp1 . r e q ( ! comp1 . ack ) ) ( i n c w a i t ) ) )
5 ( p r i n t ( / w a i t acks ) )

Listing 1: Average Latency for comp1

3) Timing: Often, interesting signal relations are not lim-
ited to a single time index. For example, detecting a value
change on a signal requires observing two values of the same
signal at different time indices. This could be achieved by
temporarily storing the first signal value in a variable, but this
quickly becomes inconvenient. WAL overcomes this problem
by allowing to modify the time index of a waveform locally
for a specific expression. For this, we introduce the relative-
eval operator reval which takes an expression and a signed
integer, and evaluates the expression with a locally changed
time index according to the integer argument. The integer
specifies the time offset at which the expression is evaluated
relative to the current time index. For instance, detecting a
signal value change can be expressed using the following WAL
expression: (!= (reval sig -1) sig). As relative evaluation
is commonly needed, it can be abbreviated by appending
an @ followed by a signed integer to an expression. Using
this shorthand syntax, the expression (reval sig -1) can be
written as sig@-1.

We assume the developers need to check a worst-case
requirement and therefore have to find pending requests that
are persisting at least three consecutive clock cycles. This can
be expressed as shown in Listing 2.

1 (&& (&& comp1.req (! comp1.ack))
2 (&& comp1.req (! comp1.ack))@2
3 (&& comp1.req (! comp1.ack))@4)

Listing 2: Detecting continuous pending requests

However, this expression contains a lot of redundancy,
which increases the code size and reduces readability. Expres-
sions, which need to be evaluated at multiple time indices, are
very common. Hence, we also defined a dedicated shorthand
(a summary of all shorthands is listed in Table I); instead of
a single number a list of signed integers can stand behind the
@ syntax (row two in Table I).

A better way to write this expression is:
(&& (&& comp1.req (! comp1.ack))@(0 2 4)).

Here, the condition for a pending request is expanded three
times using the @ syntax. It must be noted that the expansion
syntax does not evaluate the expressions after expanding
them. Instead, the expressions are passed as arguments to
the surrounding call to the && function. This makes the @

expansion syntax very flexible as it works together with any
WAL or user-defined function.

E. Advanced WAL Operations

The expressiveness of WAL based on the essential opera-
tions as introduced in the previous section is sufficient for a
wide range of analysis problems. However, the applicability

TABLE I: Special Shorthand Syntax in WAL

Special Syntax Transformed into

expr@sint (reval expr sint)
expr@(sint0 ... sintn) expr@sint0 ... expr@sintn
~symbol (resolve-scope symbol)
#symbol (resolve-group symbol)
expr[int] (slice expr int)
expr[int0:int1] (slice expr int0 int1)

of WAL can be significantly improved by adding advanced
features. This allows to write much more compact, more
generic and much easier to read WAL programs.

1) Calling External Code: WAL enables developers to
write concise, powerful and easy-to-use programs for wave-
form analysis. On the other side, many problems not related to
waveform analysis (such as UI or Databases) are already avail-
able in libraries for other programming languages. Combining
WAL with other programming languages saves time and
helps to integrate WAL into complex work-flows. Therefore,
WAL enables users to tap into the large ecosystems of other
programming languages. Using the import function external
code in another language6 can be imported into running WAL
programs. After importing, external functions can be called
using the call function.

2) Logical Grouping: Our example design contains two
components connected to the bus, comp1 and comp2. Both
components share wrt. the bus communication interface a
structural similarity (e.g. same signals). Coming back to our
example, the problem How is the latency of comp1? is also
valid for comp2 or any other component attached to the bus.
An elegant solution requires the separation of the core problem
and the concrete signal names. WAL supports writing these
separated generic expressions through a set of concepts and
functions.

First, we introduce the concept of a group. A group is
a set of signals which are semantically connected (e.g. the
signals of a bus). Groups are defined by a prefix (a partial
signal name) and a set of postfixes for which the combination
prefix + postfix results in an existing signal name for every
postfix. For example, the waveform in Fig. 1 contains two
groups, "comp1." and "comp2.", for the set req and ack. Users
can search the complete design for groups using the groups

function (i.e. (groups "req" "ack") for the example).
To make use of a group, it has to be captured first.

Capturing a group, defines this group as the current active
group and allows accessing signals in the group using just the
postfixes. Groups are captured using the in-group operator,
which takes a group and then evaluates the body expression.
The in-groups function works in the same way, but expects a
list of groups and evaluates the body expression once for each
of these groups. During the evaluation of the body expression
the specified group is marked as the current group (the active
Current Group is available using the CG special variable).
Accessing signals in a group just by a postfix is called
resolution. In the body of an in-group[s] expression, signal
names can be resolved using the resolve-group function. This
function takes a symbol and appends it to the captured group.
If the resulting symbol refers to an existing signal, the value

6This is for example code in the host language of the WAL interpreter.



of this signal at the current time is returned. As wrapping
all signals in resolve-group function calls leads to increased
verbosity a shorthand for this function is to add a # in front
of a symbol (cf. Table I).

WAL expressions can make use of the hierarchical informa-
tion of waveform data. The scoping concept allows evaluating
WAL expressions in selected scopes (i.e. the sub modules of
the design). Scoping is available via the ∼ shorthand and the
scoping functions. Since scoping works similar to grouping,
we omit further details.

Global Average Latency in WAL: With the advanced WAL
functions we can finally generalize the solution to Section III
from Listing 1. This allows to calculate the average latency for
the complete design (or any other design containing req-ack
interfaces) with only slight modifications. The resulting WAL
program is shown in Listing 3. To enable generalization, the
main expression from Listing 1 is wrapped into an in-groups

function call in Line 2. The (groups "req" "ack") function
call returns a list of all groups containing req and ack signals
and thus, the expression is evaluated in the groups "comp1."

and "comp2.". Additionally, the while-step combination in
Line 2 of Listing 1 is changed to a call to whenever in List-
ing 3. The whenever function evaluates the second argument
at each time index for which the first argument evaluates to
true. As we only want to sample data at positive clock edges,
we use the condition clk (Line 3).

Now the analysis works for all components in the design
and, if later more components are attached to the bus, the
WAL script automatically works for these added components
too.

1 (load "waveform.vcd" w)
2 (in-groups (groups "req" "ack")
3 (whenever clk
4 (when (&& #req #ack) (inc packets))
5 (when (&& #req (! #ack)) (inc wait))))
6 (print (/ wait packets))

Listing 3: Global Average Latency

F. WAL core

As a reference implementation for WAL we developed
WAL core. WAL core is a Python package that contains an
API for WAL integration in Python applications, a standalone
interpreter to run WAL programs in a terminal, and a Read-
Eval-Print-Loop (REPL) shell for interactive WAL program-
ming. WAL core employs the Python library vcdvcd [17] for
waveform parsing.

Using the API of WAL core, non-trivial analysis tasks
can be easily performed in Python applications, which we
demonstrate in Section V-A. In addition, WAL core provides
access to the internal WAL structures, which in combination
with the API, enable a clean interface for WAL-IR applications
(cf. Section V-B). Currently, WAL core is not optimized for
performance, however as we show in Section V-B it is able
to process large waveforms in reasonable time.

V. CASE STUDIES

In this section, we explore three exemplary applications
organized in two case studies that demonstrate the capabilities
of WAL to perform non-trivial analysis tasks. The case studies

were chosen to represent two common utilization scenarios
of WAL: in Section V-A, we consider the creation of anal-
ysis programs directly in WAL and present an WAL-based
AXI communication analyzer. In Section V-B, we describe
the dynamic generation of WAL code. As an example, we
sketch the language WAWK for which we have implemented
a compiler that maps AWK-like programs to the WAL-IR.
Using WAWK, we perform pipeline instruction flow visual-
ization and basic block detection for the well-known RISC-V
processor VexRiscv.

A. WAL-based Communication Analyzer

Advanced bus structures are present in nearly any hardware
design. A prominent example is the Advanced eXtensible
Interface (AXI) as it has been widely adopted and became
an industry standard.

In this section, we present a WAL-based communication
analyzer for AXI4, AXI4-Stream and FSMs. This commu-
nication analyzer extracts detailed information about AXI
interfaces and FSMs to display them in a Graphical User
Interface (GUI). The application is not only fully automated,
but WALs expressions make it also design agnostic, allowing
users to analyze any waveform regardless of signal names,
design hierarchy or complexity. While the application GUI has
been developed in Python, all waveform analysis is done using
WAL and the overwhelming majority (approximately 95%) of
code is related to the GUI. All information shown in the GUI
is extracted from the waveform data using WAL programs.
This leads to a very clean separation of the analysis code
from the application and GUI code. In general, for each type
of information (such as contained interfaces, latency or FSM
graphs) a specific WAL program was written. These programs
are typically very concise and are thus directly embedded into
the application code as string arguments7.

When the user opens a waveform in the WAL-based com-
munication analyzer, it is first scanned for AXI4 or AXI4-
Stream interfaces and FSMs. Fig. 2 shows the analysis results
for the AI accelerator from [18]. Information about each
interface type is divided into multiple tabs. For example, Fig. 2
shows the analysis results of one of the contained AXI4-
Stream interfaces of the design. Using WAL, detailed informa-
tion about the performance (e.g. throughput, avg. delay) of the
interface is displayed textually and using graphical elements.

It is virtually impossible to produce the information shown
in Fig. 2 manually with a waveform viewer. Implementing this
analysis in testbench or design logic is also impractical as it
would require very complex logic which would have to be
programmed for every analyzed interface and for every ana-
lyzed design from scratch. In comparison, our communication
analyzer is a one-time effort which is able to analyze every
design without additional work.

B. Dynamic WAL-IR Generation from WAWK

In this case study we examine the application of WAL-IR
as a compilation target from other languages. For this purpose
we present WAWK, a new language inspired from the popular
text-processing language AWK. Using the well-established
programming paradigm of AWK, WAWK enables easy and

7Similar to the way SQL queries are embedded into other applications.



Fig. 2: AXI4-Stream Interfaces of AI Accelerator

concise scripts for processing waveforms. From the technical
viewpoint, we have implemented a compiler that maps WAWK
programs to WAL used as IR.

In general, all WAWK scripts consist of multiple statements
that follow a condition: { action } scheme. For each
time index in a waveform, WAWK evaluates the condition
of each statement, and, if satisfied, executes the associated
action.

We have implemented the WAWK compiler in Python
in less than 300 lines of code. After parsing, the WAWK
constructs are mapped onto the WAL-IR. Since the syntax
of WAL is based on S-expressions, this mapping is amazingly
simple by combining existing WAL functions using the list
utilities of Python.

In the following, we consider the VexRiscv processor [19]
and demonstrate how advanced waveform analysis is possible
with WAWK, i.e. we exemplify visualization of pipeline
instruction flow and basic block extraction.

1) RISC-V Pipeline Instruction Flow Visualization: The
VexRiscv cores are highly configurable from a bare-bones
minimal CPU to a full-fledged Linux capable processor using
a very flexible plugin concept offered by SpinalHDL, a
high-level HDL implemented in Scala. For a concrete core
configuration eventually Verilog is generated. However, this
modular structure can make it significantly more challenging
to understand the functionality since the one-to-one relation of
traditional RTL to the hardware is somewhat “blurred” by the
more advanced and abstract concepts of SpinalHDL. While
working with a VexRiscv core, we needed a deep insight of
the VexRiscv pipeline in order to understand how instructions
move through the pipeline and how this effects other parts of
the core. Since the relation of complex data is best understood
in a structured view and the large amount of data must be
manageable, we have created a WAWK script that generates
an interactive HTML document. A screenshot of the generated
HTML is shown in Fig. 3: Based on the color of the cells,
and the assembler code in the cells, we can clearly see the
instructions advancing through the pipeline. In addition, we
print warnings about exceptional events that occurred during
the simulation. For example, a warning is shown whenever
the pipeline is halted for more than 5 clock cycles or if the

Fig. 3: Pipeline Instruction Flow Visualization

complete pipeline is flushed. Adding a new case in which a
warning is displayed is as easy as detecting the event and
calling a function from the script.

Using WAWK, both, the data extraction and the generation
of the HTML code required only about 50 lines of WAWK
code. The decoding of RISC-V instructions is handled via the
external “riscvmodel” [20] Python package. With the help of
just 8 lines of Python code our WAWK script is able to profit
from the large Python ecosystem.

2) RISC-V Basic Block Extraction: For code analysis, we
had to find the basic blocks of software running on the
VexRiscv processor. A basic block is a sequence of continuous
instructions that will always execute in the given order with no
jumps in or out. We collected this information using a WAWK
script that traces instructions and detects the beginnings of new
blocks and the transitions between those blocks. The script
(Listing 4) is composed of four statements.

Initially, Stmt 1 is executed once before the waveform is
processed, which is specified by the special BEGIN condition.
There, we define some shorter names for the most used signals
using the alias function.

In Stmt 2, the pc of the first block is stored in the variable
bstart when clk and fire are set to 1 and bstart is 0 (which is
true at the beginning since all variables are initialized to 0 at
first use).

Stmt 3 handles detecting the starts of new basic blocks. A
new basic block starts if one of the following conditions is
met: (1) the last instruction was a jump instruction or branch
instruction. Since, the RISC-V ISA [21] encodes jumps and
branches by setting the bits 6 and 5 of an instruction to 1, we
test this condition in Line 13 and store the result in the variable
was_jump. (2) the sequential execution of instruction reaches
an instruction that is already contained in a block. This is the
case when starts[pc] is not 0 and the start of the current
block is not the same as the block of the previous instruction
(i.e. the instruction at pc - 4 assuming an RV32 ISA). We test
this condition and store it in the variable run_into in Line 14.
In Line 15 we check if one of the above conditions is true,
and if satisfied store a new block and block transition. A new
transition from the previous block into the current block is
stored in the associative array trans in Line 16. In Line 17-
18 we store the previous instruction as the end of a block
in the associative array ends and set the current pc as the
start of the current block. Next, in Line 21-24 we mark the
current instruction as belonging to the current block and save
the current pc and inst for the next instruction.



1 / / S tm t 1 : c r e a t e a l i a s e s
2 BEGIN : {
3 a l i a s ( f i r e , TOP . VexRiscv . l a s t S t a g e I s F i r i n g ) ;
4 a l i a s ( p c , TOP . VexRiscv . l a s t S t a g e P c ) ;
5 a l i a s ( i n s t , TOP . VexRiscv . l a s t S t a g e I n s t r u c t i o n ) ;
6 }
7
8 / / S tm t 2 : i n i t i a l i z e pc
9 TOP . c l k , f i r e , ! b s t a r t : { b s t a r t = p c ; }

10
11 / / S tm t 3 : d e t e c t b l o c k b o u n d a r i e s
12 TOP . c l k , f i r e : {
13 was jump = ( l a s t i [ 6 : 5 ] == 3) ;
14 r u n i n t o = ( s t a r t s [ pc ] && ( s t a r t s [ pc ] ! = s t a r t s [ l a s t ] ) ) ;
15 i f ( was jump | | r u n i n t o ) {
16 t r a n s [ l a s t , pc ] = [ l a s t , pc ] ;
17 ends [ l a s t ] = l a s t ;
18 b s t a r t = p c ;
19 } ;
20 / / save s t a r t o f b l o c k
21 s t a r t s [ pc ] = b s t a r t ;
22 / / save c u r r e n t i n s t r u c t i o n
23 l a s t = p c ;
24 l a s t i = i n s t ;
25 }
26 / / S tm t 4 : r e n d e r g r a p h v i z f i l e
27 END: { . . .
28 }

Listing 4: Extracting and visualizing software basic blocks

Fig. 4: Basic blocks for GCD calculation implemented in C

Finally, Stmt 4 generates and prints the graphviz code to
render the basic blocks and the control flow of the software.
The condition of Stmt 3 consists of the special symbol END and
thus is only executed once after the waveform was completely
processed. For brevity, we left out the body of Stmt 3 since it
only contains some loops and print statements to render the
graphviz file.

As an example, we analyzed the basic block of a Greatest
Common Divisor (GCD) implementation in C. The resulting
basic block graph is depicted in Fig. 4. The WAWK script
needed less than a second for processing the 4 MB large wave-
form file. To check how the script scales with larger waveform
files we evaluated waveforms of the Dhrystone benchmark.
The analysis of a medium-sized 265 MB waveform needed
around 42 seconds and found 207 basic blocks connected by
298 edges. For the second run, we increased the amount of
Dhrystone iterations to produce a much larger waveform file,
i.e. more than 4 GB. Running the same WAWK script as on the
previous case took 586 seconds and thus the run time scaled
approximately linear to the waveform size.

To summarize, we have demonstrated the collection, aggre-

gation and suitable result generation for non-trivial waveform
analysis tasks via WAWK programs.

VI. CONCLUSIONS

We proposed WAL, a novel domain specific language for
non-trivial automated waveform analysis. We have demon-
strated the capabilities of WAL for design understanding
and debugging in two major case studies: First, we imple-
mented a WAL-based communication analyzer that reports
throughput, average latency, and FSM statistics for AXI bus
communication. Second, we implemented WAWK on top of
WAL, i.e. we developed a compiler that maps AWK-like
programs to the WAL-IR. This enabled pipeline instruction
flow visualization and basic block detection for the well-
known RISC-V processor VexRiscv via WAWK programs
making waveform analysis as easy as searching in text files.
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