

Programmable Analysis of RISC-V Processor

Simulations using WAL

Lucas Klemmer, Johannes Kepler University Linz, Institute for Complex Systems, Linz, Austria,

(lucas.klemmer@jku.at)

Eyck Jentzsch, MINRES Technologies GmbH, Munich, Germany

(eyck@minres.com)

Daniel Große, Johannes Kepler University Linz, Institute for Complex Systems, Linz, Austria,

(daniel.grosse@jku.at)

Web: https://wal-lang.org & https://github.com/ics-jku/wal

Abstract—With RISC-V’s growing traction, both researchers and companies race to bring their RISC-V

implementations to the public. Here, especially RISC-V’s extensibility has created a very diverse ecosystem with RISC-V

cores ranging from low power to high performance and superscalar architectures. In this diverse ecosystem, knowing the

performance specifications of a RISC-V core is essential for both, designers and users when placing the core on the market

or selecting a suitable RISC-V core. In this paper, we demonstrate the use of the open-source domain specific language

WAL to analyze performance specifications of multiple configurations of open-source as well as a commercial RISC-V

core. WAL programs analyze the cores based on waveforms generated during simulation and thus can easily be integrated

into standard development processes. The presented WAL programs are flexible and generic, and can be easily adapted to

different RISC-V cores.

Keywords—RISC-V; simulation; optimization; debugging; performance; programmable analysis

I. INTRODUCTION

Recently, RISC-V has been gaining enough traction to become a serious competitor to the few proprietary

Instruction Set Architectures (ISAs) that dominate the market today. RISC-V is an open and royalty free ISA [1]

striving for innovation through collaboration, thus enabling even small companies as well as community projects

to develop their own processors which take advantage from RISC-V’s permissive license and its extensibility to

explore new ideas and markets with often highly specialized hardware.

However, this openness and extensibility of RISC-V brings its own set of challenges, since the sheer number

of available RISC-V cores, which are often highly configurable and extensible, makes it very hard and time-

consuming for both, designers and users, to compare different cores and core configurations against each other [2,

3]. A sophisticated analysis of the cores is needed to obtain relevant performance metrics. Since a wide range of

cores has to be evaluated, the analysis solution must satisfy several requirements: (1) the analysis must be powerful

enough to cover complex analysis tasks, (2) it must be implementation agnostic and easy to port to new cores, and

(3) it must be easy to integrate into existing workflows.

In this paper, we use the open-source Waveform Analysis Language (WAL) [4] to analyze performance

metrics for multiple configurations of an industrial RISC-V core. WAL has been realized as a Domain Specific

Language (DSL) [5]. The language allows creating analysis programs using the values from the waveforms

generated during simulation of a RISC-V core in form of program variables. Our contributions are flexible WAL

 This work has partially been supported by the LIT Secure and Correct Systems Lab funded by the State of Upper Austria.

mailto:lucas.klemmer@jku.at
mailto:eyck@minres.com
mailto:daniel.grosse@jku.at
https://wal-lang.org/
https://github.com/ics-jku/wal

programs for different performance metrics including the analysis of complex processor pipelines. The programs

can be adapted and used on a wide variety of RISC-V microarchitectures.

Our experimental results demonstrate that the WAL-based analysis can clearly highlight the differences

between the analyzed cores and configurations. In addition, we can quantify the performance improvements of

different core configurations that can be set by enabling additional features, such as instruction caches, branch

prediction, or faster ALU implementations.

II. RELATED WORK

In the context of processor architecture research several processor simulators have been proposed. Prominent

examples are gem5 [6], multi2sim [7] or virtual prototypes such as [8, 9] for RISC-V. A complimentary direction

are emulators, such as qemu [10] or OVPSim [11]. Both simulators, and emulators can partially be used to calculate

(performance) metrics (see e.g. [12]). However, they are not as flexible as the WAL DSL for the problems

considered. In WAL, we can create programs and tailor them to the exact needs, such as IPC count, pipeline analysis

and more.

III. WAL: THE WAVEFORM ANALYSIS LANGUAGE

In this section we review the core concepts of WAL following [5, 13]1. In comparison to other programming

languages, WAL programs have direct access to all signal values of a waveform. Accessing signals in WAL is

similar to accessing variables, with the difference that the value returned depends on the loaded waveform and the

time at which the signal is accessed. Consider the waveform in Figure 1. The WAL expression (&& clk instr_done)

returns true at a given time point in the waveform if and only if the clk and instr_done signals are both set to 1. In

Figure 1, all time points at which the expression evaluates to true are highlighted in green. WAL provides a large

collection of functions that can be used to analyze waveforms. For example, the count function can be used to count

how many instructions are executed on the waveform with the WAL expression (count (&& clk instr_done)).

 The WAL syntax is based on Symbolic expressions (abbrev. as S-expressions), which are common in

languages related to Lisp, such as Common Lisp or Scheme. In general, S-expressions can be of two kinds: atoms

or lists. Atoms are literals like numerical or string values, e.g. 1, 0xff, "text", or symbols. Lists are multiple S-

expressions separated by white space and enclosed in parentheses (expr1 expr2 ...). All operators and function calls

are written in prefix notation, e.g. (+ 3 b) to compute the sum of 3 and b.

Now, let us look at S-expressions in WAL, i.e. we consider them in the context of waveforms. As a consequence,

the symbols of S-expressions are either signal names contained in a waveform, e.g. top.module1.out, or variable

names defined in a WAL program. With respect to evaluation of an S-expression, we define the current time index

(or just index) for a waveform at hand. Besides the access to signal values, all operations targeting the analysis of

waveforms are integrated into WAL S-expressions using dedicated functions. In the following, we introduce some

of these functions.

1 For the Programmer Manual of WAL, we refer the reader to https://wal-lang.org

Figure 1: Exemplary Waveform of an Instruction Bus

https://wal-lang.org/

For the essential WAL operations three main categories can be distinguished: waveform handling, signal access,

and timing. As a foundation for all WAL expressions, WAL naturally implements all basic programming constructs

(e.g. variables, loops, user functions).

1) Waveform Handling

 First, a waveform must be loaded in a WAL program in order to have access to the signal values. WAL can

load waveforms from the industry standard “vcd” format and the faster and more space efficient “fst” format.

Assume the waveform data has been dumped to the file "waveform.vcd", as a first step we load this file into WAL

under the id that is following: (load "waveform.vcd" w). After a waveform has been loaded, its time index is set to

the beginning at 0, and it is available to WAL expressions. The step operator can be used to step the time index

forwards and backwards by a variable amount. For example, (step 2) increases the time index of all loaded

waveforms by 2, while (step -1) decreases the time index of all loaded waveforms by 1.

2) Signal Access

After a waveform has been loaded its signal values can be accessed by WAL programs. As mentioned before,

waveform signals are first-class citizens of the WAL language. Therefore, to access the signal value at the current

time index of a waveform, it is sufficient to write the full signal name (i.e. a global name of the form top.sub.signal).

By accessing signal values just through the name of the signal and the current index of the waveform, WAL

programs are very concise and easy to write since virtually no boilerplate code (i.e. getter functions for signal access

and bookkeeping of indices) is needed. Signal names can be used inside WAL programs just like variables in other

languages. For example, printing a debug message if the signal top.sub.signal is not 0 can be written using the

following WAL expression: (if top.sub.signal (print “msg”)).

3) Timing

Often, interesting signal relations are not limited to a single time index. For example, detecting a value change

on a signal requires observing two values of the same signal at different time indices. This could be achieved by

temporarily storing the first signal value in a variable, but this quickly becomes inconvenient. WAL overcomes this

problem by allowing to modify the time index of a waveform locally for a specific expression. This can be expressed

by appending an @ followed by a signed integer to an expression. Using this shorthand syntax, the value of a signal

at the previous index can be accessed by signal@-1 (this expression will evaluate to the value of signal at the time

point index – 1) while the value of the same signal but 4 steps ahead can be accessed by signal@4. Please note that

the @ operator can be applied to every expression and not only to a signal, for example (+ a b)@2 would evaluate

the expression (+ a b) at index + 2.

While the focus of this paper is on the analysis of performance metrics for RISC-V cores, we refer the reader

to [5] for other applications of WAL, e.g. a WAL-based communication analyzer reporting for example throughput

or latency of AXI communication, visualization of the flow of instructions through a RISC-V processor pipeline in

the form of an interactive HTML website or the extraction of the basic blocks of software running on the processor.

IV. EXPERIMENTS

In this section, we present three exemplary processor analysis problems and how they can be analyzed using

the waveform analysis language WAL. Initial results of the first two problems have been published in [13]; here

we extend them wrt. to several configurations of the commercial RISC-V The Good Core (TGC) core from the The

Good Folk Series (TGFS), which is a family of Generator-Based hardware IP available from MINRES [14]

(Section IV.A and Section IV.B). Since the TGC core is highly configurable, we present an extension to determine

the execution time of instructions inside the pipeline (Section IV.C).

A. Processor Performance in Instructions per Cycle

In this section, we analyze the raw performance of different RISC-V cores in terms of executed Instructions

Per Cycle (IPC). Since all analyzed cores are single core architectures, the best theoretical IPC score is 1.0. This

means that a core executes and commits one instruction in each clock cycle. However, this is almost impossible to

achieve, for example, due to branching and memory induced delays.

The WAL program for IPC analysis is split into two separate parts, a generic and core-independent analysis

part, and the core-specific code which has to be provided by the user.

The generic WAL program to perform the IPC analysis is shown in Listing 1. The function performs the IPC

analysis for all waveforms passed in the traces parameter. For each trace, first, the trace is loaded in Line 3 and then

the optional setup function is called in Line 4. The optional setup and clean-up functions can be defined by the

users to perform core-specific setup and clean operations. Then, the number of executed instructions is calculated

in Line 5 using the user-supplied is-valid and instr-done functions (see below). The idea is to count how often the

predicates is-valid and instr-done evaluate to 1 on the waveform and then to assign the result to the variable

instructions via the set function of WAL. Next, the resulting IPC value is calculated in Line 6. We divide the number

of total valid cycles by the number of executed instructions, take the reciprocal value, and print it in Line 7. Finally,

the optional clean-up function is called and the trace is unloaded from the WAL environment in Line 9.

To perform the IPC analysis on a new RISC-V core, users only have to provide the two is-valid and instr-done

functions. First, however, an optional setup function is defined in Listing 2 Lines 2-4 which finds all pipeline stages

and the location of the global clk and reset signals. This is done, since different configurations of the core have

varying numbers of pipeline stages as well as different locations for the clk and reset signals. Then, in Line 7 the

is-valid function is implemented. This function should check if the clk signal is rising and that reset is low. It also

is evaluated in a group since, as mentioned before, the actual location of these signals can change. Lines 7-11 show

the implementations of these functions for the TGC processor. This processor always sets the lastStageIsFiring

module to 1 whenever an instruction is completed. Therefore, the instr-done function only has to return the value

of this signal. After the definition of the required functions, the IPC analysis can be started.

B. Pipeline Stall Analysis

In addition to the IPC analysis, we present how the percentage of cycles with stalled pipeline stages can be

analyzed with WAL. This metric is useful for example to access how efficient the branch prediction is working.

The pipeline stall analysis works similar to the IPC analysis in the sense that users can use a generic function and

only have to provide certain processor specific functions themselves. The users have to provide the function is-

valid and is-stalled. Listing 2 also shows the processor specific code required for the pipeline stall analysis on the

TGC processor. The is-stalled function should return true at each time-point where some part of the pipeline is

stalled. Consider the pipeline architecture of the analyzed core: Each stage has an isMoving signal which can be

used to determine if the stage is currently stalled. We get a list of all groups associated with the pipeline stages in

the setup function, which is called before the main analysis. The is-stalled function is defined in Line 14. This

function creates a list with the values of each isMoving signal and checks if this list contains a 0 which indicates

that this pipeline stage is currently stalled. By using the in-group function, we can get the value of all isMoving

signals even if the actual location of the signal changes or the number of pipeline stages varies.

Table 1 lists the results of the analyzed performance metrics for multiple open-source RISC-V cores and some

configurations of the TGC core. It can be seen that TGC, even in the medium sized 3-Stage configurations, achieves

the second-best IPC value of all cores. Also, even the small 3-Stage configuration achieves competitive IPC values.

IBEX has to be set to a large cache-enabled configuration to achieve better performance. The commercial core also

Listing 1: Generic WAL Function for IPC Analysis
Listing 2: Processor Specific Code for the TGC Processor

achieves one of the lowest values for the relative amount of cycles in which at least one of the pipeline stages is

stalled.

Table 1: Performance Metrics of RISC-V Cores

Core Configuration IPC Stalled Cycles

SERV Servant 0.02 Not pipelined

PicoRv32 Default 0.24 Not pipelined

VexRiscv MicroNoCsr 0.33 63%

VexRiscv Smallest 0.33 66%

VexRiscv SmallAndProductive 0.42 54%

VexRiscv SmallAndProductiveICache 0.47 51%

VexRiscv TwoThreeStage 0.47 48%

VexRiscv Secure 0.57 42%

VexRiscv Linux 0.59 38%

VexRiscv Full 0.57 35%

VexRiscv FullNoMmuMaxPerf 0.63 33%

IBEX Default 0.63 48%

IBEX Icache 0.89 19%

TGC 3-Stage 0.61 64%

TGC 4-Stage v1 0.72 49%

TGC 4-Stage v2 0.70 45%

TGC 4-Stage v3 0.70 44%

TGC 4-Stage v4 0.68 43%

TGC 5-Stage 0.78 40%

C. Execution Time Analysis of Single Instructions

The highly modular nature of RISC-V is reflected in the extremely high configurability of many RISC-V

processors. Many of the available cores today can not only be configured to support a wide range of the RISC-V

extensions but they allow a mix and match of nearly every piece of the processor including but not limited to

arithmetic components, the number of pipeline stages, different branch prediction implementations, caches and

even to completely different bus architectures. Configuring a parameter of a processor can have a significant impact

on the performance of the core. Developers might be able to make a rough estimate of this impact however,

considering all possible ways these changes can impact the pipeline reliable measurements are needed. For this,

only an extensive simulation at the RTL level can be the ground truth.

To get a more accurate understanding of the performance impact of various configurations of the TGC processor

we implemented an additional analysis program. This program computes the time each instruction type (e.g. add,

mul, or srli) takes on average to be executed. With this program we analyzed performance critical instructions for

the six configurations of the TGC processor. Especially arithmetic instructions are suitable for optimization, often

at the cost of increased hardware size. In this section, we analyze two arithmetic instructions, div and mul, from the

RISC-V M extension and two shift instructions, slli and srli.

The run function which computes the execution time of instructions is shown in Listing 3. The general idea

behind this function is, that instructions are tracked through the pipeline of the processor. Whenever a new

instruction enters the pipeline in the first stage (in the following entry stage) the current simulation time is stored

in an array (i.e. a hash map). Then, when the instruction leaves the last pipeline stage (in the following exit stage)

the execution time is determined using the previously stored start time. However, since instructions can be removed

from the pipeline at any stage, we also have to delete instructions from the array if they are removed.

Since the number of pipeline stages varies, the function is written in a generic way. The user has to supply the

name of the trace file and the names of the first and last stages to the function (cf. Line 1 in Listing 3). Then, the

trace file is loaded (Line 2). After that, the arrays for tracking the instructions (alive) and the final results (stats) are

initialized (Lines 3-4). Also, the groups of the pipeline stages are searched for (each stage has an

arbitration_removeIt and an INSTRUCTION signal) (Line 6). The main loop of the function is evaluated at each

index at which the clk is high and reset is low (Line 8). Now, the function goes through each pipeline stage (Line

9) and checks if it is the entry or exit stage (Line 10-31). In each stage, first the current instruction and the validity

of this instruction is stored since they are required multiple times in later lines (Lines 10-11). If a new valid

instruction enters the entry stage it is added to the alive array (Lines 14-15). If an instruction is executed in the exit

stage, the execution time is calculated based on the stored start time of this instruction (Line 18-20). Then, the

opcode of the instruction is determined with the help of a call to the “riscv-model” Python package (Line 22)2. The

instruction is removed from the alive array (Line 24) and the result is stored to the list in the stats array (Line 26).

If the RISC-V core removes an instruction from the pipeline (e.g. in case of mistaken branch), we also have to

remove it from the alive array (Line 29-31). Please not this scenario is possible in each pipeline stage. Finally, the

trace is unloaded from WAL (Line 32). Please note, that the code was slightly simplified to better illustrate the idea

behind the analysis, also the printing of the result at the end is not shown.

Table 2: Average Execution Time of Instructions (in number of cycles)

Instruction 3-Stage 4-Stage v1 4-Stage v2 4-Stage v3 4-Stage v4

div 6 6 68 68 14

mul 4 4 62 62 7

slli 1 2 12 4 12

srli 1 2 21 5 25

Table 2 shows the resulting execution times for the four analyzed instructions in number of cycles. All

waveforms were generated by running the Dhrystone benchmark on the specified core configurations. The first

2 Please note: WAL allows to interface with other languages. In the example, we use a Python package to

decode the RISC-V instruction.

Listing 3: Instruction Execution Time Analysis for TGC

column gives the instruction while the remaining columns show the processor configuration. The data shows, that

the runtime of the div and mul instructions is significantly lower in the configurations 3-Stage and 4-Stage v1. The

same also applies for the runtime of the shift instructions slli and srli which is much slower in the configurations

4-Stage v2 and 4-Stage v4. With these fine-grained measurements of the hardware cost associated with each

configuration developers can decide which configuration makes the most sense for a given application and its

requirements.

V. CONCLUSIONS

In this paper we calculated relevant performance metrics of several RISC-V cores using WAL, the Waveform

Analysis Language. We analyzed the performance of a core in terms of raw numbers of executed instructions per

cycle, the frequency of stalled pipeline stages, and the execution time of different instructions. Our experiments

show that thorough analyses of RISC-V cores are possible with WAL. Automatic and programmable core analysis

makes it possible to identify performance bottlenecks and optimization potential at an early stage. The information

gathered by the WAL analysis enables developers to leverage the high configurability of modern processor

workflows to create fine-tuned processors that are tailored to the needs of specific applications.

VI. REFERENCES

[1] Andrew Waterman and Krste Asanović. The RISC-V Instruction Set Manual; Volume I: Unprivileged ISA. SiFive

Inc. and CS Division, EECS Department, University of California, Berkeley, 2019

[2] Alexander Dörflinger et al. A Comparative Survey of Open-Source Application-Class RISC-V Processor

Implementations. In CF, pages 12–20, 2021

[3] Ed Sperling. Which Processor Is Best? https://semiengineering.com/which-processor-is-best. 2022

[4] WAL the Waveform Analysis Language. https://github.com/ics-jku/wal

[5] Lucas Klemmer and Daniel Große. WAL: A Novel Waveform Analysis Language for Advanced Design

Understanding and Debugging. In ASP-DAC, pages 358–364, 2022.

[6] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali Saidi, Arkaprava Basu, Joel

Hestness, Derek R. Hower, Tushar Krishna, Somayeh Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib,

Nilay Vaish, Mark D. Hill, and David A. Wood. The gem5 simulator. SIGARCH Comput. Archit. News 39, 2 (May

2011), 1–7. 2011

[7] Rafael Ubal, Julio Sahuquillo, Salvador Petit, and Pedro Lopez. Multi2sim: A simulation framework to evaluate

multicore-multithreaded processors. In SBAC-PAD, pages 62–68, 2007

[8] Vladimir Herdt, Daniel Große, Hoang M. Le, and Rolf Drechsler. Extensible and configurable RISC-V based

virtual prototype. In FDL, pages 5–16, 2018.

[9] Vladimir Herdt, Daniel Große, Pascal Pieper, and Rolf Drechsler. RISC-V based virtual prototype: An extensible

and configurable platform for the system-level. JSA, 109:101756, 2020.

[10] “QEMU a generic and open source machine emulator and virtualizer”, https://www.qemu.org/

[11] “Technology OVPsim”, https://www.ovpworld.org/technology_ovpsim

[12] Vladimir Herdt, Daniel Große, and Rolf Drechsler. Fast and accurate performance evaluation for RISC-V using

virtual prototypes. In DATE, pages 618–621, 2020.

[13] Lucas Klemmer and Daniel Große. Waveform-based performance analysis of RISC-V processors: late

breaking results. In DAC, pages 1404–1405, 2022.

[14] MINRES Technologies, https://www.minres.com/

https://semiengineering.com/which-processor-is-best
https://www.qemu.org/
https://www.ovpworld.org/technology_ovpsim
https://www.minres.com/

