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Abstract—With RISC-V’s growing traction, both researchers and companies race to bring their RISC-V 

implementations to the public.  Here, especially RISC-V’s extensibility has created a very diverse ecosystem with RISC-V 

cores ranging from low power to high performance and superscalar architectures. In this diverse ecosystem, knowing the 

performance specifications of a RISC-V core is essential for both, designers and users when placing the core on the market 

or selecting a suitable RISC-V core. In this paper, we demonstrate the use of the open-source domain specific language 

WAL to analyze performance specifications of multiple configurations of open-source as well as a commercial RISC-V 

core. WAL programs analyze the cores based on waveforms generated during simulation and thus can easily be integrated 

into standard development processes. The presented WAL programs are flexible and generic, and can be easily adapted to 

different RISC-V cores. 
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I.  INTRODUCTION  

Recently, RISC-V has been gaining enough traction to become a serious competitor to the few proprietary 

Instruction Set Architectures (ISAs) that dominate the market today. RISC-V is an open and royalty free ISA [1] 

striving for innovation through collaboration, thus enabling even small companies as well as community projects 

to develop their own processors which take advantage from RISC-V’s permissive license and its extensibility to 

explore new ideas and markets with often highly specialized hardware. 

However, this openness and extensibility of RISC-V brings its own set of challenges, since the sheer number 

of available RISC-V cores, which are often highly configurable and extensible, makes it very hard and time-

consuming for both, designers and users, to compare different cores and core configurations against each other [2, 

3]. A sophisticated analysis of the cores is needed to obtain relevant performance metrics. Since a wide range of 

cores has to be evaluated, the analysis solution must satisfy several requirements: (1) the analysis must be powerful 

enough to cover complex analysis tasks, (2) it must be implementation agnostic and easy to port to new cores, and 

(3) it must be easy to integrate into existing workflows. 

In this paper, we use the open-source Waveform Analysis Language (WAL) [4] to analyze performance 

metrics for multiple configurations of an industrial RISC-V core. WAL has been realized as a Domain Specific 

Language (DSL) [5]. The language allows creating analysis programs using the values from the waveforms 

generated during simulation of a RISC-V core in form of program variables. Our contributions are flexible WAL 
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programs for different performance metrics including the analysis of complex processor pipelines. The programs 

can be adapted and used on a wide variety of RISC-V microarchitectures. 

Our experimental results demonstrate that the WAL-based analysis can clearly highlight the differences 

between the analyzed cores and configurations. In addition, we can quantify the performance improvements of 

different core configurations that can be set by enabling additional features, such as instruction caches, branch 

prediction, or faster ALU implementations. 

 

II. RELATED WORK 

In the context of processor architecture research several processor simulators have been proposed. Prominent 

examples are gem5 [6], multi2sim [7] or virtual prototypes such as [8, 9] for RISC-V. A complimentary direction 

are emulators, such as qemu [10] or OVPSim [11]. Both simulators, and emulators can partially be used to calculate 

(performance) metrics (see e.g. [12]). However, they are not as flexible as the WAL DSL for the problems 

considered. In WAL, we can create programs and tailor them to the exact needs, such as IPC count, pipeline analysis 

and more. 

 

III. WAL: THE WAVEFORM ANALYSIS LANGUAGE 

In this section we review the core concepts of WAL following [5, 13]1. In comparison to other programming 

languages, WAL programs have direct access to all signal values of a waveform. Accessing signals in WAL is 

similar to accessing variables, with the difference that the value returned depends on the loaded waveform and the 

time at which the signal is accessed. Consider the waveform in Figure 1. The WAL expression (&& clk instr_done) 

returns true at a given time point in the waveform if and only if the clk and instr_done signals are both set to 1. In 

Figure 1, all time points at which the expression evaluates to true are highlighted in green. WAL provides a large 

collection of functions that can be used to analyze waveforms. For example, the count function can be used to count 

how many instructions are executed on the waveform with the WAL expression (count (&& clk instr_done)). 

 The WAL syntax is based on Symbolic expressions (abbrev. as S-expressions), which are common in 

languages related to Lisp, such as Common Lisp or Scheme. In general, S-expressions can be of two kinds: atoms 

or lists. Atoms are literals like numerical or string values, e.g. 1, 0xff, "text", or symbols. Lists are multiple S-

expressions separated by white space and enclosed in parentheses (expr1 expr2 ...). All operators and function calls 

are written in prefix notation, e.g. (+ 3 b) to compute the sum of 3 and b. 

Now, let us look at S-expressions in WAL, i.e. we consider them in the context of waveforms. As a consequence, 

the symbols of S-expressions are either signal names contained in a waveform, e.g. top.module1.out, or variable 

names defined in a WAL program. With respect to evaluation of an S-expression, we define the current time index 

(or just index) for a waveform at hand. Besides the access to signal values, all operations targeting the analysis of 

waveforms are integrated into WAL S-expressions using dedicated functions. In the following, we introduce some 

of these functions. 

 
1 For the Programmer Manual of WAL, we refer the reader to https://wal-lang.org  

Figure 1: Exemplary Waveform of an Instruction Bus 
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For the essential WAL operations three main categories can be distinguished: waveform handling, signal access, 

and timing. As a foundation for all WAL expressions, WAL naturally implements all basic programming constructs 

(e.g. variables, loops, user functions). 

 

1) Waveform Handling 

 First, a waveform must be loaded in a WAL program in order to have access to the signal values. WAL can 

load waveforms from the industry standard “vcd” format and the faster and more space efficient “fst” format. 

Assume the waveform data has been dumped to the file "waveform.vcd", as a first step we load this file into WAL 

under the id that is following: (load "waveform.vcd" w). After a waveform has been loaded, its time index is set to 

the beginning at 0, and it is available to WAL expressions. The step operator can be used to step the time index 

forwards and backwards by a variable amount. For example, (step 2) increases the time index of all loaded 

waveforms by 2, while (step -1) decreases the time index of all loaded waveforms by 1. 

2) Signal Access 

After a waveform has been loaded its signal values can be accessed by WAL programs. As mentioned before, 

waveform signals are first-class citizens of the WAL language. Therefore, to access the signal value at the current 

time index of a waveform, it is sufficient to write the full signal name (i.e. a global name of the form top.sub.signal). 

By accessing signal values just through the name of the signal and the current index of the waveform, WAL 

programs are very concise and easy to write since virtually no boilerplate code (i.e. getter functions for signal access 

and bookkeeping of indices) is needed. Signal names can be used inside WAL programs just like variables in other 

languages. For example, printing a debug message if the signal top.sub.signal is not 0 can be written using the 

following WAL expression: (if top.sub.signal (print “msg”)).  

3) Timing 

Often, interesting signal relations are not limited to a single time index. For example, detecting a value change 

on a signal requires observing two values of the same signal at different time indices. This could be achieved by 

temporarily storing the first signal value in a variable, but this quickly becomes inconvenient. WAL overcomes this 

problem by allowing to modify the time index of a waveform locally for a specific expression. This can be expressed 

by appending an @ followed by a signed integer to an expression. Using this shorthand syntax, the value of a signal 

at the previous index can be accessed by signal@-1 (this expression will evaluate to the value of signal at the time 

point index – 1) while the value of the same signal but 4 steps ahead can be accessed by signal@4. Please note that 

the @ operator can be applied to every expression and not only to a signal, for example (+ a b)@2 would evaluate 

the expression (+ a b) at index + 2. 

While the focus of this paper is on the analysis of performance metrics for RISC-V cores, we refer the reader 

to [5] for other applications of WAL, e.g. a WAL-based communication analyzer reporting for example throughput 

or latency of AXI communication, visualization of the flow of instructions through a RISC-V processor pipeline in 

the form of an interactive HTML website or the extraction of the basic blocks of software running on the processor. 

 

IV. EXPERIMENTS 

In this section, we present three exemplary processor analysis problems and how they can be analyzed using 

the waveform analysis language WAL. Initial results of the first two problems have been published in [13]; here 

we extend them wrt. to several configurations of the commercial RISC-V The Good Core (TGC) core from the The 

Good Folk Series (TGFS ), which is a family of Generator-Based hardware IP available from MINRES [14] 

(Section IV.A and Section IV.B). Since the TGC core is highly configurable, we present an extension to determine 

the execution time of instructions inside the pipeline (Section IV.C). 

A. Processor Performance in Instructions per Cycle 

In this section, we analyze the raw performance of different RISC-V cores in terms of executed Instructions 

Per Cycle (IPC). Since all analyzed cores are single core architectures, the best theoretical IPC score is 1.0. This 



 

 

means that a core executes and commits one instruction in each clock cycle. However, this is almost impossible to 

achieve, for example, due to branching and memory induced delays.  

The WAL program for IPC analysis is split into two separate parts, a generic and core-independent analysis 

part, and the core-specific code which has to be provided by the user. 

 

The generic WAL program to perform the IPC analysis is shown in Listing 1. The function performs the IPC 

analysis for all waveforms passed in the traces parameter. For each trace, first, the trace is loaded in Line 3 and then 

the optional setup function is called in Line 4. The optional setup and clean-up functions can be defined by the 

users to perform core-specific setup and clean operations. Then, the number of executed instructions is calculated 

in Line 5 using the user-supplied is-valid and instr-done functions (see below). The idea is to count how often the 

predicates is-valid and instr-done evaluate to 1 on the waveform and then to assign the result to the variable 

instructions via the set function of WAL. Next, the resulting IPC value is calculated in Line 6. We divide the number 

of total valid cycles by the number of executed instructions, take the reciprocal value, and print it in Line 7. Finally, 

the optional clean-up function is called and the trace is unloaded from the WAL environment in Line 9. 

To perform the IPC analysis on a new RISC-V core, users only have to provide the two is-valid and instr-done 

functions. First, however, an optional setup function is defined in Listing 2 Lines 2-4 which finds all pipeline stages 

and the location of the global clk and reset signals. This is done, since different configurations of the core have 

varying numbers of pipeline stages as well as different locations for the clk and reset signals. Then, in Line 7 the 

is-valid function is implemented. This function should check if the clk signal is rising and that reset is low. It also 

is evaluated in a group since, as mentioned before, the actual location of these signals can change. Lines 7-11 show 

the implementations of these functions for the TGC processor. This processor always sets the lastStageIsFiring 

module to 1 whenever an instruction is completed. Therefore, the instr-done function only has to return the value 

of this signal. After the definition of the required functions, the IPC analysis can be started.  

B. Pipeline Stall Analysis 

In addition to the IPC analysis, we present how the percentage of cycles with stalled pipeline stages can be 

analyzed with WAL. This metric is useful for example to access how efficient the branch prediction is working. 

The pipeline stall analysis works similar to the IPC analysis in the sense that users can use a generic function and 

only have to provide certain processor specific functions themselves. The users have to provide the function is-

valid and is-stalled. Listing 2 also shows the processor specific code required for the pipeline stall analysis on the 

TGC processor. The is-stalled function should return true at each time-point where some part of the pipeline is 

stalled. Consider the pipeline architecture of the analyzed core: Each stage has an isMoving signal which can be 

used to determine if the stage is currently stalled. We get a list of all groups associated with the pipeline stages in 

the setup function, which is called before the main analysis. The is-stalled function is defined in Line 14. This 

function creates a list with the values of each isMoving signal and checks if this list contains a 0 which indicates 

that this pipeline stage is currently stalled. By using the in-group function, we can get the value of all isMoving 

signals even if the actual location of the signal changes or the number of pipeline stages varies. 

Table 1 lists the results of the analyzed performance metrics for multiple open-source RISC-V cores and some 

configurations of the TGC core. It can be seen that TGC, even in the medium sized 3-Stage configurations, achieves 

the second-best IPC value of all cores. Also, even the small 3-Stage configuration achieves competitive IPC values. 

IBEX has to be set to a large cache-enabled configuration to achieve better performance. The commercial core also 

Listing 1: Generic WAL Function for IPC Analysis 
Listing 2: Processor Specific Code for the TGC Processor 



 

 

achieves one of the lowest values for the relative amount of cycles in which at least one of the pipeline stages is 

stalled. 

Table 1: Performance Metrics of RISC-V Cores 

Core Configuration IPC Stalled Cycles 

SERV Servant 0.02 Not pipelined 

PicoRv32 Default 0.24 Not pipelined 

VexRiscv MicroNoCsr 0.33 63% 

VexRiscv Smallest 0.33 66% 

VexRiscv SmallAndProductive 0.42 54% 

VexRiscv SmallAndProductiveICache 0.47 51% 

VexRiscv TwoThreeStage 0.47 48% 

VexRiscv Secure 0.57 42% 

VexRiscv Linux 0.59 38% 

VexRiscv Full 0.57 35% 

VexRiscv FullNoMmuMaxPerf 0.63 33% 

IBEX Default 0.63 48% 

IBEX Icache 0.89 19% 

TGC 3-Stage 0.61 64% 

TGC 4-Stage v1 0.72 49% 

TGC 4-Stage v2 0.70 45% 

TGC 4-Stage v3 0.70 44% 

TGC 4-Stage v4 0.68 43% 

TGC 5-Stage 0.78 40% 

 

C. Execution Time Analysis of Single Instructions 

The highly modular nature of RISC-V is reflected in the extremely high configurability of many RISC-V 

processors. Many of the available cores today can not only be configured to support a wide range of the RISC-V 

extensions but they allow a mix and match of nearly every piece of the processor including but not limited to 

arithmetic components, the number of pipeline stages, different branch prediction implementations, caches and 

even to completely different bus architectures. Configuring a parameter of a processor can have a significant impact 

on the performance of the core. Developers might be able to make a rough estimate of this impact however, 

considering all possible ways these changes can impact the pipeline reliable measurements are needed. For this, 

only an extensive simulation at the RTL level can be the ground truth. 

To get a more accurate understanding of the performance impact of various configurations of the TGC processor 

we implemented an additional analysis program. This program computes the time each instruction type (e.g. add, 

mul, or srli) takes on average to be executed. With this program we analyzed performance critical instructions for 

the six configurations of the TGC processor. Especially arithmetic instructions are suitable for optimization, often 

at the cost of increased hardware size. In this section, we analyze two arithmetic instructions, div and mul, from the 

RISC-V M extension and two shift instructions, slli and srli. 

The run function which computes the execution time of instructions is shown in Listing 3. The general idea 

behind this function is, that instructions are tracked through the pipeline of the processor. Whenever a new 

instruction enters the pipeline in the first stage (in the following entry stage) the current simulation time is stored 

in an array (i.e. a hash map). Then, when the instruction leaves the last pipeline stage (in the following exit stage) 

the execution time is determined using the previously stored start time. However, since instructions can be removed 

from the pipeline at any stage, we also have to delete instructions from the array if they are removed. 



 

 

Since the number of pipeline stages varies, the function is written in a generic way. The user has to supply the 

name of the trace file and the names of the first and last stages to the function (cf. Line 1 in Listing 3). Then, the 

trace file is loaded (Line 2). After that, the arrays for tracking the instructions (alive) and the final results (stats) are 

initialized (Lines 3-4). Also, the groups of the pipeline stages are searched for (each stage has an 

arbitration_removeIt and an INSTRUCTION signal) (Line 6). The main loop of the function is evaluated at each 

index at which the clk is high and reset is low (Line 8). Now, the function goes through each pipeline stage (Line 

9) and checks if it is the entry or exit stage (Line 10-31). In each stage, first the current instruction and the validity 

of this instruction is stored since they are required multiple times in later lines (Lines 10-11). If a new valid 

instruction enters the entry stage it is added to the alive array (Lines 14-15). If an instruction is executed in the exit 

stage, the execution time is calculated based on the stored start time of this instruction (Line 18-20). Then, the 

opcode of the instruction is determined with the help of a call to the “riscv-model” Python package (Line 22)2. The 

instruction is removed from the alive array (Line 24) and the result is stored to the list in the stats array (Line 26). 

If the RISC-V core removes an instruction from the pipeline (e.g. in case of mistaken branch), we also have to 

remove it from the alive array (Line 29-31). Please not this scenario is possible in each pipeline stage. Finally, the 

trace is unloaded from WAL (Line 32). Please note, that the code was slightly simplified to better illustrate the idea 

behind the analysis, also the printing of the result at the end is not shown. 

 

Table 2: Average Execution Time of Instructions (in number of cycles) 

Instruction 3-Stage  4-Stage v1 4-Stage v2 4-Stage v3 4-Stage v4 

div 6 6 68 68 14 

mul 4 4 62 62 7 

slli 1 2 12 4 12 

srli 1 2 21 5 25 

 

Table 2 shows the resulting execution times for the four analyzed instructions in number of cycles. All 

waveforms were generated by running the Dhrystone benchmark on the specified core configurations. The first 

 
2 Please note: WAL allows to interface with other languages. In the example, we use a Python package to 

decode the RISC-V instruction. 

Listing 3: Instruction Execution Time Analysis for TGC 



 

 

column gives the instruction while the remaining columns show the processor configuration. The data shows, that 

the runtime of the div and mul instructions is significantly lower in the configurations 3-Stage and 4-Stage v1. The 

same also applies for the runtime of the shift instructions slli and srli which is much slower in the configurations 

4-Stage v2 and 4-Stage v4. With these fine-grained measurements of the hardware cost associated with each 

configuration developers can decide which configuration makes the most sense for a given application and its 

requirements. 

 

V. CONCLUSIONS 

In this paper we calculated relevant performance metrics of several RISC-V cores using WAL, the Waveform 

Analysis Language. We analyzed the performance of a core in terms of raw numbers of executed instructions per 

cycle, the frequency of stalled pipeline stages, and the execution time of different instructions. Our experiments 

show that thorough analyses of RISC-V cores are possible with WAL. Automatic and programmable core analysis 

makes it possible to identify performance bottlenecks and optimization potential at an early stage. The information 

gathered by the WAL analysis enables developers to leverage the high configurability of modern processor 

workflows to create fine-tuned processors that are tailored to the needs of specific applications. 
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