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Abstract—Boosting hardware design productivity is a ma-
jor plus of SpinalHDL, a Scala-based Hardware Description
Language (HDL). SpinalHDL achieves this by providing ob-
ject oriented programming, functional programming, and meta-
hardware description finally enabling the generation of Verilog
code. Despite all the advantages of SpinalHDL, verification is the
biggest challenge here as well.

In this paper, we bring Coverage-Guided Fuzzing (CGF), a well-
established software testing technique, to the SpinalHDL design
flow. We have implemented our approach SPINALFUZZ on top
of the fuzzer AFL++. We leverage Scala-features to automate as
many tasks as possible and ease the integration of fuzzing in
SpinalHDL. In the experiments we demonstrate the effectiveness
of SPINALFUZZ in comparison to Constrained Random Verifica-
tion (CRV). For a wide range of SpinalHDL designs we show that
SPINALFUZZ outperforms CRV and reaches coverage-closure.

I. INTRODUCTION

Confronted with the end of Moore’s law and Dennard scal-
ing, a new golden age for computer architecture has started [1].
However, to make this a reality, domain-specific architectures
and designs are essential and, hence, the design productivity
needs an enormous boost. Therefore, alternatives to Register
Transfer Level (RTL) design, which is based on the classical
Hardware Description Languages (HDLs) Verilog or VHDL,
moved in the focus of research. A very promising alternative is
SpinalHDL [2]. SpinalHDL has been realized as an embedded
Domain Specific Language (DSL) in Scala and allows to
describe RTL designs by using object-oriented and functional
programming. Moreover, the meta-programming features of
Scala can be used for parametrization and hardware code
generation. In the final step of the SpinalHDL flow, a Verilog
design is generated for the design. However, while productivity
gains by a factor of 3 or more have been reported using meta-
modeling and code generation [3], verification must keep up,
since otherwise the verification gap is widening even faster.

In this work, we focus on simulation-based verification
of SpinalHDL designs. To define the stimuli for simulation,
the verification engineer can either create directed tests or
make use of more advanced techniques, like Constrained
Random Verification (CRV) [4], [5]. The latter has been further
improved by integrating coverage feedback from simulations.
This, however, requires adjustments of weights and constraints,
design-specific Bayesian networks [6], or utilization of data
mining techniques [7], each with high manual effort.

In software testing Fuzzing is a well-established tech-
nique [8]. Fuzzing is a process where the Program Under Test
(PUT) is executed repeatedly with random-generated inputs to

find software bugs and security vulnerabilities. State-of-the-
art Coverage-Guided Fuzzing (CGF) aims to maximize code
coverage of the PUT. The core principle of CGF is as follows:
A corpus is created which contains at least one initial test case.
Then, the CGF feedback loop starts, which consists of two
main steps: (1) From the corpus a test case is taken, mutated
to create a new one and then fed to the PUT. (2) If the overall
coverage increases during PUT execution, the new test case
is added to the corpus, otherwise it is discarded. With this
prioritization of interesting (coverage-increasing) test cases,
CGF boosts the efficiency of basic fuzzing significantly.

However, for hardware, only very few fuzzing approaches
have been presented so far. None of these approaches target
SpinalHDL and they all require a lot of user interaction to
setup fuzzing (details see Section II). Moreover, a common
challenge for the hardware domain is the additional ingredient
of a harness. The harness has to (1) translate a test case from
the corpus, typically a byte stream, to the input signals of
the Device Under Test (DUT) and (2) support the sequential
behavior of hardware, i.e. input values over time.

To overcome these challenges, we present SPINALFUZZ, a
CGF approach for SpinalHDL designs in this paper. During
the development of SPINALFUZZ our primary objective was
to make fuzzing of a SpinalHDL DUT as easy as possible
and, hence, automate as much as possible. For the integration
of fuzzing into the SpinalHDL design flow, we (a) leverage
the SpinalHDL/Scala language features for various generation
tasks and (b) benefit from existing software fuzzers. The main
contributions of this paper can be summarized as follows:

• Automatic generation of input corpus and fuzzer harness
• Support of SpinalHDL hardware assertions
• Class-based plugin of SPINALFUZZ for SpinalHDL flow
• Demonstration on a wide range of SpinalHDL designs
• SPINALFUZZ is available as open-source on GitHub1

II. RELATED WORK

Motivated by the success of software fuzzing, first
hardware-related fuzzing approaches emerged, e.g. fuzzing of
firmware [9], [10] and Instruction Set Simulators (ISSs) [11].

A first fuzzer targeting HDL designs has been published as
RFUZZ [12], where the authors combined fuzzing with FPGA-
acceleration. They introduced Mux Toggle Coverage, a new
RTL coverage metric that measures the values of select signals
of multiplexers and use it to provide the fuzzer feedback.

1https://github.com/ics-jku/spinalfuzz



The main focus of the work is the implementation on an
FPGA and therefore the coverage collection has been realized
on the netlist. Recently, DirectFuzz [13] has been presented
which extends RFUZZ to generate test inputs maximizing
the coverage of a specific block of the hardware design. In
contrast, SPINALFUZZ targets the design and simulation flow
of SpinalHDL, automates harness and corpus generation and
is able to determine coverage without additional logic.

In [14], the authors are focusing on fuzzing of processors.
They create a specific grammar and harness to interact with
the TileLink Uncached Lightweight (TL-UL) interface and
integrate them into a hardware fuzzing pipeline. For other
designs and interfaces, additional harnesses and grammars
need to be created. SPINALFUZZ uses a generic approach and
is able to fuzz any SpinalHDL hardware design.

Recently [15] reported that the tool ChiselVerify was ex-
tended to enable fuzzing of hardware designs described in
Chisel [16]. The presented steps are interesting, however
besides manual corpus and harness creation it targets Chisel.

III. PRELIMINARIES

A. CGF & AFL++

Fuzzing was introduced in 1990 by Miller et al. [17] to
analyze the reliability of UNIX tools. In the following years an
independent research field emerged [8]. Modern fuzzers, like
AFL [18] and AFL++ [19] are generally categorized as CGF
and work as described in the introduction. AFL++ originated
from AFL, targets C++ code, and incorporates state-of-the-art
fuzzing research [20]. The coverage feedback metric used in
this paper is edge coverage in the form of a compact bitmap,
where each edge, i.e. each transition between two basic blocks,
is represented by a byte. This metric is highly efficient because
the bitmap can be analyzed in microseconds. In addition, the
source code of the PUT is analyzed to create a dictionary. This
dictionary stores interesting values, such as constants used in
if-conditions, and they are used when mutating a test case.

AFL++ implements two types of mutators: deterministic and
havoc. Deterministic strategies are single mutations, including
bit flips, addition or subtraction of small integers and insertion
of interesting integers or values of the dictionary. Havoc
strategies define several randomly stacked mutations which
change the length of the test case (e.g. by trimming or
expanding) or merge two test cases. If a mutated test case
leads to new edges in the bitmap representing the PUT, the
test case is stored in a queue directory, which acts as the input
corpus for further mutations. However, if a test case leads to
a crash (i.e. unexpected termination) of the PUT, it is stored
in a separate crash directory.

B. SpinalHDL

SpinalHDL [2] is a modern Scala-based DSL, which en-
ables to use software paradigms well-established in higher
programming languages. Furthermore, SpinalHDL provides
the package spinal.lib which includes several designs,
like bus interfaces, peripherals and timer. Further details and
examples can be found in the documentation [2].
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Fig. 1: Overall flow of SPINALFUZZ

As a running example we use a Greatest Common Divisor
(GCD) design to demonstrate the steps of SPINALFUZZ in
Section IV. This design implements the GCD of two posi-
tive integers using Euclid’s algorithm. The number of cycles
needed depends on the two inputs. More cycles are needed
if the numbers differ greatly (e.g.: gcd(2,1337)) because the
calculation loop needs to be executed more often.

IV. SPINALFUZZ

In this section, we present SPINALFUZZ, our proposed
fuzzing approach for SpinalHDL. The overall flow of
SPINALFUZZ is depicted in Fig. 1. SPINALFUZZ consists
of three key steps. They are shown in Fig. 1 as the yellow
rectangles ➊ Generation Flow, ➋ Execution & Monitoring and
➌ Post-processing. To illustrate how SPINALFUZZ interacts
with Verilator [21] and AFL++, they are depicted in green,
while the shared data (structures) are shown in blue.

Putting it all together, the functionality of SPINALFUZZ
is provided to the user as a class-based Scala plugin in the
SpinalHDL flow. This enables the verification engineer to
easily replace the classical SpinalHDL testbench of the DUT
with CGF such that coverage-closure can be reached very fast.

In the following subsections, each key step (including
possible subtasks) is described in detail.

A. Generation Flow

In the generation flow step of SPINALFUZZ, depicted as ➊
in Fig. 1, the following five generation tasks are performed:

1) Input Corpus: During fuzzing the test cases (byte
streams) from the input corpus are constantly mutated and
evolved in search of new interesting, i.e. coverage-increasing,
input. SPINALFUZZ generates the initial input corpus based on
the input information of the SpinalHDL DUT. The respective
initial test case consists of at least one input structure that is
built up by the summarized bit widths of the input signals of
the DUT. Please note, SPINALFUZZ only ensures that “enough
bytes” are available in the initial test case for a single cycle,
i.e. the mapping from bytes to concrete DUT inputs is not
part of the input corpus. Instead this mapping is done by
the harness. In the main fuzzing loop of AFL++, a test case
(byte stream) can be enlarged (via mutators) which means that
input assignments for several clock cycles will be created and
fed to the DUT through the harness. Since a central goal in
fuzzing is a fast fuzzing loop, and hence compact/short test
cases, we had the idea to add one additional byte after the



Input file rep. 1 byte 2 bytes 3 bytes 4 bytes

Verilator format CData SData IData QData

C++ equivalent uint8 uint16 uint32 uint64

Input bit width 1 – 8 9 – 16 17 – 32 33 – 64

Fig. 2: Mapping of input signals in the harness

00 00 37 37 0 37

a b en del

01 00 FF FF 1 1

a b en del

AD E3 37 37 1 4

a b en del

Fig. 3: Example of initial test case (up to the thick line) and
expanded test case for GCD with data-width 16

input structure to model a delay between consecutive input
assignments. As we will show in the experiments this clearly
improves the coverage for designs with timers, pipelines or
bus interfaces. After discussing the harness, we will provide
a concrete example.

2) Harness: SPINALFUZZ generates the test harness that
will act as an interface between AFL++ and the later verilated
DUT (see Fig. 1 and following Subtask 3). To connect
the DUT with the fuzzer, the major tasks of the harness
are parsing a test case (i.e. a byte stream which has been
selected from the input corpus and mutated) and assigning it
to the DUT. To make the harness generation fully automated,
SPINALFUZZ uses the same DUT input signal information
already determined for the input corpus and adds it to an
array in the harness. This array consists of pairs that store
input signal references to the later verilated DUT inputs and
the number of bytes used to represent each signal. Fig. 2 shows
the mapping from the byte stream to the DUT input signals
inside the harness. The first row describes the number of bytes
that are stored in the array and also acts as link to the test
cases of the input corpus. The second and third row show
the corresponding Verilator format and its C++ equivalent,
respectively. The last row provides the link to the DUT input
signals and shows the range of bits that are covered by the
corresponding representations.

Example 1. We consider the GCD design: The input corpus
generated by SPINALFUZZ consists of two bytes for each
data signal a and b, and one byte for the enable signal en.
Additionally, a delay is used since the implementation requires
several clock cycles for the calculation.

In Fig. 3 we provide a concrete example. The first 6 bytes (up
to the thick line) are the input corpus that has been generated
by SPINALFUZZ (input data width for a and b is 16, values
in hex). The following 12 bytes in Fig. 3 (shown lighter) are
determined by AFL++ during fuzzing in key step ➋. In other
words, the initial test case is evolved by advanced AFL++
mutations to increase the overall coverage.

3) Cycle-Accurate C++ Model: After the definition of the
interface between input corpus and harness as well as the
generation of the harness itself, the DUT is now “verilated”,
i.e. it is transformed into a cycle-accurate C++-model. For this
we use Verilator [21] and the harness becomes the entry point
for the DUT.

4) Crash Insertion: If there are user-defined hardware
assertions inside the SpinalHDL DUT, SPINALFUZZ has to
adapt the runtime behavior of the verilated DUT: Instead of
just aborting the simulation, we take advantage of the crash-
detection ability of the fuzzer and emit a program crash.

5) Coverage Instrumentation: AFL++ is providing a wrap-
per for compilation to control the coverage instrumentation. As
we are only interested in the coverage-progress of the DUT,
coverage instrumentation is only performed on the C++ files
representing the DUT. Thus, harness and Verilator’s runtime
library are not taken into account for the fuzzer’s internal
coverage feedback.

B. Execution & Monitoring
The Execution & Monitoring step, shown as ➋ in Fig. 1,

focuses on the execution of AFL++ which requires parallel
coverage monitoring and appropriate handling of assertions.

Analogous to the general fuzzing loop of CGF (as de-
scribed in Section I and Section III-A), the fuzzing loop of
SPINALFUZZ works as follows: execution of the DUT with an
initial (or later mutated) test case, collection of coverage from
the compiled DUT based on the performed AFL++ coverage
instrumentation, storage of coverage-increasing and crash-
generating test cases, and mutation of coverage-increasing test
cases that are passed to the executable again. In Fig. 1 the main
fuzzing loop starts at AFL++, continues to the harness and the
coverage bitmap of the DUT, and ends in AFL++ again.

1) Coverage Monitoring: In addition to the AFL++ fuzzer
execution loop, SPINALFUZZ also supports periodic track-
ing of Verilator coverage. This is done by monitoring the
queue directory, where AFL++ is storing coverage-increasing
test cases, and extracting the Verilator coverage of new test
cases. The reason for this choice is that Verilator coverage is
hardware-oriented, can be back-annotated to Verilog (which
is beneficial for traceability and debugging; see also Sec-
tion IV-C) and allows a fair comparison to CRV. We use the
strongest coverage metric from Verilator, i.e. basic block line
coverage (utilizing unique counters at each code flow change
point, which are the branches of IF and CASE statements).

2) Assertion Handling: Based on SPINALFUZZ’s crash
insertion described in Section IV-A4 and AFL++’s crash
monitoring, AFL++ is able to find violations of user-defined
SpinalHDL assertions. If AFL++ is reaching such a violated
assertion, the execution will crash and then be recorded. Note
that AFL++ will only record unique crashes and will store the
triggering test cases in the crashes directory. AFL++ defines
crashes as unique if new state transitions are reached with
the current execution, which no other recorded crash has
reached before. The unique crash feature of AFL++ is a clear
advantage over CRV because the amount of failing test cases
is greatly reduced to only representative test cases originating
from different execution behavior.

Finally, CGF ends if the chosen end condition is satisfied:
timeout, full coverage or assertion violation.

C. Post-processing
To get the most out of fuzzing, two reports are generated

(Step ➌ in Fig. 1). First, Verilator coverage is extracted for



TABLE I: Evaluation results for SPINALFUZZ (SF) and CRV

Benchmark Design spec. Cov. [%] Sat. [s]
In Cells FFs CRV SF CRV SF

GCD 33 392 34 97 97 50 2
CNN-Buffer 4 164 24 63 96 1 5
Alu 69 685 0 80 100 1 5
I2cSlave 41 275 53 77 95 161 20
Apb3Timer 45 340 62 75 94 1 26
SpiXdrMaster 77 491 38 89 99 1 27
Apb3SpiSlave 46 1,509 583 66 92 1 5
UartCtrl 102 476 69 77 96 1,623 30
Apb3UartCtrl 41 1,344 394 62 94 3,461 673
BmbI2cCtrl 56 682 149 79 93 1,655 3,556

all coverage-increasing test cases of AFL++. Second, for the
crash report Verilator coverage is extracted for all crash-
generated test cases. This improves debugging because the
input resulting in a crash and therefore violating an assertion
is provided for each unique path to the violated assertion.
Furthermore waveforms, annotations and procedure logs are
generated for each test case. This provides more details from
a hardware oriented perspective.

V. EXPERIMENTS

All experiments have been performed on an Ubuntu 21.04
system with an Intel i7-10510U processor and 32 GB memory.

We consider several benchmarks from (a) the official
spinal.lib package as well as (b) custom designs. For
all these benchmarks we focus on the effectiveness of
SPINALFUZZ, i.e. we compare the progress of coverage of
SPINALFUZZ vs. CRV. All designs were run with 1 hour
timeout. The results are summarized in Table I. Benchmarks
from Alu to BmbI2cCtrl are designs from the spinal.lib
package. They include arithmetic designs, communication
blocks, timer and peripherals. The benchmark GCD is the
custom design introduced in Section III-B with a dataWidth
of 16 bit and CNN-Buffer [22] belongs to an AI accelerator.
The first column lists the name of the benchmark. The next
three columns provide some insight in the complexity of the
benchmarks. Here, input bits (In) are summed up and are
followed by the overall cells and Flip-Flops (FFs) generated
with the synth-command of yosys [23]. The last four columns
show the Verilator coverage after one hour in percent and the
time needed until saturation in seconds for both, SPINALFUZZ
and CRV. As can be seen, SPINALFUZZ always reaches
more than 90% coverage. Except one benchmark (GCD)
the coverage achieved by SPINALFUZZ is much higher. For
this exception SPINALFUZZ reaches the same coverage much
faster (2 seconds vs. 50 seconds). Looking at the saturation
time, we can observe that CRV sometimes reaches good
coverage values (approx 70%) also very fast, but then gets
stuck. Here only manual interaction by adjusting weights or
adding additional constraints would improve the coverage. For
instance for the benchmark Alu, a purely combinational design,
SPINALFUZZ even reaches 100% coverage in 5 seconds,
whereas CRV can’t increase its 80% coverage within the time-
out limit. The smallest and largest designs, according to design
specifications columns, are CNN-Buffer and Apb3SpiSlaveCtrl.

For both designs the greatest improvement in coverage in
comparison to CRV is reached with almost 30% difference. In
column Sat. (Saturation) it can be seen that SPINALFUZZ only
needs seconds to reach its highest coverage with the exception
of benchmark BmbI2cCtrl. Even in this case SPINALFUZZ
needed only 364 seconds (not shown in the table) to reach
CRVs final coverage of 79%. For all benchmarks applies that
if SPINALFUZZ reaches its final coverage later than CRV, the
resulting coverage is much higher.

VI. CONCLUSIONS

In this paper we proposed SPINALFUZZ, a fully automated
CGF approach for SpinalHDL designs. In the experiments we
demonstrated the effectiveness of SPINALFUZZ in comparison
to CRV on a wide range of SpinalHDL designs. In all cases
SPINALFUZZ outperformed CRV and reached a coverage
greater than 90%.

For future work we plan to investigate the implications of
unique crashes for debugging as well as the integration of our
approach with programmable waveform analysis [24].
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