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Abstract—Recent methods based on Symbolic Computer Al-
gebra (SCA) have shown great success in formal verification
of multipliers and – more recently – of dividers as well. In
this paper we enhance known approaches by the computation
of satisfiability don’t cares for so-called Extended Atomic Blocks
(EABs) and by Delayed Don’t Care Optimization (DDCO) for
optimizing polynomials during backward rewriting. Using those
novel methods we are able to extend the applicability of SCA-
based methods to further divider architectures which could not
be handled by previous approaches. We successfully apply the
approach to the fully automatic formal verification of large
dividers (with bit widths up to 512).

I. INTRODUCTION

Arithmetic circuits are important components in processor
designs as well as in special-purpose hardware for compu-
tationally intensive applications like signal processing and
cryptography. At the latest since the famous Pentium bug [1]
in 1994, where a subtle design error in the divider had not
been detected by Intel’s design validation (leading to erroneous
Pentium chips brought to the market), it has been widely rec-
ognized that incomplete simulation-based approaches are not
sufficient for verification and formal methods should be used
to verify the correctness of arithmetic circuits. Nowadays the
design of circuits containing arithmetic is not only confined to
the major processor vendors, but is also done by many different
suppliers of special-purpose embedded hardware who cannot
afford to employ large teams of specialized verification engi-
neers being able to provide human-assisted theorem proofs.
Therefore the interest in fully automatic formal verification of
arithmetic circuits is growing more and more.

In particular the verification of multiplier and divider cir-
cuits formed a major problem for a long time. Both BDD-
based methods [2], [3] and SAT-based methods [4], [5] for
multiplier and divider verification do not scale to large bit
widths. Nevertheless, there has been great progress during
the last few years for the automatic formal verification of
gate-level multipliers. Methods based on Symbolic Computer
Algebra (SCA) were able to verify large, structurally com-
plex, and highly optimized multipliers. In this context, finite
field multipliers [6], integer multipliers [7]–[19], and modular
multipliers [20] have been considered. Here the verification
task has been reduced to an ideal membership test for the
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specification polynomial based on so-called backward rewrit-
ing, proceeding from the outputs of the circuit in direction
of the inputs. For integer multipliers, SCA-based methods are
closely related to verification methods based on word-level
decision diagrams like *BMDs [21]–[23], since polynomials
can be seen as “flattened” *BMDs [24]. Moreover, rewriting
based approaches [25], [26] have recently shown to be able to
verify complex multipliers as well as arithmetic modules with
embedded multipliers at the register transfer level.

Research approaches for divider verification were lagging
behind for a long time. Attempts to use Decision Diagrams for
proving the correctness of an SRT divider [27] were confined
to a single stage of the divider (at the gate level) [28]. Methods
based on word-level model checking [29] looked into SRT
division as well, but considered only a special abstract and
clean sequential (i.e., non-combinatorial) divider without gate-
level optimizations. Other approaches like [30], [31], or [32]
looked into fixed division algorithms and used semi-automatic
theorem proving with ACL2, Analytica, or Forte to prove
their correctness. Nevertheless, all those efforts did not lead
to a fully automated verification method suitable for gate-level
dividers.

A side remark in [23] (where actually multiplier verification
with *BMDs was considered) seemed to provide an idea for
a fully automated method to verify integer dividers as well.
Hamaguchi et al. start with a *BMD representing Q×D+R
(where Q is the quotient, D the divisor, and R the remainder
of the division) and use a backward construction to replace
the bits of Q and R step by step by *BMDs representing
the gates of the divider. The goal is to finally obtain a
*BMD representation for the dividend R(0) which proves the
correctness of the divider circuit. Unfortunately, the approach
has not been successful in practice: Experimental results
showed exponential blow-ups of *BMDs during the backward
construction.

Recently, there have been several approaches to fully auto-
matic divider verification that had the goal to catch up with
successful approaches to multiplier verification: Among those
approaches, [33] is mainly confined to division by constants
and cannot handle general dividers due to a memory explosion
problem. [34] works at the gate level, but assumes that
hierarchy information in a restoring divider is present. Using
this hierarchy information it decomposes the proof obligation
R(0) = Q × D + R into separate proof obligations for each
level of the restoring divider. Nevertheless, the approach scales
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only to medium-sized bit widths (up to 21 as shown in the
experimental results of [34]).

The approaches of [24], [35] work on the gate level as
well, but they do not need any hierarchy information which
may have been lost during logic optimization. They prove the
correctness of non-restoring dividers by “backward rewriting”
starting with the “specification polynomial” Q×D+R−R(0)

(similar to [23], with polynomials instead of *BMDs as inter-
nal data structure). Backward rewriting performs substitutions
of gate output variables with the gates’ specification polynomi-
als in reverse topological order. They try to prove dividers to be
correct by finally obtaining the 0-polynomial. The main insight
of [24], [35] is the following: The backward rewriting method
definitely needs “forward information propagation” to be suc-
cessful, otherwise it provably fails due to exponential sizes
of intermediate polynomials. Forward information propagation
relies on the fact that the divider needs to work only within
a range of allowed divider inputs (leading to input constraints
like 0 ≤ R(0) < D · 2n−1). [24] uses SAT-based information
propagation (SBIF) of the input constraint in order to derive
information on equivalent and antivalent signals, whereas [35]
uses BDDs to compute satisfiability don’t cares which result
from the structure of the divider circuit as well as from the
input constraint. (Satisfiability don’t cares [36] at the inputs
of a subcircuit describe value combinations which cannot be
produced at those inputs by allowed assignments to primary
inputs.) The don’t cares are used to minimize the sizes of
polynomials. In that way, exponential blowups in polynomial
sizes which would occur without don’t care optimization could
be effectively avoided. Since polynomials are only changed for
input values which do not occur in the circuit if only inputs
from the allowed range are applied, the verification with don’t
care optimization remains correct. In [35] the computation of
optimized polynomials is reduced to suitable Integer Linear
Programming (ILP) problems.

In this paper we make two contributions to improve [24] and
[35]: First, we modify the computation of don’t cares leading
to increased degrees of flexibility for the optimization of
polynomials. Instead of computing don’t cares at the inputs of
“atomic blocks” like full adders, half adders etc., which were
detected in the gate level netlist, we combine atomic blocks
and surrounding gates into larger fanout-free cones, leading
to so-called Extended Atomic Blocks (EABs), prior to the
don’t care computation. Second, we replace local don’t care
optimization by Delayed Don’t Care Optimization (DDCO).
Whereas local don’t care optimization immediately optimizes
polynomials wrt. a don’t care cube as soon as the polynomial
contains the input variables of the cube, DDCO only adds
don’t care terms to the polynomial, but delays the optimization
until a later time. This method has two advantages: First, by
looking at the polynomial later on, we can decide whether
exploitation of certain don’t cares is needed at all, and
secondly, the later (delayed) optimization will take the effect
of following substitutions into account and thus uses a more
global view for optimization. Using those novel methods we
are able to extend the applicability of SCA-based methods
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h3

2c0 + s0
c0→ 2h2 + 2h3 − 2h2h3 + s0
h3→ 2h2 + 2ch1 − 2ch1h2 + s0
s0→ 2h2 − 2ch1h2 + c + h1
h2→ 2a0b0 − 2a0b0ch1 + c + h1
h1→ a0 + b0 + c

Fig. 1. Circuit with series of substitutions.

from [24], [35] to further optimized non-restoring dividers
and restoring dividers which could not be handled by previous
approaches.

The paper is structured as follows: In Sect. II we provide
background on SCA and divider circuits. We motivate the need
for novel optimizations by analyzing the existing approaches
in Sect. III, and in Sect. IV we present the novel approach.
The approach is evaluated in Sect. V and we conclude with
final remarks in Sect. VI.

II. PRELIMINARIES

A. SCA for Verification

For the presentation of SCA we basically follow [24].
SCA based approaches work with polynomials and reduce the
verification task to an ideal membership test using a Gröbner
basis representation of the ideal. The ideal membership test
is performed using polynomial division. While Gröbner basis
theory is very general and, e.g., can be applied to finite field
multipliers [6] and truncated multipliers [17] as well, for
integer arithmetic it boils down to substitutions of variables for
gate outputs by polynomials over the gate inputs (in reverse
topological order), if we choose an appropriate “term order”
(see [11] or [14], e.g.). Here we restrict ourselves to exactly
this view.

For integer arithmetic we consider polynomials over binary
variables (from a set X = {x1, . . . , xn}) with integer coeffi-
cients, i. e., a polynomial is a sum of terms, a term is a product
of a monomial with an integer, and a monomial is a product
of variables from X . Polynomials represent pseudo-Boolean
functions f : {0, 1}n ↦→ Z.

As a simple example consider the full adder from Fig. 1.
The full adder defines a pseudo-Boolean function fFA :
{0, 1}3 ↦→ Z with fFA(a0, b0, c) = a0 + b0 + c. We can
compute a polynomial representation for fFA by starting with
a weighted sum 2c0 + s0 (called the “output signature” in
[10]) of the output variables. Step by step, we replace the
variables in polynomials by the so–called “gate polynomials”.
This replacement is performed in reverse topological order of
the circuit, see Fig. 1. We start by replacing c0 in 2c0 + s0
by its gate polynomial h2 + h3 − h2h3 (which is derived
from the Boolean function c0 = h2 ∨ h3). Finally, we arrive
at the polynomial a0 + b0 + c (called the “input signature”
in [10]) representing the pseudo-Boolean function defined by
the circuit. During this procedure (which is called backward
rewriting) the polynomials are simplified by reducing powers
vk of variables v with k > 1 to v (since the variables are
binary), by combining terms with identical monomials into
one term, and by omitting terms with leading factor 0. We can
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Algorithm 1 Restoring division.
1: for j = 1 to n do
2: R(j) := R(j−1) − D · 2n−j ;
3: if R(j) < 0 then
4: qn−j := 0; R(j) := R(j) + D · 2n−j ;
5: else
6: qn−j := 1;
7: R := R(n);

also consider a0 + b0 + c = 2c0 + s0 as the “specification” of
the full adder. The circuit implements a full adder iff backward
substitution, now starting with 2c0 + s0 − a0 − b0 − c instead
of 2c0 + s0, reduces the “specification polynomial” to 0 in
the end. (This is the notion usually preferred in SCA-based
verification.)

The correctness of the method relies on the fact that poly-
nomials (with the above mentioned simplifications resp. nor-
malizations) are canonical representations of pseudo-Boolean
functions (up to reordering of the terms). (This is formulated
as Lemma 1 in [35] and proven in [24], e.g..)

B. Divider Circuits

In the following we briefly review textbook know-
ledge on dividers. For more details, see [37], e.g.. We
use ⟨an, . . . , a0⟩ :=

∑︁n
i=0 ai2

i and [an, . . . , a0]2 :=

(
∑︁n−1

i=0 ai2
i) − an2

n for interpretations of bit vectors
(an, . . . , a0) ∈ {0, 1}n+1 as unsigned binary numbers and
two’s complement numbers, respectively. The leading bit an
is called the sign bit. An unsigned integer divider is a circuit
with the following property:

Definition 1. Let (r
(0)
2n−2 . . . r

(0)
0 ) be the dividend with sign

bit r
(0)
2n−2 = 0 and value R(0) := ⟨r(0)2n−2 . . . r

(0)
0 ⟩ =

[r
(0)
2n−2 . . . r

(0)
0 ]2, (dn−1 . . . d0) be the divisor with sign bit

dn−1 = 0 and value D := ⟨dn−1 . . . d0⟩ = [dn−1 . . . d0]2,
and let 0 ≤ R(0) < D · 2n−1. Then (qn−1 . . . q0) with
value Q = ⟨qn−1 . . . q0⟩ is the quotient of the division and
(rn−1 . . . r0) with value R = [rn−1 . . . r0]2 is the remainder
of the division, if R(0) = Q ·D +R (verification condition 1
= “vc1”) and 0 ≤ R < D (verification condition 2 = “vc2”).

Note that we consider here the case that the dividend has
twice as many bits as the divisor (without counting sign bits).
This is similar to multipliers where the number of product
bits is two times the number of bits of one factor. If both the
dividend and the divisor are supposed to have the same lengths,
we just set r(0)2n−2 = . . . = r

(0)
n−1 = 0 and require D > 0. Then

D > 0 immediately implies 0 ≤ R(0) < D · 2n−1.
The simplest algorithm to compute quotient and remainder

is restoring division which is the “school method” to compute
quotient bits and “partial remainders” R(j). Restoring division
is shown in Alg. 1. In each step it subtracts a shifted version
of D. If the result is less than 0, the corresponding quotient
bit is 0 and the shifted version of D is “added back”, i. e.,
“restored”. Otherwise the quotient bit is 1 and the algorithm
proceeds with the next smaller shifted version of D.

Non-restoring division optimizes restoring division by com-
bining two steps of restoring division in case of a negative

Algorithm 2 Non-restoring division.
1: R(1) := R(0) − D · 2n−1;
2: if R(1) < 0 then qn−1 := 0 else qn−1 := 1;
3: for j = 2 to n do
4: if R(j−1) ≥ 0 then
5: R(j) := R(j−1) − D · 2n−j

6: else
7: R(j) := R(j−1) + D · 2n−j ;
8: if R(j) < 0 then qn−j := 0 else qn−j := 1;
9: R := R(n) + (1 − q0) · D;

SUB2n−1

R(0) D · 2n−1

CAS 2n−1

D · 2n−2qn−1
R(1)

R(2) D · 2n−3

R(n−1) D · 20
...

...
...

...
...

qn−2

q1

CAS 2n−1

D

“(1− q0)D”

q0
R(n)

R

Stage 1

Stage 2

Stage n

Stage n+ 1 ADD2n−1

cut 0

cut 1

cut 2

cut n− 1

cut n

cut n+ 1

(∑n−1
i=0 qi

)
·D +R−R(0)

(∑n−1
i=1 qi + 20

)
·D +R(n) −R(0)

(∑n−1
i=2 qi + 21

)
·D +R(n−1) −R(0)

(∑n−1
i=n−1 qi + 2n−2

)
·D +R(2) −R(0)

2n−1 ·D +R(1) −R(0)

0

Fig. 2. Non-restoring divider.

partial remainder: adding the shifted D back and (tentatively)
subtracting the next D shifted by one position less. These two
steps are replaced by just adding D shifted by one position
less (which obviously leads to the same result). More precisely,
non-restoring division works according to Alg. 2.

SRT dividers are most closely related to non-restoring
dividers, with the main differences of computing quotient bits
by look-up tables (based on a constant number of partial
remainder bits) and of using redundant number representa-
tions which allow to use constant-time adders. Other divider
architectures like Newton and Goldschmidt dividers rely on
iterative approximation. In this paper we restrict our attention
to restoring and non-restoring dividers.

For dividers it is near at hand to start backward rewriting not
with polynomials for the binary representations of the output
words (which is basically done for multiplier verification), but
with a polynomial for Q · D + R. For a correct divider one
would expect to obtain a polynomial for R(0) after backward
rewriting. As an alternative one could also start with Q ·D+
R−R(0) and one would expect that for a correct divider the
result after backward rewriting is 0. This would be a proof for
verification condition (vc1). (Then it remains to show that 0 ≤
R < D (vc2) which we postpone until later.) This idea was
already proposed by Hamaguchi in 1995 [23] in the context of
verification using *BMDs [21]. As already mentioned in the
introduction, Hamaguchi et al. observed exponential blow-ups
of *BMDs in the backward construction and thus the approach
did not provide an effective way for verifying large integer
dividers.

However, this basic approach seems to be promising at
first sight. As an example, Fig. 2 shows a high level view
of a circuit for non-restoring division. Stage 1 implements a
subtractor, stages j with j ∈ {2, ..., n} implement conditional
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Fig. 3. Optimized non-restoring divider, n = 4.

adders / subtractors depending on the value of qn−j+1, and
stage n+1 implements an adder. If we start backward rewriting
with the polynomial Q·D+R−R(0) (which is quadratic in n)
and if backward rewriting processes the gates in the circuit in
a way that the stages shown in Fig. 2 are processed one after
the other, then we would expect the following polynomials on
the corresponding cuts (see also Fig. 2):

We would expect (
∑︁n−1

i=1 qi2
i+20) ·D+R(n)−R(0) for the

polynomial at cut n which is obtained after processing stage
n+1, since stage n+1 enforces R = R(n)+(1− q0) ·D. For
j = n to 2 we would (by induction) expect (

∑︁n−1
i=n−j+2 qi2

i+

2n−j+1)·D+R(j−1)−R(0) for the polynomial at cut j−1 after
processing stage j, since stage j enforces R(j) = R(j−1) −
qn−j+1(D · 2n−j)+ (1− qn−j+1)(D · 2n−j) = R(j−1) +(1−
2qn−j+1)(D · 2n−j). Finally, the polynomial at cut 0 after
processing stage 1 using the equation R(1) = R(0)−D · 2n−1

would reduce to 0.
There may be two obvious reasons why backward rewriting

might fail in practice all the same: (1) It could be the case
that backward rewriting does not exactly hit the boundaries
between the stages of the divider. (2) There may be significant
peaks in polynomial sizes in between the mentioned cuts.

[24] and [35] show that there are additional obstacles apart
from those obvious potential problems: In fact, with usual
optimizations in implementations of non-restoring dividers
the polynomials represented at the cuts between stages are
different from this high-level derivation. The reason lies in the
fact that the stages do not really implement signed addition
/ subtraction. In general, signed addition / subtraction of
two (2n − 1)-bit numbers leads to a 2n-bit number. The
leading bit of the result can only be omitted, if “no overflow
occurs”. The fact that no overflow occurs results from the
input constraint 0 ≤ R(0) < D · 2n−1 of the divider and
from the way the results of the different stages are computed

[24]. Usual implementations even go one step further: By
additional arguments using the input constraint and the circuit
functionality it can be shown that it is not only possible
to omit overflow bits of the adder / subtractor stages, but
it is even possible to omit the computation of one further
most significant bit. For a detailed analysis see [35]. These
considerations lead to an optimized implementation shown
in Fig. 3 for n = 4, e.g.. (For simplicity, we present the
circuit before propagation of constants which is done however
in the real implemented circuit.) In summary, it is important
to note that (1) the stages in Fig. 3 cannot be seen as real
adder / subtractor stages as shown in the high-level view from
Fig. 2, (2) backward rewriting leads to polynomials at the cuts
which are different from the ones shown in Fig. 2, and (3)
unfortunately those polynomials have (provably) exponential
sizes.

The conclusion drawn in [35] was that verification of (large)
dividers using backward rewriting is infeasible, if there is
no means to make use of “forward information” obtained by
propagating the input constraint 0 ≤ R(0) < D · 2n−1 in
forward direction through the circuit. This idea indeed made
it possible to verify large non-restoring dividers with bit widths
up to 512 bits.

III. ANALYSIS OF EXISTING APPROACH

In this section we motivate our approach by analyzing
weaknesses of the method from [35]. The algorithm from [35]
starts with a gate level netlist and detects atomic blocks [16]
like full adders and half adders. This results in a circuit with
non-trivial atomic blocks (full adders, half adders etc.) and
trivial atomic blocks (original gates not included in non-trivial
atomic blocks). The method computes a topological order ≺top

on the atomic blocks with heuristics from [15], [16], computes
satisfiability don’t cares [36] at the inputs of the atomic
blocks, and performs backward rewriting starting with the
specification polynomial Q ·D+R−R(0) by replacing atomic
blocks in reverse topological order. During backward rewriting
two optimization methods are used, if they are needed to keep
polynomial sizes small: The first method uses information
on equivalent and antivalent signals (which is derived by
SAT-based information propagation (SBIF) using the input
constraint and the don’t cares at the inputs of atomic blocks),
the second method optimizes polynomials modulo don’t cares
by reducing the problem to Integer Linear Programming (ILP).

A. Insufficient don’t care conditions

Let us start by considering stage n+1 of the non-restoring
divider (see Figs. 2 and 3). Analyzing the method from
[35] applied to optimized n-bit non-restoring dividers, we
can observe that it does not make use of don’t cares at
the inputs of atomic blocks corresponding to stage n + 1
(although there exist some don’t cares), but it makes use of
the (only existing) antivalence of q0 and r

(n)
n−1 which is shown

by SAT taking already proven satisfiability don’t cares into
account (as already described above). If we only consider
the circuit of stage n + 1 (i.e., the circuit below the dashed
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line in Fig. 3), replace r
(n)
n−1 by ¬q0 (i.e. if we make use

of the mentioned antivalence), and start backward rewriting
with (

∑︁n−1
i=0 qi2

i) ·(
∑︁n−1

i=0 di2
i)+(

∑︁n−2
i=0 ri2

i−rn−12
n−1)−

(
∑︁2n−2

i=0 r
(0)
i 2i), then we indeed obtain exactly the polynomial

(
∑︁n−1

i=1 qi2
i + 20) · (

∑︁n−1
i=0 di2

i) + (
∑︁n−2

i=0 r
(n)
i 2i − (1 −

q0)2
n−1−(

∑︁2n−2
i=0 r

(0)
i 2i) which corresponds (with (1−q0) =

r
(n)
n−1) to (

∑︁n−1
i=1 qi2

i+20)·D+R(n)−R(0) as shown in Fig. 2,
cut n. Fig. 4 shows the size of the final polynomial for stage
n + 1 with increasing bit width n, with and without using
the antivalence r

(n)
n−1 = ¬q0. Fig. 4 clearly shows that it is

essential to make use of the mentioned antivalence.
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Fig. 4. Polynomial sizes, stage n+1,
optimized non-restoring divider.
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1, further optimized non-restoring di-
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Now we consider another
version of the non-restoring
divider which is slightly fur-
ther optimized. It is clear
that in a correct divider
the final remainder is non-
negative, i.e, rn−1 = 0.
Therefore there is actually
no need to compute rn−1

and the full adder shown in
gray in Fig. 3 can be omit-
ted. The verification condi-
tion vc1 is then replaced
by R(0) = Q · D +∑︁n−2

i=0 ri2
i. Whereas in the

original circuit making use
of antivalences was essen-
tial for keeping the polyno-
mial sizes small, in stage
n + 1 of the further opti-
mized version there are nei-
ther equivalent nor antivalent signals anymore. The only don’t
cares in the last stage (after constant propagation) are two
value combinations at the inputs of the now leading full adder.
However, making use of those don’t cares does not help in
avoiding an exponential blow up as Fig. 5 shows. Intuitively
it is not really surprising that removing the full adder shown
in gray potentially makes the verification problem harder,
since the partial remainders R,R(n), . . . , R(1) in the high-level
analysis of polynomials at cuts (see Fig. 2) represent signed
numbers, but now R does not introduce a sign bit anymore.

Nevertheless, this raises the question whether the derivation
of don’t care conditions may be improved in a way that don’t
care optimization can avoid exponential blow ups like the one
shown in Fig. 5.

B. Don’t care optimization with backtracking

The method from [35] does not make use of don’t care
optimizations immediately, but stores a backtrack point after
backward rewriting was applied to an atomic block which has
don’t cares at its inputs or has input signals with equivalent /
antivalent signals. Whenever the polynomial grows too much,
the method backtracks to a previously stored backtrack point
and performs an optimization. Alg. 3 shows a simplified

Algorithm 3 Backward rewriting with backtracking.
Input: Specification polynomial SP init , Input constraint IC , Circuit CUV with

atomic blocks a1 ≺top . . . ≺top am in topological order ≺top

Output: 1 iff specification holds for all inputs satisfying IC
1: SPm := SP init ; oldsize := size(SPm); i := m; ST := ∅;
2: (dc(a1), . . . , dc(am)) := Compute DC(CUV , IC );
3: while i > 0 do
4: SPi−1 := Rewrite(SPi, ai);
5: if size(SPi−1) > threshold · oldsize and ST ̸= ∅ then
6: (SP , j) = pop(ST );
7: i := j; SPi−1 := SP ;
8: SPi−1 := Opt DC(SPi−1, dc(ai));
9: else

10: if dc(ai) ̸= ∅ then push(ST , (SPi−1, i)); oldsize := size(SPi−1);
11: i := i − 1;
12: return evaluate(SP0);

overview of the approach.* For ease of exposition we omitted
handling of equivalences / antivalences here.

As shown in [35], the approach works surprisingly well. It
tries to restrict don’t care optimizations (which are illustrated
later on in Example 1, for more details see [35]) to situations
where they are really needed. Only if the size threshold
in line 5 is exceeded, backtracking is used and don’t care
optimization comes into play. A further analysis shows that
the success of the approach in [35] is partly due to the
following reasons: (1) In the non-restoring dividers used as
benchmarks, atomic blocks that have any satisfiability don’t
cares grow only linearly with the bit width. (2) Only a linear
amount of backtrackings is needed. (3) On the other hand, if
backtrackings have to be used, don’t care assignments have
an essential effect in keeping the polynomials small (the size
of the polynomials is quadratic in n just like the specification
polynomial we start with).

Let us now consider a very simple example which does not
have the mentioned characteristics.

Example 1. Consider a circuit which contains (among others)
2n + 1 atomic blocks a0, . . . a2n. Those blocks are the last
atomic blocks in the topological order and a2n ≺top . . . ≺top

a0. The initial polynomial is SP init = 8a+ 4b+ 2c+ i0. a0
has inputs x1, i1, output i0, defines the function i0 = x1∨i1 =
x1+i1−x1i1, and we assume that it has the satisfiability don’t
care (x1, i1) = (0, 0). Correspondingly, for j = 1, . . . , n, aj
defines ij = xj+1ij+1 with assumed satisfiability don’t care
(xj+1, ij+1) = (0, 0), and for j = n + 1, . . . , 2n, aj defines
ij = xj+1 ∨ ij+1 = xj+1 + ij+1 − xj+1ij+1. We compute
size(p) as the number of terms in the polynomial p and assume
threshold = 1.5 in line 5 of Alg. 3. Then Alg. 3 computes the
following series of polynomials

SPm = 8a+ 4b+ 2c+ i0

SPm−1 = 8a+ 4b+ 2c+ x1 + i1 − x1i1

SPm−2 = 8a+ 4b+ 2c+ x1 + x2i2 − x1x2i2

. . .

*SP0 in Alg. 3 does not have to be 0 for correct dividers, it is sufficient
that SP0 evaluates to 0 for all inputs in the allowed input range 0 ≤ R(0) <
D · 2n−1. This can be checked by evaluate(SP0) in polynomial time [35].
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SPm−n−1 = 8a+ 4b+ 2c

+ x1 + x2 . . . xn+1in+1 − x1x2 . . . xn+1in+1

SPm−n−2 = 8a+ 4b+ 2c+ x1 + x2 . . . xn+2

+ x2 . . . xn+1in+2 − x2 . . . xn+2in+2

− x1 . . . xn+2 − x1 . . . xn+1in+2 + x1 . . . xn+2in+2

with sizes 4, 6, . . . , 6, 10. SPm−n−2 is the first polynomial
exceeding the size limit. For each of the n + 1 preceding
atomic blocks there was a satisfiability don’t care at the
inputs, the size limit was not exceeded, and the corresponding
polynomial has been pushed to the backtracking stack ST .
Now backtracking to SPm−n−1 takes place. (Note that it
is easy to see that without backtracking using don’t care
optimization the following n − 1 backwriting steps would
quickly lead to a blowup in the polynomial sizes finally
resulting in a polynomial with size 2n+2 + 2.) SPm−n−1 is
optimized with the don’t care (xn+1, in+1) = (0, 0). Let us
explain the idea of don’t care optimization using this example:
Don’t care optimization adds v ·(1−xn+1) ·(1− in+1) for the
don’t care (xn+1, in+1) = (0, 0) to SPm−n−1 with a fresh
integer variable v. For all valuations (xn+1, in+1) ̸= (0, 0),
v ·(1−xn+1)·(1−in+1) evaluates to 0, thus we may choose an
arbitrary integer value for v without changing the polynomial
“inside the care space”. The choice of v is made such that
the size of SPm−n−1 is minimized. So the task is to choose v
such that the size of 8a + 4b + 2c + x1 + x2 . . . xn+1in+1 −
x1x2 . . . xn+1in+1+ v− vin+1− vxn+1+ vxn+1in+1 is min-
imal. We achieve this by using an ILP solver to get a solution
for v which maximizes the number of terms with coefficients
0 and therefore minimizes the polynomial. It is easy to see
that the best choice is v = 0 in this case. This means that we
arrive at an unchanged polynomial SPm−n−1 and the don’t
care did not help. Then we do the replacement of an+1 again,
detect an exceeded size limit again, backtrack to SPm−n and
so on. Exactly as for SPm−n−1, don’t care assignment does
not help for SPm−n, . . . , SPm−2. The first really interesting
case occurs when backtracking arrives at SPm−1. Adding
v ·(1−x1)·(1−i1) with a fresh variable v to SPm−1 results in
8a+4b+2c+v+(1−v)x1+(1−v)i1+(v−1)x1i1 and choosing
v = 1 leads to the minimal polynomial 8a+4b+2c+1 which
is even independent from i1. Now replacing a1, . . . , a2n does
not change the polynomial anymore and we finally arrive at
SPm−2n−1 = 8a + 4b + 2c + 1 (without further don’t care
assignments).

The example shows that the backtracking method works
in principle, but it comes at huge costs: Backtracking po-
tentially explores all possible combinations of assigning or
not assigning don’t cares for atomic blocks with don’t cares
by storing backtrack points again in line 10 of Alg.3 after
successful as well as unsuccessful don’t care optimizations. In
the example this leads to 2n+1 rewritings for atomic blocks
and 2n+1−1 unsuccessful don’t care optimizations, before we
finally backtrack to SPm−1 where we do the relevant don’t
care optimization.

Our goal is to come up with a don’t care optimization

Algorithm 4 Computation of satisfiability don’t cares.
Input: Input constraint IC , Circuit CUV with EABs ea1 ≺top . . . ≺top eal in

topological order ≺top, dc cand(eaj)∀j ∈ {1, . . . , l}
Output: Satisfiability don’t cares at inputs of EABs resulting from IC
1: I = {j ∈ {1, . . . , l} | dc cand(eaj) ̸= ∅}; iold = 1; χ = IC;
2: dc(ea1) = ∅; ...; dc(eal) = ∅;
3: while I ̸= ∅ do
4: i = min(I); slice = {eaiold

, . . . , eai−1};
5: χ = compute image(χ, slice);
6: for (ε1, . . . , εn) ∈ dc cand(eai) do ▷ x1, . . . , xn: input signals of eai

7: if χ|x1=ε1,...,xn=εn = 0 then dc(eai) = dc(eai)∪{(ε1, . . . , εn)};
8: I = I \ {i}; iold = i;
9: return (dc(ea1), . . . , dc(eal));

method which is robust against situations like the one illus-
trated in Example 1 where we have many blocks with don’t
cares, but only a few of those don’t cares are really useful
for minimizing the sizes of polynomials. As we will show in
Sect. V, we run into such situations when we verify restoring
dividers using the method from [35].

IV. DON’T CARE COMPUTATION AND OPTIMIZATION

A. Don’t care computation for extended atomic blocks

This section is motivated by [8], [11] which combine several
gates and atomic blocks into fanout-free cones, compute
polynomials for the fanout-free cones first and use those
precomputed polynomials for “macro-gates” formed by the
fanout-free cones during backward rewriting. Whereas in [8],
[11] the purpose of forming those fanout-free cones is avoiding
peaks in polynomial sizes during backward rewriting without
don’t care optimization, the motivation here is different: Here
we aim at detecting more and better don’t cares.

First of all, we detect atomic blocks for fixed known
functions like full adders and half adders as already mentioned
in Sect. III. The result is a circuit with non-trivial atomic
blocks and the remaining gates. Now we want to combine
those atomic blocks and remaining gates into “extended atomic
blocks (EABs)” which are fanout-free cones of atomic blocks
and remaining gates. To do so, we compute a directed graph
G = (V,E) where the nodes correspond to the non-trivial
atomic blocks, the remaining gates, and the outputs. There is
an edge from a node v to a node w iff there is an output of the
atomic block / gate corresponding to v which is connected to
an input of the atomic block / gate / output node corresponding
to w. We compute the coarsest partition {P1, . . . , Pl} of V
such that for all sets Pi and all v ∈ Pi with more than one
successor it holds that all successors of v are not in Pi. We
combine all gates / atomic blocks in Pi into an EAB eai.

The computation of satisfiability don’t cares at the inputs
of EABs that result from the input constraint IC (for dividers
according to Def. 1 IC = 0 ≤ R(0) < D · 2n−1) is performed
for EABs as described in [35] for atomic blocks. First of
all, an intensive simulation (taking IC into account) excludes
candidates for satisfiability don’t cares. Value combinations at
inputs of EABs that are seen in the simulation are excluded,
finally resulting in a set dc cand(eaj) for each EAB eaj .
Satisfiability don’t cares at inputs of EABs are then computed
by a series of BDD-based image computations [38] as shown
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in Alg. 4, starting with IC . In the end we have classified all
don’t care candidates to be real don’t cares or not.†

If we apply the method to the optimized divider in Fig. 3,
the EABs below the dashed line are shown by dashed boxes.
The number of satisfiability don’t cares at the inputs of the
dashed boxes (after constant propagation!) are shown at the
right sides of the boxes just above the full adders. For the
first EAB, the number of don’t cares is 9, e.g., whereas for
the atomic block (full adder) included in the EAB the number
is only 2. At first sight, it is not clear that more don’t cares
really help during don’t care based optimization, but we will
show in Sect. V that this is definitely the case and that the
use of extended atomic blocks is essential for a successful
verification of large dividers.

B. Delayed Don’t Care Optimization
In this section we introduce Delayed Don’t Care Opti-

mization (DDCO). DDCO is based on the observation that
don’t care optimization as introduced in [35] is a local
optimization that does not take its global effects into account.
If backtracking goes back to a backtrack point with don’t cares,
then it backtracks to a situation where backward rewriting for
an (extended) atomic block with don’t cares at its inputs has
taken place and the inputs of this block have been brought into
the polynomial. The optimization locally minimizes the size
of the polynomial using those don’t cares immediately and the
results of the optimization do not depend on rewriting steps
which take place in the future. However, it is obvious that the
future sizes of polynomials depend on the future substitutions
during backward rewriting and therefore a local don’t care
optimization may go into the wrong direction. For that reason
we propose a delayed don’t care optimization taking future
steps into account, which are performed after rewriting of the
block for which the don’t cares are defined. Before we will
introduce DDCO, we illustrate the effect by an example.

Example 2. Consider the polynomial

p = x1x4x5x6 + x2x4x5x6 + x3x4x5x6

− x1x2x4x5x6 − x1x3x4x5x6 − x2x3x4x5x6 + x1x2x3x4x5x6

with size 7. Assume that the valuation (x1, x2, x3, x4, x5) =
(0, 0, 0, 1, 1) is a don’t care. By using the don’t care opti-
mization method from [35] which was already illustrated in
Example 1, we arrive at a polynomial

q = p+ vx4x5 − vx1x4x5 − vx2x4x5 − vx3x4x5 + vx1x2x4x5

+ vx1x3x4x5 + vx2x3x4x5 − vx1x2x3x4x5

with a new integer variable v. Since there is no pair of terms
in q with the same monomials, v = 0 leads to the polynomial
with the smallest number of terms. For all v ̸= 0 q has the
size 15 instead of 7. This shows that a local don’t care op-
timization with don’t care (x1, x2, x3, x4, x5) = (0, 0, 0, 1, 1)

†It is easy to see that the don’t care computation from Alg. 4 can be
extended to a verification of vc2 (similar to [35]) just by adding a final step
computing the image χ at the outputs. This way we obtain the image of the
input constraint produced by the whole circuit. Then it has only to be checked
whether χ implies 0 ≤ R < D.

Algorithm 5 Rewriting with DDCO.
Input: Specification polynomial SP init ; Input constraint IC ; Circuit CUV

with EABs ea1 ≺top . . . ≺top eam in topological order ≺top;
EABs eai with input signals x

(i)
1 , . . . , x(i)

ni
; don’t cares dc(eai) =

{(ε(i)1,1, . . . , ε
(i)
1,ni

), . . . , (ε
(i)
li,1

, . . . , ε
(i)
li,ni

)}; “delay” d

Output: 1 iff specification holds for all inputs satisfying IC
1: SPm := SP init ; i := m + 1;
2: while i − 1 > 0 do
3: i := i − 1;
4: SPi−1 := Rewrite(SPi, eai);
5: for j = 1 to li do
6: SPi−1 := SPi−1 + v

(i)
j ·

∏︁
ε
(i)
j,k

=1
x
(i)
k ·

∏︁
ε
(i)
j,k

=0
(1 − x

(i)
k );

7: if i + d > m then continue;
8: SP tmp

i−1 := assign dc(SPi−1, v
(i+d−1)
1 = 0, . . . , v

(i)
li

= 0);

9: dc0 size := size(assign dc(SP tmp
i−1, v

(i+d)
1 = 0, . . . , v

(i+d)
li+d

= 0));
10: if dc0 size ≤ increase(size(SPi+d)) then
11: for j = i − 1 to i + d − 1 do
12: SPj := assign dc(SPj , v

(i+d)
1 = 0, . . . , v

(i+d)
li+d

= 0);

13: else
14: (zi+d

1 , . . . , zi+d
li+d

) := DC opt(SP tmp
i−1);

15: for j = i − 1 to i + d − 1 do
16: SPj := assign dc(SPj , v

(i+d)
1 = zi+d

1 , . . . , v
(i+d)
li+d

= zi+d
li+d

);

17: SP0 := assign dc(SP0, v
(d)
1 = 0, . . . , v

(1)
l1

= 0);
18: return evaluate(SP0);

does not help in this example. Now assume that we perform a
replacement of x6 by x4 · x5 in the polynomial q, resulting in

q′ = vx4x5 + (1− v)x1x4x5 + (1− v)x2x4x5 + (1− v)x3x4x5

+ (v − 1)x1x2x4x5 + (v − 1)x1x3x4x5 + (v − 1)x2x3x4x5

+ (1− v)x1x2x3x4x5

Here it is easy to see that choosing v = 1 reduces q′ to
q′ = x4x5. I.e., performing local don’t care optimization
before rewriting with x6 = x4 ·x5 did not help and leads to a
polynomial with 7 terms after the rewriting step, but don’t care
optimization after the rewriting step reduces the polynomial
to a single term. By generalizing the example from 6 to an
arbitrary number of n variables, we obtain 2n−3 − 1 terms
with don’t care optimization before rewriting and one term
with don’t care optimization after rewriting, which shows that
delayed don’t care optimization can be exponentially better
than local don’t care optimization (even for a delay by one
step only).

Alg. 5 shows an integration of DDCO into backward rewrit-
ing. In contrast to Alg. 3, it does not use backtracking and it
always “delays” don’t care optimization by d EAB rewriting
steps. In the while loop from lines 2 to 16, don’t care terms
with fresh integer variables v

(i)
j are immediately added to the

polynomial SPi−1 for each don’t care of the current EAB eai
(line 6), but those don’t cares may only be used with a delay of
d EAB rewritings, i.e., in the iteration replacing eai only don’t
cares coming from eai+d may be used. Therefore, younger
don’t care variables are temporarily assigned to 0 in line 8,
leading to a polynomial SP tmp

i−1 . Now the size of SPi+d (which
is the polynomial before rewriting with eai+d) is compared to
the size dc0 size of SPi−1 where the don’t care variables
from eai+d are assigned to 0 as well (i.e., they are not used).
If dc0 size did not increase too much compared to the size of
SPi+d (“too much” is specified by a monotonically increasing
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function increase), then the don’t care variables from eai+d

are permanently assigned to 0 (lines 11 and 12) in the current
as well as all previous polynomials containing those variables.
Otherwise, the known ILP based don’t care optimization is
used and its results are inserted into SPi−1 and again also in
all previous polynomials containing the don’t care variables
from eai+d (lines 14 to 16).

V. EXPERIMENTAL RESULTS

Our experiments have been carried out on one core of an
Intel Xeon CPU E5-2643 with 3.3 GHz and 62 GiB of main
memory. The run time of all experiments was limited to 24
CPU hours. All run times in Tables I, II and III are given in
CPU seconds. We used the ILP solver Gurobi [39] for solving
the ILP problems for don’t care optimization of polynomials.
For image computations we used the BDD package CUDD
3.0.0 [40]. For benchmarks and binaries see [41].

In our experiments we consider verification of three dif-
ferent types of divider benchmarks with different bit widths
(Cols. 1 in Tabs. I to III). Tab. I shows results for non-restoring
dividers “non-restoring1” as seen in Fig. 3 (with the gray
full adder included), which were also used in [35]. Table II
contains results for further optimized non-restoring dividers
“non-restoring2” that omit the gray full adder shown in Fig. 3.
Table III gives results for restoring dividers. All three tables
share the same column labels. Note that we did not make
use of any hierarchy information during verification, but only
used the flat gate-level netlist (numbers of gates are shown in
Cols. 2) and employed heuristics for detecting atomic blocks
as well as for finding good substitution orders [15], [16].

We begin with three experiments for comparison where we
check the equivalence of the divider circuits with a “golden
specification”. In those experiments we restrict counterexam-
ples to the allowed range 0 ≤ R(0) < D · 2n−1 of inputs.

In the first experiment we used a SAT-solver (MiniSat 2.2.0
[42]) to solve the corresponding satisfiability problems. The
results from Cols. 3 in Tabs. I, II, and III show that SAT-
solving is hard for non-trivial arithmetic circuits and none
of the benchmarks with bit widths larger than 8 could be
solved in the specified time limit. In the second experiment
we considered the combinational equivalence checking (CEC)
approach of ABC [43], [44]. Since it is based on And-Inverter-
Graph (AIG) rewriting via structural hashing, simulation, and
SAT, the equivalence checking between two designs is reduced
to finding equivalent internal AIG nodes. As for SAT-solving,
ABC cannot verify the dividers with bit widths larger than 8,
see Cols. 4 in Tabs. I, II, and III. In a third experiment we
used a commercial verification tool. As Cols. 5 in Tabs. I, II,
and III show, the commercial tool is able to verify also 16-bit
dividers, for the restoring dividers it even verifies the 32-bit
divider in about 15 CPU hours, but does not finish within the
time limit for larger dividers.

From Col. 6 in Tab. I we can see that the method from [35]
performs very well for the verification of the non-restoring1

dividers. Col. 7 (“#bt”) shows how many backtrack operations
were actually performed. For the non-restoring2 benchmarks

considered in Tab. II the method exceeds the available memory
for 16 bits and larger, for the restoring ones from Tab. III even
already for 8 bits. As already shown by our analysis from
Sect. III (see Fig. 5), equivalence/antivalence computation
and don’t care optimizations on atomic blocks as used in
[35] are not strong enough to avoid exponential blowups
of polynomials for the non-restoring2 dividers. For restoring
dividers the situation is similar.

In the next experiment we evaluate our new approach of us-
ing EABs for don’t care computation instead of atomic blocks
as used in [35] (at first without DDCO). For non-restoring1

dividers (where the method from [35] already performed very
well) this approach is somewhat slower than the original
method, see Cols. 6 and 8 of Tab. I. The reason for this is that
using EABs instead of atomic blocks as in [35] leads to more
blocks where don’t cares are applicable whereas the number
of don’t care optimizations which are really necessary stays
the same. This can be seen in Cols. 7 and 9 of Tab. I which
compare the number of performed backtracks. The version
with EABs performs additional backtracks to backtrack points
where optimization does not help and it has to store a larger
amount of backtrack points. This even leads to running out of
available memory for the 512-bit instance of non-restoring1.
But on the other hand already the usage of EABs enables
to verify the non-restoring2 dividers from Table II up to
256 bits in about 2 hours. Since don’t care optimizations
on atomic blocks as used in [35] are not strong enough to
avoid exponential blowups for the non-restoring2 dividers (as
already mentioned above), using EABs is inevitable. However,
the approach is not able to verify restoring dividers with
bit widths larger than 64, see Col. 8 in Table III, due to
increasing run times and memory consumption. This can be
explained by the larger number of EABs with non-empty
don’t care sets for restoring dividers compared to non-restoring
dividers. These numbers are given in Cols. 10 (“#EABs with
DCs”) of Tabs. I and II for the non-restoring dividers and in
Col. 10 of Tab. III for restoring dividers. The numbers grow
only linearly for non-restoring dividers, but quadratically for
restoring dividers. More EABs with non-empty don’t care sets
lead to an increased memory consumption by storing more
backtrack points and to increased run times consumed by
extensive backtracking. The effect occurring here has already
been illustrated in Example 1 of Sect. III-B where we have
to perform an exponential amount of unsuccessful backtracks
before finally arriving at the relevant don’t care optimization.
For the 64-bit non-restoring2 divider, e.g., the approach needs
less than 50 seconds with 205 backtracks (Cols. 8, 9 of Tab. II)
whereas the corresponding restoring divider only finishes in
about 15 minutes with 3047 backtracks (Cols. 8, 9 of Tab. III).

Cols. 12 of Tabs. I, II, and III show that those difficulties can
be overcome by using our novel DDCO method. It turned out
that already the simplest possible parameter choice of d = 1
and increase(size) = size+1 in Alg. 5 is successful. We were
even able to verify the 256-bit restoring divider in less than 9.5
CPU hours and both 512-bit instances of non-restoring1 and
non-restoring2 could be verified in about 7.5 hours. Comparing
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TABLE I
VERIFYING DIVIDERS NON-RESTORING1 FROM [35], TIMES IN CPU SECONDS.

Our method = [35]+EABs+DDCO
n #Gates SAT ABC Com. [35] [35]+EABs #EABs #DC peak

time time time time #bt time #bt with DCs opt. time poly.

4 100 0.22 0.01 1.23 0.15 7 0.44 12 12 5 0.23 128
8 404 68.58 17.65 1.33 0.39 11 1.21 37 28 9 0.94 199

16 1,588 TO TO 165.87 1.59 19 3.26 83 60 17 1.87 407
32 6,260 TO TO TO 5.06 35 12.10 166 124 33 6.78 1,207
64 24,820 TO TO TO 21.88 67 96.15 365 252 65 28.24 4,343

128 98,804 TO TO TO 114.73 131 1,434.11 909 508 129 153.71 16,759
256 394,228 TO TO TO 825.11 259 13,656.97 2,077 1,020 257 1,985.05 66,167
512 1,574,900 TO TO TO 9,183.28 515 MO - 2,044 513 27,370.60 263,287

TABLE II
VERIFYING DIVIDERS NON-RESTORING2 , TIMES IN CPU SECONDS.

Our method = [35]+EABs+DDCO
n #Gates SAT ABC Com. [35] [35]+EABs #EABs #DC peak

time time time time #bt time #bt with DCs opt. time poly.

4 96 0.23 0.01 1.21 0.17 8 0.26 17 11 5 0.23 61
8 400 31.83 16.78 1.86 2,486.89 31 0.99 21 27 9 0.95 117

16 1,584 TO TO 108.23 MO - 2.68 51 59 17 2.17 325
32 6,256 TO TO TO MO - 9.36 102 123 33 7.25 1,125
64 24,816 TO TO TO MO - 49.41 205 251 65 26.87 4,261

128 98,800 TO TO TO MO - 340.85 397 507 129 149.75 16,677
256 394,224 TO TO TO MO - 7,341.86 1,053 1,019 257 1,691.72 66,085
512 1,574,896 TO TO TO MO - MO - 2,043 513 27,351.10 263,205

TABLE III
VERIFYING RESTORING DIVIDERS, TIMES IN CPU SECONDS.

Our method = [35]+EABs+DDCO
n #Gates SAT ABC Com. [35] [35]+EABs #EABs #DC peak

time time time time #bt time #bt with DCs opt. time poly.

4 140 0.27 0.01 1.21 2.59 17 0.47 35 16 8 0.38 61
8 700 14.88 14.27 1.49 MO - 1.77 45 64 16 1.42 117

16 3,068 TO TO 16.39 MO - 8.41 171 256 32 6.63 325
32 12,796 TO TO 53,277.73 MO - 65.99 727 1,024 64 29.02 1,125
64 52,220 TO TO TO MO - 885.71 3,047 4,096 128 193.40 4,261

128 210,940 TO TO TO MO - MO - 16,384 256 2,244.24 16,677
256 847,868 TO TO TO MO - MO - 65,536 512 33,593.30 66,085
512 3,399,676 TO TO TO MO - MO - 262,144 - TO -

the numbers of EABs with non-empty don’t care sets (Col. 10,
“#EABs with DCs”) with the actual numbers of don’t care
optimizations performed (Col. 11, “#DC opt.”) in Tab. III,
we observe that in particular for restoring dividers DDCO
performs don’t care optimizations only for a small fraction
of the EABs with non-empty don’t care sets. The effect is
visible especially for larger instances. For the 256-bit divider
this percentage is less than 1%, e.g..

Finally, Cols. 13 give the peak polynomial sizes during
backward rewriting, counted in number of monomials. It can
be observed that these peak sizes grow quadratically with the
bit width. This shows that our methods are really successful
in keeping the polynomial sizes small, since already the
specification polynomial is quadratic in n.

In summary, the presented results show that our new method
is able to successfully verify not only the divider benchmarks
from [35], but also new divider architectures for which the
previous approach fails.

VI. CONCLUSIONS AND FUTURE WORK

We analyzed weaknesses of previous approaches that en-
hanced backward rewriting in a SCA approach with forward
information propagation and we presented two major contribu-

tions to overcome those weaknesses. The first contribution is
the usage of Extended Atomic Blocks to enable stronger don’t
care computations. The second one is the new method of De-
layed Don’t Care Optimization which has two benefits: First,
it performs don’t care optimizations in a more global rewriting
context instead of seeking for only local optimizations of
polynomials, and second it is able to effectively minimize the
number of don’t care optimizations compared to considering
all possible combinations of using / not using don’t cares of
EABs which can potentially occur in a backtracking approach.
We showed that our new method is able to verify large divider
designs as well as different divider architectures. For the
future, we believe that the general approach of combining
backward rewriting with forward information propagation will
be a key concept to verify further divider architectures as well
as other arithmetic circuits at the gate level.
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