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Abstract—In this work, we present an exploration platform for
microcoded RISC-V cores leveraging the One Instruction Set Com-
puter (OISC) principle. Following the industry-proven virtual prototyping
approach, we have realized our exploration platform by implementing an
extensible and configurable Instruction Set Simulator (ISS). The developed
ORISCV-ISS combines the advanced ecosystem of RISC-V with the
ultimate minimalism of OISCs. ORISCV-ISS serves as development
platform for both, hardware architecture and microcode procedures, and
provides the basis for early design space exploration.

Using ORISCV-ISS, we developed SUBLEQ microcode that is fully
RISC-V compliant and ready to be run on real hardware. We evaluate
how multiple hardware configurations and OISC extensions affect the
performance, providing key information to balance between area savings
and system performance.

I. INTRODUCTION

The idea to reduce the number of instructions of a Reduced
Instruction Set Computer (RISC) to the minimum, i.e. to a single
instruction, led to the ultimate RISC computer or One Instruction Set
Computer (OISC) [1], [2]. The careful selection of the instruction
makes an OISC Turing-complete, i.e. it can solve any computing
problem. Depending on the selected instruction, three OISC types
can be distinguished:

1) Arithmetic-based architectures: This type uses an arithmetic
operation and a conditional jump. A well-known example is to
subtract and branch unless positive, abbreviated as SUBLEQ [3].

2) Bit-manipulating architectures: These machines perform bit op-
erations, like bit-flipping or copying, and pass the control flow
either conditionally or unconditionally. Due to their extreme
minimalism they are the least practical relevant OISC type [4].

3) Transport triggered architectures: While the only available
instruction is MOVE, arithmetic, control flow, or other operations
are available by writing to memory mapped registers; see
e.g. [5], [6].

The strengths of OISC machines lie in their extremely small
area footprint and their high flexibility wrt. very specific use cases.
Thus, OISC machines have been considered in a wide variety of
applications, e.g. fault detection [7], [8], cryptography [9], stream
processing [10], carbon nanotube computer [11], and (advanced)
micro-controllers [12], [6]. However, programming directly in the
OISC languages is extremely complicated due to the limited features
resulting in exceptionally long programs that are hard to debug and
maintain. Further, most of these architectures require customized
software tooling, in particular from the compiler side. This is due to
the fact that typically each OISC machine uses a custom Instruction
Set Architecture (ISA), thus hindering the emergence of a common
OISC ecosystem. Yet, the availability of a mature and widely used
hardware and software ecosystem is one of the deciding factors for
the success of most technologies.

In modern industry-proven design flows Virtual Prototypes (VPs)
are created to enable the parallel development of hardware and
software in combination with design space exploration [13], [14],

[15], [16]. A VP is essentially an executable abstract model of the
entire hardware platform, and from the software perspective a VP
mimics the real hardware. For enabling the execution of programs
by the VP, an Instruction Set Simulator (ISS) has to be created for
the processor. We follow this approach and take advantage of the ISS
principle, and by this significantly enhance the design flow of OISCs.

Contribution: In this paper, we present ORISCV-ISS, an explo-
ration platform for microcoded RISC-V cores leveraging the OISC
principle. We have chosen RISC-V since it is an open and royalty-
free ISA [17]. In recent years, RISC-V gained a lot of attraction
in academia and industry and started to become a game changer for
embedded systems. Our developed ORISCV-ISS1 allows to combine
the advanced ecosystem of RISC-V with the ultimate minimalism of
OISCs. Through this combination, we mitigate the common OISC
drawbacks and investigate a new approach to implementing the
RISC-V ISA.

ORISCV-ISS serves as development platform for both, hardware
architecture and microcode procedures, and provides the basis for
early design space exploration. This is demonstrated by utilizing
the SUBLEQ OISC architecture to serve as the microcode basis:
From the software side ORISCV-ISS accepts RISC-V code, i.e. it
behaves like an RV32I compliant core2, however ORISCV-ISS
decodes each RISC-V instruction and selects the defined SUBLEQ
microcode procedure to be executed on the OISC execution unit. To
enable design space exploration we have integrated a timing model
into ORISCV-ISS. Hence, we can evaluate the effect of various
memory configurations (which define the location of the different
registers, such as RISC-V registers, OISC registers, and functional
registers) on the performance. At the same time, ORISCV-ISS
enables the parallel development and exploration of microcode pro-
cedures wrt. alternatives in the hardware support of the chosen OISC
instruction. Altogether, ORISCV-ISS provides key information to
balance between area savings and system performance in an early
design stage while leveraging the benefits of the RISC-V ecosystem.

This paper is structured as follows: Section II discusses related
work. Thereafter, the preliminaries are provided in Section III.
Section IV introduces the architecture of the proposed ORISCV-ISS,
whereas Section V presents the microcode layer and considers the
RISC-V compliance. In Section VI, we present the evaluation of
ORISCV-ISS for a large set of benchmarks and configurations.
Finally, the paper is concluded in Section VII.

II. RELATED WORK

We are not aware of any work considering the OISC principle and
the RISC-V ISA. However, there are two related approaches, which
we discuss in the following.

1ORISCV-ISS is available open-source on GitHub: https://github.com/
ics-jku/riscv-subleq-iss.

2ORISCV-ISS passes all offical RISC-V compliance tests.

https://github.com/ics-jku/riscv-subleq-iss
https://github.com/ics-jku/riscv-subleq-iss


Emulating instructions from another ISA was first proposed in [8],
where the authors complemented a MIPS processor with a tiny OISC
coprocessor to detect and mitigate hardware faults. To “activate” the
coprocessor, the authors extended the MIPS ISA with a SUBLEQ
instruction and corresponding utility functions. This enabled them
to instrument MIPS binaries with SUBLEQ instructions emulating
subsequent MIPS instructions and react in case of a detected fault.
In comparison to our proposed ORISCV-ISS architecture, the goal
of [8] is fault detection, and in addition a modified compiler toolchain
is required, thus dramatically increasing the entry barrier.

In [18], the authors also complement a MIPS processor with an
OISC coprocessor but with the goal of reducing the size of the main
processor by shifting area intensive instructions to the OISC core.
While the authors utilize a similar “microcode” architecture, they
provide a hardware platform generated with High Level Synthesis
(HLS). ORISCV-ISS is positioned much earlier in the design process
focusing on guiding the development of concrete hardware implemen-
tations by providing early insight through execution metrics.

III. PRELIMINARIES

A. OISCs

In this section, we briefly review the OISC principle. For further
information on OISC architectures we refer the reader to [3], [4].
OISCs are the ultimate form of RISC computers relying on only
one single instruction for all computations. Of all OISC instructions,
SUBLEQ has found the widest adoption due to its relative efficiency
and simplicity in programming. We also use SUBLEQ as a basis for
ORISCV-ISS and therefore introduce it in more detail now.

The SUBLEQ instruction is a three-operand instruction, performing
a combined subtraction and branching operation. The semantic of
SUBLEQ A B C is as follows:

r ← reg[B]− reg[A]
reg[B] ← r

pc ←

{
pc+ C, if r ≤ 0

pc+ 1, otherwise

First, the result r is calculated by subtracting the register value in A
from the register value in B. The result is written back in register B
and a jump is performed depending on the value of r: If r is smaller
or equal to 0, C is added to the OISC program counter, else the OISC
program counter is incremented by 1.

In the following example we demonstrate how the SUBLEQ in-
struction can be used to implement the addition operation. Please note
that there is no opcode for the SUBLEQ instruction in the following
example since it is the only available instruction and therefore the
opcode is redundant. Thus, the instruction is represented by the
arguments A, B and C only.

Example 1. Even though the SUBLEQ instruction only provides a
way to subtract one number from another we can easily perform
an addition by (i) negating the 1st operand and (ii) subtracting
the resulting value from the 2nd operand. In Listing 1, we want to
calculate SRC1 + SRC2. For this, we first negate SRC1 in Line 1
by subtracting it from register TMP0, which we assume is 0. Also,
we set the branching target to 1 such that no matter the result,
the next executed instruction will be the following one. Then, we
subtract the negated value in TMP0 from SRC2, thus calculating
SRC2 - (-SRC1) in Line 2. Finally, in Line 3 we reset TMP0 by
calculating TMP0 - TMP0 which will always result in 0.

1 SRC1 TMP0 1 # TMP0 = -SRC1
2 TMP0 SRC2 1 # SRC2 = SRC2 - (-SRC1)
3 TMP0 TMP0 1 # TMP0 = 0

Listing 1: Integer addition

Fig. 1: Architecture of the ORISCV-ISS

B. RISC-V

The RISC-V ISA emerged from UC Berkeley and the ISA standard
is maintained by the non-profit RISC-V foundation. The RISC-V
ISA consists of a mandatory base integer instruction set and various
optional extensions. In this work, we consider the configuration with
32 bit registers which is denoted as RV32I. Each instruction has at
most two source registers RS1 and RS2, and one destination register
RD. For example the shift left logical sll t0, t1, t2 which
takes the content of t1, shifts it by the content of t2 and stores this
result into t0. Another example is the add immediate addi t0,
t1, i instruction which performs the addition of the source registers
t1 and the constant i and stores the result in t0. A comprehensive
description of the RISC-V ISA is available in [17].

IV. ORISCV-ISS ARCHITECTURE

In this section, we introduce our proposed ORISCV-ISS. First, we
give an overview about the ORISCV-ISS and discuss the architecture
(Section IV-A). Then, in the following sections, we detail the main
components.

A. ORISCV-ISS Overview and Architecture

ORISCV-ISS has been implemented in approximately 1, 000 lines
of plain C++ code. The current microcode implementation(s) support
RV32I, although the ISS itself features all requirements to support
additional RISC-V extensions. An overview of the architecture of
ORISCV-ISS is shown in Figure 1. The ISS core has been structured
into four main components: (1) the main memory, (2) the RISC-V
interface, (3) the OISC execution unit, and (4) the timing model.
In Figure 1 and the rest of this work all components (or data flows)
related to RISC-V are colored in blue, and all components (or data
flows) related to the OISC microcode are colored in red. In the
following sections, we describe all components in more detail.

B. RISC-V Interface

To the user, ORISCV-ISS is a RISC-V compliant ISS, completely
hiding the microcode layer. Internally, the RISC-V interface (center
of Figure 1 with blue background) handles loading RISC-V binaries,
and fetching plus decoding RISC-V instructions. Before the ISS starts
executing a RISC-V binary, it is loaded into the main memory using
the ELF loader (see blue dotted line). Then, the ELF loader sets the
initial RISC-V program counter and starts decoding the first RISC-V



instruction. After the RISC-V interface has decoded an RISC-V
instruction, it sets up the OISC execution unit by first putting register
values and immediate values of the RISC-V instruction at hand into
the OISC registers. It then looks up the address of the microcode
implementation for the current RISC-V instruction and hands over
the execution to the OISC unit. After the OISC unit finishes its
computation, the result, if one is produced, is loaded from the OISC
registers and stored back at the RISC-V destination register. Then,
the next RISC-V instruction is processed.

C. OISC Execution Unit

The OISC execution unit (right side in Figure 1) implements the
execution loop of the OISC microcode3. During execution, microcode
instructions are fetched from a very small microcode ROM (less
than 1 KB), executed, and then their results are written back to
the OISC registers. Moreover, microcode instructions can perform
additional operations (e.g. bit-operations) by writing to memory-
mapped functional registers. Using these registers developers can
integrate new operations and evaluate their performance impact. By
this, ORISCV-ISS allows a hybrid OISC design space exploration
of a mixture of arithmetic-based and transport triggered OISC archi-
tectures.

D. Memory

Often, OISC architectures are designed without dedicated hardware
registers, i.e. all registers are placed in the system’s main memory.
While this greatly reduces the system’s complexity and area require-
ments, it also has a high performance cost, since accessing memories
is highly sequential and slow compared to dedicated registers. The
ORISCV-ISS reflects this common feature of OISC architectures by
mapping all RISC-V and OISC registers into the main memory4.
However, ORISCV-ISS allows to easily model access times on
the registers via a timing model. By this developers can estimate
the impact of the system architecture on the run time without
modification of the microcode. We will use this feature intensively
in the experiments in Section VI.

E. Timing Model

To enable design space exploration of different architectures
(e.g. dedicated registers vs. registers in memory) every access to the
memory (except from the ELF loader since it runs before simulation
time) is routed through the timing model. In Figure 1, the timing
model is located between the memory and the RISC-V interface.
In the timing model developers can specify the time required to
access different registers or memory regions. The timing model
adds a delay to the simulation for every read or write operation
on the main memory and can be customized by the user. This
way, even though all registers (RISC-V and OISC) are contained
in the main memory, the timing model enables the evaluation of
execution metrics when running RISC-V software. For example,
the added delay can be significantly reduced for reads or writes to
the OISC registers if they are implemented in dedicated registers.
Naturally, these dedicated registers incur significant area costs when
implemented in hardware. To summarize, the timing model enables
early design space exploration thus helping developers deciding on
the hardware architecture.

In the next section, the microcode layer of ORISCV-ISS is
introduced and the RISC-V compliance is shown.

3As already mentioned we use SUBLEQ microcode instructions, but
ORISCV-ISS can easily be extended to other OISC instructions.

4Except the OISC program counter.

TABLE I: 16 OISC registers visible to microcode

Operands Temporary Constants Functional

SRC1 TMP0 ONE FUNC0
SRC2 TMP1 TWO FUNC1
IMM TMP2 WORD

TMP3 INC
TMP4 NEXT
TMP5

V. ORISCV-ISS MICROCODE LAYER AND RISC-V
COMPLIANCE

In this section, we introduce the microcode layer of ORISCV-ISS.
This includes in particular the registers visible to the microcode as
well as the microcode instruction format (Section V-A). Next, we
show a concrete microcode example for an RISC-V instruction (Sec-
tion V-B). Finally, we show the RISC-V compliance of ORISCV-ISS
(Section V-C).

A. Registers and Microcode Instruction Format

Since compactness is a major goal during the design of microcode,
we adapt the instruction format of SUBLEQ A B C: In comparison
to other OISC architectures, the operands A and B do not have to
address the full main memory, but only a limited number of registers.
Since in other works applications are directly compiled to OISC
instructions they must be able to address the complete memory. In
contrast in this work, only a few registers are sufficient to implement
the RISC-V instructions. Limiting the A and B operands of the
SUBLEQ instruction to a few registers only enables us to reduce
the instruction length, thus saving a precious amount of microcode
memory. Table I lists the registers available to the microcode.

The registers can be grouped into four categories: (1) operands for
passing the RISC-V operands, (2) temporary registers, (3) constants
that store frequently needed values, such as −1 (in register INC)
to increment by one, or −4 (in register NEXT) to increment the
RISC-V program counter, and (4) functional registers for additional
hardware support of specific operations. Usually, the SUBLEQ A B
C instruction sets the OISC program counter to the value of operand
C, if the resulting value r of the SUBLEQ computation is smaller or
equal to 0. This allows to perform long-range jumps, which is crucial
for programming applications directly in the OISC language. In the
proposed microcode however, only local jumps of a few instructions
are needed enabling us to change the global jump target to a pc-
relative jump. This again allows to reduce the instruction length
saving a lot of space. We provide a concrete example demonstrating
the considerations.

Example 2. For this example we assume a main memory of 16 kB .
Fully addressing this memory requires 14 bits, therefore one instruc-
tion has a length of 3 ∗ 14 = 42 bits.5 With the above introduced
enhancements and the microcode registers of Table I, we only need
4 bits to address every register. Additionally, we assume that no
microcode jump is more than a generous 128 instructions long,
requiring 8 additional bits for the signed jump offset operand. In
total, this results in a 4+4+8 = 16 bit long microcode instruction,
thus reducing the length by 60%.

B. SUBLEQ Microcode implementing RV32I

For the implementation of the RV32I instructions as SUBLEQ
microcode procedures, we required no additional hardware support.

5We also assume, that the program resides in the main memory as in most
OISC implementations.



In the following, we show exemplary microcode procedures for
the RISC-V immediate addition addi and shift left logical sll,
respectively.

Example 3. Consider Listing 1. Before the microcode procedure
realizing the RISC-V instruction addi t0, t1, 22 is started6,
the RISC-V interface copies the required operands from RISC-V
register t1 and the immediate value 22 into the OISC registers
SRC2 and IMM, respectively. Then, in Line 1 the 22 in IMM is
subtracted from OISC register TMP0 and the result is stored back
in TMP0. Since TMP0 is guaranteed to contain a zero at the start of
the microcode procedure, OISC register TMP0 now holds the value
-22. Next, TMP0 is subtracted from SRC2 which finally performs
the addition via a doubled negation. At the end of the procedure the
temporary register TMP0 is cleared (Line 3), and the RISC-V program
counter is incremented (Line 4). Finally, the RISC-V interface reads
the result from SRC2 and copies it into the destination register t0.

addi t0, t1, 22
# RISC-V Interface: reg[SRC2] = reg[t1]
# RISC-V Interface: reg[IMM] = 22

1 IMM TMP0 1 # TMP0 = -22
2 TMP0 SRC2 1 # SRC2 = SRC2 - (-22)
3 TMP0 TMP0 1 # TMP0 = 0
4 NEXT PC END # RV-PC = RV-PC + 4

# RISC-V Interface: reg[t0] = reg[SRC2]

Listing 2: Microcode procedure for RISC-V addi
Example 4. Typical SUBLEQ shift operations make use of the fact
that a single left shift of x is equal to x + x and simply repeating
this operation depending on the shift amount. Listing 3 contains the
microcode procedure that implements the sll RISC-V instruction.
Before the execution of a sll instruction, the RISC-V interface
places the shift amount in register SRC1 and the value to be shifted
in SRC2. First, in Line 1 the shift amount is negated and stored
into register TMP0. Then, the shift loop body is entered in which a
left shift of one bit is performed by adding the current shift value
in SRC2 to itself in Line 2-3. At the end of the shift loop body
(Line 4), the temporary register TMP1, which stored the negated shift
value, is cleared. In Line 5, we increment the negated shift amount in
register TMP0 and jump back to the beginning of the shift loop body
if the result is smaller or equal to 0. Note that in SUBLEQ microcode
loops, counters are typically counting from negative to positive since
this can easily be implemented using the SUBLEQ instruction. If the
loop is left, the used temporary registers are cleared in Line 6-7 and
the RISC-V program counter is incremented in Line 8. Finally, the
RISC-V interface reads the result of the shift operation from SRC2
and writes it into the destination register t1.

sll t0, t1, t2 RISC-V shift left logical
# RISC-V Interface: reg[SRC1] = reg[t2]
# RISC-V Interface: reg[SRC2] = reg[t1]

1 SRC1 TMP0 2 # TMP0 = -SRC1
2 SRC2 TMP1 1 # TMP1 = -SRC2
3 TMP1 SRC2 1 # SRC2 = SRC2 - (-TMP1)
4 TMP1 TMP1 1 # TMP1 = 0
5 INC TMP0 -3 # TMP0 = TMP0 + 1
6 TMP0 TMP0 1 # TMP0 = 0
7 TMP1 TMP1 1 # TMP1 = 0
8 NEXT PC END # RV-PC = RV-PC + 4

# RISC-V Interface: reg[t0] = reg[SRC2]

Listing 3: Microcode procedure for RISC-V sll

6We use a concrete immediate value of 22 in the example for ease of
understanding.

In the next section we show the RISC-V compliance of the
developed microcode.

C. RISC-V Compliance of Microcode

The RISC-V Architectural Tests7 from the RISC-V foundation
provide a standardized testing infrastructure for checking that a
RISC-V implementation (ISS or hardware) meets the RISC-V ISA
standard [19]. The architectural test-suite is split up in multiple
tests for each RISC-V configuration. To check that ORISCV-ISS
correctly implements the RV32I configuration, we created a new
target architecture for our ISS and compiled the RV32I test-suite.
Overall, the RV32I base instruction set contains 37 unprivileged
instructions. Our microcode implementation passes the complete
RV32I architectural tests for each of the 37 instructions. In sum,
the architectural test-suite consists of 12, 603 individual test cases.

D. SUBLEQ Correctness and Fixed Word Lengths

During the development of ORISCV-ISS as well as the OISC
microcode procedures for each RISC-V instruction we also looked
into the available OISC literature. While the idea of mapping a certain
operation to SUBLEQ microcode is pretty simple, corner cases in
particular wrt. to overflows can be problematic.

1 SRC1 TMP0 2 # 0 - (-4) = -4
2 TMP1 TMP1 END # correct
3 TMP1 TMP1 -5 # wrong

Listing 4: Overflow error leading to wrong branch taken

In the following we briefly discuss this challenge which, to the
best of our knowledge, is not described in the OISC literature. For
example, consider the SUBLEQ program in Listing 4 and assume
that all SUBLEQ instructions operate on 3-bit values using two’s
complement: SRC1 holds the 3-bit value −4 and TMP0 holds the
3-bit value 0. In 3-bit two’s complement, −4 and 3 are the smallest
and largest possible values, respectively. Therefore, Line 1 leads to an
erroneous branch since 0− (−4) = 4, which cannot be represented
using 3 bit only, and thus the branch should not be taken. However,
in 3-bit signed arithmetic using two’s complements 0− (−4) = −4
which is <= 0 and thus the branch in Line 1 two instructions ahead
is taken.

We solve this problem in ORISCV-ISS by computing the results
using “enough” bits. Since the ISS is at the VP level, we cast the 32-
bit values before the subtraction to 64-bit, perform the comparison on
this 64-bit result and then cast the result back to 32-bit before storing
the result in a register. Therefore, our developed microcode shows
the correct behavior. In a hardware implementation (using VHDL or
Verilog) it is important that the OISC instruction can compute exact
results in a mathematical sense.

VI. EVALUATION

The performance of a processor depends not only on the raw num-
ber of instructions it can execute in a given time, but also to a large
extend on other components such as the memory layout or the ISA.
Since OISC architectures primarily target low-performance embedded
devices, balancing between performance and chip area is of great
importance. In this section, we demonstrate how ORISCV-ISS helps
to find this balance.

We start from an ISS configuration in which only the SUBLEQ
instruction is available and all registers are mapped into the main
memory. This represents our base case for maximum area efficiency

7formerly known as RISC-V Compliance Tests



Fig. 2: Memory configs for RISC-V and OISC registers

from which we explore possible improvements and their impact
on the system performance (Section VI-A). To achieve this goal
we tune and explore two design characteristics: (1) the memory
configuration, and (2) extensions to the OISC ISA. First, we shift the
memory mapped registers towards dedicated registers for improved
access times (Section VI-B). Then, we analyze the effect of an
extended SUBLEQ architecture with specialized hardware for the
most computationally intensive microcode procedures (Section VI-C).

A. Basic Timing Models

In this evaluation, we employed three basic memory configurations.
Figure 2 visualizes these basic configurations as well as three
additional configurations which we will describe in Section VI-B.
The base assumption is that the execution of one SUBLEQ instruction
takes 1 cycle.

Reading or writing to registers or the main memory adds a
delay depending on the specific memory configuration. The first
configuration, RAM, maps all RISC-V and OISC registers into the
main memory. Since reading and writing to the main memory is slow,
we add a delay of 4 additional cycles to each memory access. In
the second configuration, BRAM all RISC-V and OISC registers are
implemented in larger on-chip memories like Block RAMs (BRAMs),
but accessing the main memory for application data still requires 4
additional cycles. These memories are faster than the main memory,
and thus, only add a delay of 1 for each read or write access. In the
third configuration, Regs, we placed all RISC-V and OISC registers
into dedicated registers. Reading and writing to these registers is fast
and highly parallel, so no additional delay is added to the SUBLEQ
execution time. The remaining 3 configs in Figure 2 are described
later when the context is clear.

B. Evaluation of Memory Configurations

In this section, we present a comparison of 6 memory config-
urations in terms of the number of cycles needed when executing
software. We have taken several well-known benchmarks, compiled
them to RV32I, and executed them on ORISCV-ISS in the respective
memory configuration. Table II provides the results. The first column
gives the name of the benchmark. The next three columns report
the required microcode cycles according to the three Basic Memory

Configurations. As can be seen in Table II, implementing all registers
in BRAM reduces the number of cycles on average by 67.82%
wrt. the baseline. In comparison, shifting all RISC-V and OISC
registers from the RAM to dedicated registers (Regs) cuts the required
cycles more than 90%.

We now extended our design space exploration using
ORISCV-ISS as follows: We wanted to find a configuration
with minimal additional area costs but a significant cycle reduction.
For this, we evaluated the Top OISC configuration, in which
all registers are kept in the main memory except SRC1, SRC2,
TMP0, and TMP1 from the OISC unit. With just these four registers
we already observed on average a reduction of 48.38% wrt. the
baseline. In configuration Top OISC + PC, also the RISC-V
program counter is implemented in a dedicated register since it
is one of the most used RISC-V registers. By simply adding the
RISC-V PC to the dedicated registers, we were able to additionally
reduce the average number of cycles by nearly 10%. Finally, we
evaluated a last configuration in which only the RISC-V registers are
implemented in dedicated registers. Even though this configuration
contains all 32 RISC-V registers and the RISC-V PC, the measured
cycle reduction amounted to only 18.78%. This shows, that the
performance improvement highly depends on the selected registers.
This was expected, since every RISC-V instruction requires multiple
OISC instructions and thus the OISC registers are used much
more frequently, whereas the RISC-V registers are only used at the
beginning and end of the execution of one RISC-V instruction.

C. Evaluation of SUBLEQ Extensions

Not every microcode procedure has the same complexity. For
example, only 4 SUBLEQ instructions and cycles are required to
execute the addi or add instructions. In contrast, all instructions
that require bit-level access are much more complex. In our base
microcode implementation the and as well as andi microcode
procedure is 42 SUBLEQ instructions long. This procedure however
loops depending on the word width of the processor (in case of RISC-
V RV32I this is XLEN ; 32) resulting in hundreds of microcode
cycles for a single RISC-V instruction. This clearly shows that the
performance depends on the to be executed instructions. However,
this also creates opportunities to tailor the hardware to the specific
application which we demonstrate in the following.

We measure how many microcode cycles it takes on average to
execute one RISC-V instruction using the base microcode implemen-
tation. From there, we extend the ISS and the microcode using the
functional registers to reduce the complexity of the most demanding
microcode procedures.

Table III compares the average microcode cycles per RISC-V
instruction for two microcode implementations. We can see, that
the Base implementation without any hardware support normally
requires around 10 to 14 microcode cycles per RISC-V instruction.
Of all benchmarks only the bit insert benchmark makes heavy
use of bit-level operations, whereas the other benchmarks mostly
perform word-level arithmetic operations. This is clearly visible in
the benchmark results where the average cycles of the bit insert
benchmark shoot up to 24.5 cycles per RISC-V instruction for the
Base implementation.

In order to reduce the overhead for this benchmark, we added
hardware support for the and, or, and xor RISC-V instructions8

via the functional registers. The BitOps microcode implementation
extends the Base configuration but replaces the costly bit operations

8and also their immediate variants.



TABLE II: Required microcode cycles for different memory configurations

Basic Memory Configurations Extra

Benchmark RAM BRAM Regs Top OISC Top OISC+PC RISC-V

bit insert [20] 56,474 17,714 4,794 36,122 33,762 51,990
dijkstra [21] 753,261 241,062 70,329 378,093 311,569 620,341
heapsort [22] 96,21,348 3,100,233 926,528 4,836,100 4,029,276 7,990,048
bubblesort 2.11× 108 6.80× 107 2.05× 107 9.49× 107 7.35× 107 1.67× 108

ref [3] 2.23× 108 7.26× 107 2.23× 107 1.10× 108 8.30× 107 1.73× 108

ackermann [22] 4.90× 108 1.58× 108 4.78× 107 2.53× 108 1.96× 108 3.84× 108

sieve [22] 4.29× 109 1.40× 109 4.33× 108 2.19× 109 1.67× 109 3.26× 109

Avg. Reduction Baseline 67.82% 90.43% 48.38% 58.00% 18.78%

TABLE III: Avg. cycles per RISC-V Instr.

Benchmark Base BitOps

bit insert 24.5 12.3
dijkstra 12.9 12.3
heapsort 13.9 13.8
bubblesort 11.5 11.4
ref1 10.1 10.1
ackermann 11.3 11.3
sieve 10.0 10.0

Average 13.8 11.6

with microcode procedures that target the functional registers. As a
consequence, with this implementation the number of cycles is now
only half the number of cycles for the bit insert benchmark
(first row in Table III). The other benchmarks are mostly unaffected
by the new microcode implementation since they do not contain many
calls to the bit-level instructions.

Additionally, the size of the BitOps microcode implementation
with only 259 instructions is 25% smaller then the Base microcode
implementation. This reduction is possible since the complex pro-
cedures handling the bit operations in the base implementation are
replaced with simple writes to the special registers.

VII. CONCLUSIONS

In this paper, we have proposed ORISCV-ISS which serves as a
development platform for both, hardware architecture and microcode
procedures, and provides the basis for early design space explo-
ration. Our ISS is a fully compliant implementation of the RV32I
ISA, whose instructions are executed in microcode using the OISC
paradigm. ORISCV-ISS consists of only 1,000 lines of code. It
can be easily adapted to explore various architectures (e.g. reflecting
different memory configurations) or custom OISC ISA extensions.
We evaluated several ISS configurations and measured their impact
on the system. By carefully selecting registers and ISA extensions
we were able to improve the performance significantly.

For future work we will enhance ORISCV-ISS by integrating
advanced timing models (e.g. [23], [24]) and we will leverage new
verification approaches (e.g. [25]).
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[17] A. Waterman and K. Asanović, The RISC-V Instruction Set Manual; Volume I:
Unprivileged ISA, SiFive Inc. and CS Division, EECS Department, University
of California, Berkeley, 2019.

[18] T. Ahmed, N. Sakamoto, J. Anderson, and Y. Hara-Azumi, “Synthesizable-
from-c embedded processor based on MIPS-ISA and OISC,” in EUC, 2015,
pp. 114–123.

[19] “RISC-V architecture test sig,” https://github.com/riscv-non-isa/
riscv-arch-test, 2021.

[20] Hansraj Das, “Algorithm repository,” https://github.com/hansrajdas/
algorithms, 2018.

[21] R. Abishek, “Dijkstra algorithm implementation,” https://gist.github.com/
rajabishek/2c75052a674fd15e2170, 2015.

[22] Microsoft, “Microsoft test-suite,” https://github.com/microsoft/test-suite,
2007.
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