
Towards System-level Assertions for
Heterogeneous Systems ?

Muhammad Hassan1, Thilo Vörtler2, Karsten Einwich2, Rolf Drechsler3, and
Daniel Große4

1 Cyber-Physical Systems, DFKI GmbH, 28359 Bremen, Germany
muhammad.hassan@dfki.de

2 COSEDA Technologies GmbH, Dresden, Germany
{thilo.voertler,karsten.einwich}@coseda-tech.com

3 Institute of Computer Science, University of Bremen, 28359 Bremen, Germany
drechsle@informatik.uni-bremen.de

4 Institute for Complex Systems, Johannes Kepler University, 4040 Linz, Austria
daniel.grosse@jku.at

Abstract. Heterogeneous systems are today System-on-Chips (SoCs)
with integrated hardware and software, where the hardware consists of
digital and Analog Mixed-Signal (AMS) parts. To manage the enormous
verification challenges at the system-level, SystemC-based virtual proto-
typing is heavily employed. However, a practical system-level assertions
library for heterogeneous systems is not available which prevents the full
potential of AMS assertion-based verification from being exploited.
In this paper, we present a system-level assertions library with an in-
tuitive API, full SystemC compatibility, software and transaction sup-
port, and heterogenous characteristics, all mandatory to specify complex
AMS behavior. We demonstrate our prototypical implementation for an
industrial case-study using ARM fast models, a temperature software,
environment models and control software and assertions. We will make
our system-level assertions library available as open source.

Keywords: System-level Assertions · SystemC/AMS · Functional Ver-
ification · Assertions library · Virtual prototyping · Hetereogeneous sys-
tems · ARM Fast Models

1 Introduction

Driven by growth opportunities in various application domains, e.g. Internet-Of-
Things (IOT), many semiconductor vendors are shifting their focus towards a
more integrated solution of high-performance Analog/Mixed-Signal (AMS) de-
signs. Due to this industry shift, most System-On-Chips (SOCs) today are AMS
containing analog sensors, mixed-signal converters, and digital processors run-
ning Software (SW) on top, tightly integrated on a single die. One characteristic
? This work was supported in part by the German Federal Ministry of Education and
Research (BMBF) within the project AUTOASSERT under contract no. 16ME0117.

2 M. Hassan et al.

of such SOCs is that each subsystem interacts simultaneously with each other
by internal connections and reacts to inputs coming from outside. Digital sys-
tems behavior usually exhibits discrete changes in time and value, whereas ana-
log circuits usually exhibit continuous changes. While this shift has resulted in
high-performance and low-area devices, it has significantly increased the efforts
required to develop and verify these highly complex devices and achieving the
required Time-To-Market (TTM) simultaneously. Nowadays, Assertion-Based
Verification (ABV) in combination with coverage analysis [31, 19, 20] and con-
strained randomization techniques [44, 18] is widely used to perform functional
verification of digital designs at Register Transfer Level (RTL). ABV defines
temporal properties in order to verify the functional correctness of the design
with respect to expected behaviors. Consequently, the bugs are found at their
source. Furthermore, design observability and controllability is also improved.
Applying the ABV methodology to AMS designs can bring the same benefits
that the digital design community has enjoyed. However, late availability of RTL
in the design process exacerbates the situation.

In this regard, the emergence of Virtual Prototypes (VPs) at the abstraction
of Electronic System Level (ESL) has modernized the design and verification
of AMS SOCs in many ways [11, 28, 36]. Essentially, a VP is a software simula-
tion model of the entire Hardware (HW) platform, created by composing models
of the individual Intellectual Property (IP) blocks (i.e. Instruction Set Simula-
tors, bus and peripheral models, etc.). For this purpose, the C++-based system
modeling language SystemC together with Transaction Level Modeling (TLM)
techniques [22] and mixed-signal extension SystemC/AMS [4] are being heavily
used in industrial practice [11, 29, 28, 3, 36, 20]. Overall, the adoption of VPs has
led to significant improvements on the design and verification of SOCs. Because
of earlier availability and significantly faster simulation speed as opposed to RTL,
the VPs enable HW/SW co-design and verification very early in the develop-
ment flow. Serving as reference for (early) embedded SW development and HW
verification, the functional correctness of VPs is very important. Hence, a whole
VP as well as its individual components are subjected to rigorous verification.

However, one of the main challenges is the availability of a practical asser-
tions library for system-level design verification which enables ABV methodolo-
gies. When speaking of unavailability, we also broadly include advanced test-
bench concepts based on the Universal Verification Methodology (UVM), or in
the future even more abstract based on Portable Stimulus Specification (PSS).
Regardless of the specific solution, a system-level assertions library is missing
which satisfies the following: 1) expressiveness to represent complex behaviors of
heterogeneous systems, 2) compatibility to SystemC, TLM, and SystemC/AMS,
3) capture of complex analog-digital interactions, and 4) integration of complex
heterogeneous characteristics like continuous time, frequency analysis etc.

Contribution: In this paper we present a system-level assertions library
for heterogeneous systems, an advanced ABV environment for SystemC, TLM,
and its mixed-signal extension SystemC/AMS. To overcome the limitations of

Towards System-level Assertions for Heterogeneous Systems 3

state-of-the art libraries (see Section 2 for more details), the proposed SystemC
assertions library provides the following features:

– New assertions specification API: An intuitive, user-friendly, and expressive
Application Programming Interface (API) to specify complex behaviors of
non-trivial heterogeneous systems has been developed.

– Compatibility: The library is compatible with SystemC and its extensions,
TLM and SystemC/AMS.

– Complex behaviors: Various complex behaviors can be captured like, 1)
complex analog-to-digital, 2) digital-to-analog, 3) digital-to-digital, and 4)
analog-to-analog.

– SW and TLM Support: The assertions library supports the checking of TLM
interface and SW/HW interactions.

– Heterogeneous characteristics: The library integrates heterogeneous charac-
teristics like continuous time, frequency analysis, slopes, equations, atten-
uations, Differential Algebraic Equations (DAE), digital signals, temporal
logic, variables, and events. These characteristics are necessary for express-
ing complex properties.

– Improved usability: Debugging of failed assertions is supported.

Considering all these features, we develop a new system-level assertions li-
brary for bridging the gap of ABV for heterogeneous systems. The running
example and experiments on a real-world model of ARM V8 based CPU using
ARM Fast Models demonstrates the capabilities of the library to improve the
system verification in a significant way.

The paper is organized as follows: Section 2 gives a survey of current ap-
proaches concerning heterogeneous/AMS verification. Section 3 discusses the
running example along with assertions to setup the environment. Section 4 de-
scribes our contribution, the implementation, and discusses the approach. This
includes syntax and semantics of the system-level assertions library. In Section 5
we demonstrate the benefits of our methodology with experiments. Finally, we
conclude and mention future work in Section 6.

2 Related Work

SystemC is widely used for system-level design and verification, however, it
still lacks native temporal assertions support. Several approaches have been
proposed for digital SystemC-based models/VPs. Besides basic work on the
temporal language itself [40], these approaches can be divided into two cate-
gories, formal assertion-based verification (e.g., [12, 17, 42, 24, 41, 16, 26, 7]) and
simulation-based verification (for example, [6, 13, 35, 9, 39, 14, 5]). The formal ap-
proaches aim to fully explore the state space based on abstract representations of
system-level models. However, these approaches typically run into the state space
explosion problem. Furthermore, the aforementioned simulation-based methods
only consider purely digital models.

4 M. Hassan et al.

In [35, 6, 9] new approaches for transaction level assertions are introduced.
However, in [35] transactions are mapped to signals and therefore the approach
is restricted only to transactions which are invoked by suspendable processes.
In [6] transactions are recorded and written into a trace to do post processing.
Trace based assertion checking however requires that everything to be recorded
must be annotated in the code and the creation of simulation data bases can
become very resource intensive.

Various works have also been presented for the specification and verification
of analog circuits [38, 27, 37, 30, 45, 34]. Here, too, a distinction is made between
formal and simulation-based methods. One focus of the work was in particular
to develop suitable extensions for the specification of assertions. It should be
noted, however, that the aforementioned works only target analog components
and usually only address the implementation level. The overall heterogeneous
systems (incl. SW) and environment considered here are not supported.

In the area of digital HW/SW co-design and verification, various formal
approaches have been proposed, for example [15, 43, 33]. However, these so far
assume only implementation-level descriptions for the hardware part (e.g., in
Verilog or VHDL). Furthermore, due to the huge state spaces in analog domain,
only small problems can be handled. Recently, abstraction techniques have been
developed and the hardware parts are abstracted to C level [32, 21]. However,
these methods consider only pure digital designs.

Heterogeneous characteristics like continuous time, frequency analysis, slopes,
equations, attenuations, DAE, digital signals, temporal logic, variables, and
events are insufficiently integrated in all known specification languages. How-
ever, these characteristics in combination with a special time definition are nec-
essary for expressing complex properties. Therefore our work considers all these
conditions to develop a new system-level assertions library for bridging the gap
of ABV for heterogeneous designs.

3 Preliminaries

3.1 Assertion Based Verification

ABV is an established technique used nowadays to verify SOCs [10]. To enable
ABV, a language is required based on the general notion of Property Specifica-
tion Language (PSL) [23], Linear Temporal Logic (LTL), Finite LTL (FLTL),
or Computation Tree Logic (CTL) [25]. Based on the specification assertions
(properties) are typically manually created and capture the design intent. The
basic function of an assertion is to specify a set of behaviors that is expected to
be true for a given Design Under Verification (DUV). Assertions are included in
the DUV via monitors and they compare the temporal behavior of the assertions
against the DUV during simulation. Assertions are used in the validation envi-
ronments of TLM, RTL, and gate level and offer the following advantages, 1)
detect design errors at their source and increase observability, 2) actively monitor
a design to ensure correct functional behavior, and 3) can be used for functional

Towards System-level Assertions for Heterogeneous Systems 5

and formal verification. The widely used assertions library for RTL, SystemVer-
ilog Assertion (SVA) [8] unifies simulation and formal verification semantics to
drive the design for verification methodology. It takes a layered approach to de-
fine the properties of the DUV. More precisely, properties are composed of four
layers: 1) the Boolean layer consists of propositions and Boolean connectives,
2) the sequence layer adds operators for temporal reasoning to the Boolean
layer. 3) the property layer defines operations on sequences, and 4) the veri-
fication layer provides indicators for the verification tools on how to apply the
properties. Most often assertions use implication operators which define some
specific sequence of events (known as antecedent) which should occur before
another sequence of events (known as consequent) should occur.

The first three layers define the actual property (intended or error state)
that relates to parts of the DUV whereas the fourth layer is used to control the
high-level behavior of the verification tools.

3.2 System-level Running Example

For brevity, we refrain from giving a proper introduction to SystemC, TLM, and
SystemC/AMS. Instead, we present here a heterogeneous system as a running
example (Fig. 1) that will be used to showcase the main ideas of our approach
throughout this paper. The SystemC, TLM, and SystemC/AMS constructs and
semantics necessary to understand the example will be explained as needed.
The running example models a temperature control system covering multiple
domains, i.e. SW, digital HW, and analog behavior. The system is modeled
in SystemC/AMS using different Models of Computation (MoC), in particular
Timed Data Flow (TDF) and Electrical Linear Networks (ELNs). The overall
system as shown in Fig. 1 consists of the following components:

– an ARM V8 based CPU using ARM Fast Models implemented as SystemC
TLM [2] with Linux operating system and SW running on top,

– four ADT7420 temperature sensors implemented as SystemC/AMS TDF
and discrete event model [1],

– an Advanced Microcontroller Bus Architecture (AMBA) bus that acts as a
bridge device to connect temperature sensors and ARM processor (created
in SystemC TLM) – (COS_AMBA_DEVICE in Fig. 1),

– an environment model (Thermal_Network) that builds 3 connected rooms
and an ambient temperature modeled as a sinus (SIN_SRC_TDF), i.e. each
sensor senses a different temperature (implementation as SystemC/AMS
ELN and discrete event model), and finally

– a heater model implemented as SystemC/AMS ELN that can be used to
increase the temperature.

The communication between SW running on the ARM8 and the connected
sensors is done via registers connected to the bus of the processor. The SW con-
figures the sensors by writing to addresses on the bus, which in turn creates TLM
transactions. These TLM transactions are written into the corresponding reg-
isters of the ADT7420 sensors. The AMBA bus (COS_AMBA_DEVICE) also

6 M. Hassan et al.

amba_pv_s

dram
<64 >

size = 0x200000000ull
page_size = 0x100000u

AMBA_PV_MEMORY

i_scx_fast_model_config2

configuration_file = "aemv8_external_components.cfg"
scx_initialize = "Base"
core_base_path = "i_top_external_components.Base"

SCX_FAST_MODEL_CONFIG

amba_pv_s sensor_bus

i_cos_amba_device1

COS_AMBA_DEVICE

interrupt

ct

temp_in

i2c_bus

i_adt7420_2

conf_file = "adt7420.par"

ADT7420

interrupt

ct

temp_in

i2c_bus

i_adt7420_1

conf_file = "adt7420.par"

ADT7420

interrupt

ct

temp_in

i2c_bus

i_adt7420_3

conf_file = "adt7420.par"

ADT7420

interrupt

ct

temp_in

i2c_bus

i_adt7420_0

conf_file = "adt7420.par"

ADT7420

heater_sw

t_ambient

t_sens3

t_sens2

t_sens1

t_sens0

i_thermal_network1

v_heater = 230.0
p_heater = 30e3
gw_heater = 50.0
gw_r2 = 40.0
gw_r1 = 30.0
gw_amb = 5.0
c_heater = 100.0
c_r3 = 100.0
c_r2 = 1000.0
c_r1 = 1500.0

THERMAL_NETWORK
tdf_o

i_sin_src_tdf1
<double>

ampl = 15.0
freq = 0.01
offset = 5_C

SIN_SRC_TDF

A

t

i2c_bus heater_sw

i_heater_reg1

HEATER_REG

ambapvbus_m

cos_dev_bus_m

Base

ARMV8A System

s_interrupt_3

s_ct_3

s_interrupt_2

s_ct_2

s_interrupt_1

s_ct_1

s_interrupt_0

s_ct_0
s_heater_sw

Fig. 1. Schematic of running example: temperature control system

translates the AMBA-PV transactions used by ARM Fast models. Additionally,
I2C transactions of the sensor model are also translated. To showcase the fea-
tures of proposed system-level assertions library, the running example considers
the following scenario for demonstration purposes:

– booting a Linux operating system on the ARM processor,
– a control SW is executed on top of Linux. The control SW continuously

measures (monitors) the temperature sensor output,
– if the SW detects that the temperature value falls below a programmed

threshold value, it switches the heater to ON state,
– otherwise, when the temperature exceeds a certain programmed threshold,

the heater is switched to OFF state.

3.3 Assertions for System-level Running Example

A lot of assertions can be defined for the running example introduced in Sec-
tion 3.2. However, for the purpose of demonstrating the features of the proposed
system-level assertions library, we focus on only one. The concrete assertion
states that:

– When the temperature of Room 1 t_r1 (SystemC TDF signal) is above the
threshold t_threshold (SW-controlled TLM register value), the heater has
to be switched off (heater_sw) within 1 ms.

How this heterogeneous assertion can be expressed in our proposed assertions
library can be seen in Listing 1.1. Please note, we introduce all ingredients (in
particular, API, layers, ...) from the users-perspective for the proposed system-
level assertions library in the next sections.

Towards System-level Assertions for Heterogeneous Systems 7

1 auto heater_off = (t_r1 > t_threshhold) ->* (true | delay(1_SC_MS)
| (heater_switch==false));

2 heater_off.default_sampling(1_SC_MS);

Listing 1.1. Concrete assertion for temperature control system example

4 System-Level Assertions Library for Heterogeneous
Systems

In this section, we introduce the proposed system-level assertions library and its
components for bridging the gap of ABV for heterogeneous systems. First, we
provide a brief overview of the library. Then, we describe the intuitive API and
the layered architecture of the assertions library in detail while always providing
an example.

4.1 Overview

The system-level assertions library is developed with an intuitive, user-friendly,
and an expressive API. As a result, complex behaviors of heterogeneous systems
can be captured easily. These behaviors are not only limited to events taking
place at one point in time in one domain, rather also temporal behaviors across
different domains, e.g., TLM and analog. To enable the API expressiveness, a
layered architecture inline with SVA layered architecture [8] is used, i.e., boolean
layer, sequence layer, property layer, and verification layer. At the back-end,
first the assertion is divided into different layers and expressions, then multiple
SystemC processes are spawned to monitor the signals and events specified in
the expressions. The library uses linear time model where the assumption is that
the time is linear. Each assertion is synchronized to the sampling ticks (notion of
discrete time) of DUV as defined by SystemC/AMS semantics, unless specified.
The assertion is evaluated at each sampling tick. If the specified expressions
evaluate to true, the assertion is satisfied. Additionally, the complete trace of
assertion evaluation is displayed to the verification engineer.

In the following sections, the components of system-level assertions library
are explained in detail.

4.2 Application Programming Interface

The API of the library is designed to enable the expressiveness required for spec-
ifying cross-domain behaviors, e.g., TLM and analog. Hence, dedicated functions
like delay(...), repeat(...), default_sampling(...) etc are defined to specify the be-
haviors and make the library user-friendly. Additionally, operators (e.g., pipe (
|), ->*) are introduced to enable specification of sequences in SystemC.

The concrete assertion (specified in Listing 1.1) is interpreted in light of
the proposed API as follows: an assertion property heater_off is created. The

8 M. Hassan et al.

property joins 2 sequences via an overlapping implication operator (->*). The
sequences are, 1) antecedent – (t_r1 > t_threshhold), 2) consequent – (true | de-
lay(1_SC_MS) | (heater_switch==false)). The sequences comprise of 4 boolean
expressions in total, 1) (t_r1 > t_threshhold), 2) true, 3) delay (1_SC_MS),
4) (heater_switch==false). Furthermore, the sampling time of the assertion is
written in Line. 2, i.e., 1_SC_MS.

4.3 Boolean Layer

The boolean layer describes the behaviors of primitive elements relative to each
other at a particular point in time. The primitive elements in our proposed
library are SystemC events, variables, SystemC/AMS signals. These primitive
elements are related using arithmetic, logical, or relational operators. Conse-
quently, they form an expression, e.g., a relational expression. In Listing 1.1
the expression (t_r1 > t_threshhold) compares an analog signal t_r1 with a
digital threshold value t_threshhold stored in TLM register. If the relational
condition is satisfied, the expression is evaluated to true. A non-comprehensive
list of boolean expressions is shown in Table 1.

Table 1. Non-comprehensive list of supported boolean expressions by system-level
assertions library

Operator Name Data type
+= -= /= *= &= |= Binary assignment operators int, double

< <= > >= Binary relational operators int, double
+ − ∗ / Binary arithmetic operators int, double

&& || == != Binary logical operators int, double
+ - ! ++ – Unary operators int, double

4.4 Sequence Layer

The sequence layer builds on top of boolean layer to specify the temporal re-
lationship between primitive elements (boolean expressions) over time. The se-
quence layer also specifies sequences as either a combination of simpler sequences
using sequence operators or as basic boolean expressions correlated by events.
The proposed API introduces the pipe operator (|) to represent the continuity
of a sequence. This increases readability as well as user-friendliness of the asser-
tion property. Additionally, the API introduces delay(...), repeat(...) operators
to specify temporal assertions. As a result, a sequence can comprise of delay op-
erators (Section 4.4), boolean expressions, and event expressions. To determine a
match of the sequence, the boolean expressions are evaluated at each successive
sample tick, defined by a sampling event (SystemC/AMS sampling points) that
gets associated with the sequence. If all expressions of the sequence are true,

Towards System-level Assertions for Heterogeneous Systems 9

then a match of the sequence occurs. For example, the assertion in Listing 1.1
has the expressions

(true | delay(1_SC_MS) | (heater_switch == false))

The expressions are interpreted as follows: a signal is asserted – true, followed
by a delay operator – delay(1_SC_MS), and after the delay of 1 ms, the ex-
pression (heater_switch == false) is evaluated. The sequence returns true only
if all the expressions evaluate to true. A non-comprehensive list of supported
sequence operators is shown in Table 2.

Table 2. Non-comprehensive list of supported sequence operators by system-level as-
sertions library

Operator Description
delay Specifies delay from current sampling point until the next
and Sequence and operation
or Sequence or operation
repeat Repetition operator

Delay Operator The system-level assertions library introduces delay operator
– delay(delay_cycles) and delay(min_delay_cycles, max_delay_cycles) which
takes delay time as input. The function of delay operator is to create a relation-
ship between boolean expressions over a period of time or between the given
time constraints.

Repeat Operator The library also introduces repeat operator – repeat(value)
and repeat(min_value, max_value) which takes a repetition value as input for
how many times the sequence should be repeated. It helps in cases when a certain
set of expressions are expected to be true over multiple time points.

Sequence "and/or" Operators The system-level assertions library intro-
duces the sequence "and/or" operators. The sequences are evaluated in parallel.
In case of "and" operator, if one sequence evaluates to "false", the evaluation
stops and the assertion fails. On the other hand, in case of "or" operator, the
library waits for all sequences to be evaluated.

4.5 Property Layer

The property layer allows for more general behaviors to be specified, i.e., specifi-
cation of properties as either a combination of simpler properties using property
operators or as an implication built up from several sequences. In particular,
properties allow users to invert the sense of a sequence (e.g., when the sequence

10 M. Hassan et al.

should not happen), disable the sequence evaluation, or specify that a sequence
be implied by some other occurrence. The properties and their respective se-
quences (including boolean expressions) are evaluated on each sampling event
(sampling tick) of the system’s default sampling time, unless specified. In this
concrete assertion (defined in Listing 1.1), the property sampling time is set to 1
ms (heater_off.default_sampling (1_SC_MS)). As a result, the assertion prop-
erty in Listing 1.1 is evaluated every ms. The property layer supports implication
operators, "not", and "and/or" operators.

Implication Operator An implication refers to a situation in which in order
for a behavior to occur, a preceding sequence must have occurred. This preceding
sequence in this case is known as antecedent. The succeeding behavior is known
as consequent. Evaluation of an implication starts through repeated attempts
to evaluate the antecedent. When the antecedent succeeds, the consequent is
required to succeed for the property to hold. Thus, in other words, an antecedent
sequence implies a consequent property expression, as follows

antecedent − > ∗ consequent

where − > ∗ = overlapping implication operator

Non-overalapping Implication The delay(...) operator is used to implement non-
overlapping implication.

Overlapping Implication ->* In the system-level assertion library we introduce
an overlapping implication operator (->*). This means that if the antecedent
sequence is evaluated to true, the consequent sequence is evaluated at the same
tick.

As shown in Listing 1.1, if the expression (t_r1 > t_threshhold) is true, the
sequence (true |delay(1_SC_MS) |(heater_switch==false)) should be true in
next sampling ticks. A non-comprehensive list of supported property operators
is shown in Table 3

Table 3. Non-comprehensive list of supported property operators by system-level as-
sertions library

OperatorDescription
Not the evaluation of the property returns the opposite of the evaluation

of the underlying property expression
and The property evaluates to true if, and only if, both property expres-

sion 1 and property expression 2 evaluate to true.
or The property evaluates to true if, and only if, at least one of property

expression 1 and property expression 2 evaluates to true.

Towards System-level Assertions for Heterogeneous Systems 11

4.6 Verification Layer

The verification layer specifies which properties are to be asserted or covered.
This layer always associates properties with corresponding verification directives.
A verification directive can be parameterized by the severity level and an info
string; further on it can be specified if the property should be asserted, covered
or both. The proposed library supports only assert at the moment.

5 Experiments

Fig. 2. Simulation results running the temperature control SW

This section describes the experimental evaluation on a real world model in-
tegrating an ARM V8 CPU via ARM Fast Models (as described in Section 3.2).
Fast Models are accurate, flexible programmer’s view models of ARM IP, al-
lowing one to develop software such as drivers, firmware, OS and applications
prior to silicon availability. They allow full control over the simulation, including
profiling, debug and trace. As mentioned, the complete model is implemented
as a mixture of a SystemC TLM model and a SystemC/AMS model.

Several assertions were created to verify the behavior of temperature control
system. The behaviors to verify included but not limited to: 1) SW and TLM
interactions, 2) analog and TLM interactions, 3) analog-digital, 4) digital-analog,
5) digital events, and 6) analog-analog interactions etc. In the following, we detail
the results of the concrete assertion from Listing 1.1.

Partial simulation results of the temperature control system SW are shown
in Fig. 2. The orange sinus signal is the ambient temperature (SIN_SRC_TDF)
which oscillates between 262 K and 293 K. The green waveform signal (t_r1) is
the temperature of room 1. The blue waveform signal (t_r2) is the temperature
of room 2. The purple waveform signal (t_r3) is the temperature of room 3. At
the bottom of Fig. 2, digital signals – heater_switch and interrupts (irq0-irq3)
from temperature sensors are displayed.

12 M. Hassan et al.

After booting the Linux OS (approx. 30s) the control SW gets started. The
heater (heater_switch) gets turned on as the temperature in room one (t_r1)
is below the minimum temperature of 292 K. It can be seen how the tempera-
ture slowly increases in all rooms. When the temperature is above the maximum
threshold of 294.15 K the heater gets turned off. As a consequence, the room
temperatures start to decrease. The sensors have been programmed to gener-
ate an interrupt whenever the temperature is above or below a threshold value
(stored in register).

We could see the assertion was satisfied throughout the simulation. How-
ever, if we decreased the delay(...) from 1 ms to a smaller value, the assertion
was always violated. This is expected and in accordance with the specifications.
They require that the heater_switch should be turned off within 1 ms after the
threshold temperature is crossed. The reason for 1 ms is because of the inherent
delays due to reading and writing of registers in different connected devices, and
can be summarized as follows:

– the temperature sensor senses the temperature,
– the sensed temperature is written into the register,
– SW reads the temperature from the ARM processor,
– SW checks whether the sensed temperature value is above the threshold

value,
– and writing the heater switch control register depending on the comparison

result.

Hence, using the proposed intuitive system-level assertion library, it is possible
to check complex behaviors of the heterogeneous systems, e.g., digital, analog
and SW behavior.

6 Conclusion

In this paper, we presented a practical system-level assertions library for hetero-
geneous systems. The library comprises of an intuitive and user-friendly API and
offers full compatibility with SystemC, TLM, and SystemC/AMS. As a result,
the library supports specification of SW, TLM, and complex interactions, all nec-
essary to represent complex AMS behavior. The system-level assertions library
prototype was used to verify the industrial model using ARM Fast models, a
temperature control system SW, environment models, temperature sensors, and
assertions. We will make our system-level assertions library prototype available
as open source.

References

1. Analog Devices ADT7420 Data Sheet Rev. A (Sep 2017),
https://www.analog.com/en/products/adt7420.html

2. ARM Fast Models Version 11.17 User Guide (Feb 2022),
https://developer.arm.com/documentation/100965/1117/

Towards System-level Assertions for Heterogeneous Systems 13

3. Barnasconi, M., Adhikari, S.: ESL design in SystemC AMS: Introducing a top-down
design methodology for mixed-signal systems. In: DAC. pp. 1–5 (2017)

4. Barnasconi, M., Grimm, C., Damm, M., Einwich, K., Louërat, M., Maehne, T.,
Pecheux, F., Vachoux, A.: SystemC AMS extensions user’s guide. Accellera Sys-
tems Initiative (2010)

5. Bombieri, N., Fummi, F., Guarnieri, V., Pravadelli, G., Stefanni, F., Ghasempouri,
T., Lora, M., Auditore, G., Marcigaglia, M.N.: Reusing rtl assertion checkers for
verification of systemc tlm models. Journal of Electronic Testing 31(2), 167–180
(2015)

6. Chen, X., Luo, Y., Hsieh, H., Bhuyan, L., Balarin, F.: Assertion based verification
and analysis of network processor architectures. Design Automation for Embedded
Systems 9(3), 163–176 (2004)

7. Cimatti, A., Narasamdya, I., Roveri, M.: Software model checking SystemC. TCAD
32(5), 774–787 (2013)

8. Committee, D.A.S., et al.: Ieee standard for systemverilog unified hardware design,
specification, and verification language standard ieee 1800. http://www. edastds.
org/sv/ (2005)

9. Ecker, W., Esen, V., Steininger, T., Velten, M., Hull, M.: Implementation of a
transaction level assertion framework in SystemC. In: DATE. pp. 894–899 (2007)

10. Foster, H.D., Krolnik, A.C., Lacey, D.J.: Assertion-based design. Springer Science
& Business Media (2004)

11. Grimm, C., Barnasconi, M., Vachoux, A., Einwich, K.: An introduction to modeling
embedded analog/mixed-signal systems using SystemC AMS extensions. In: DAC.
vol. 23 (2008)

12. Große, D., Drechsler, R.: Formal verification of LTL formulas for SystemC designs.
In: ISCAS. pp. V:245–V:248 (2003)

13. Große, D., Drechsler, R.: Checkers for SystemC designs. In: MEMOCODE. pp.
171–178 (2004)

14. Große, D., Groß, M., Kühne, U., Drechsler, R.: Simulation-based equivalence check-
ing between SystemC models at different levels of abstraction. In: GLSVLSI. pp.
223–228 (2011)

15. Große, D., Kühne, U., Drechsler, R.: Hw/sw co-verification of embedded systems
using bounded model checking. In: GLSVLSI. pp. 43–48 (2006)

16. Große, D., Le, H.M., Drechsler, R.: Proving transaction and system-level properties
of untimed SystemC TLM designs. In: MEMOCODE. pp. 113–122 (2010)

17. Habibi, A., Tahar, S.: Assertion and model checking of SystemC. In: North Amer-
ican SystemC Users Group Meeting, San Diego, California, USA (2004)

18. Haedicke, F., Le, H.M., Große, D., Drechsler, R.: CRAVE: An advanced constrained
random verification environment for SystemC. In: SoC. pp. 1–7 (2012)

19. Hassan, M., Große, D., Le, H.M., Drechsler, R.: Data flow testing for SystemC-
AMS timed data flow models. In: DATE. pp. 366–371 (2019)

20. Hassan, M., Große, D., Vörtler, T., Einwich, K., Drechsler, R.: Functional coverage-
driven characterization of RF amplifiers. In: FDL. pp. 1–8 (2019)

21. Huang, B.Y., Ray, S., Gupta, A., Fung, J.M., Malik, S.: Formal security verification
of concurrent firmware in SoCs using instruction-level abstraction for hardware. In:
DAC. pp. 1–6 (2018)

22. IEEE Std. 1666: IEEE Standard SystemC LRM (2011)
23. IEEE Std. 1850: IEEE Standard for Property Specification Language (PSL) (2005)
24. Karlsson, D., Eles, P., Peng, Z.: Formal verification of SystemC designs using a

petri-net based representation. In: DATE. pp. 1228–1233 (2006)

14 M. Hassan et al.

25. Kropf, T.: Introduction to formal hardware verification. Springer Science & Busi-
ness Media (1999)

26. Lämmermann, S., Ruf, J., Kropf, T., Rosenstiel, W., Viehl, A., Jesser, A., Hedrich,
L.: Towards assertion-based verification of heterogeneous system designs. In:
DATE. pp. 1171–1176 (2010)

27. Lämmermann, S., Weiss, R., Ruf, J., Kropf, T., Rosenstiel, W., Jesser, A., Hedrich,
L.: An assertion-based verification methodology for SystemC-AMS designs. In:
The 15th Workshop on Synthesis And System Integration of Mixed Information
Technologies. pp. 434–439 (2009)

28. Lora, M., Vinco, S., Fraccaroli, E., Quaglia, D., Fummi, F.: Analog models manip-
ulation for effective integration in smart system virtual platforms. TCAD 37(2),
378–391 (2018)

29. Ma, K., Van Leuken, R., Vidojkovic, M., Romme, J., Rampu, S., Pflug, H., Huang,
L., Dolmans, G.: A precise and high speed charge-pump pll model based on
systemc/systemc-ams. International Journal of Electronics and Telecommunica-
tions 58, 225–232 (2012)

30. Maler, O., Ničković, D.: Monitoring properties of analog and mixed-signal circuits.
International Journal on Software Tools for Technology Transfer 15(3), 247–268
(2013)

31. Mehta, A.B.: System Verilog Assertions and Functional Coverage: Guide to Lan-
guage, Methodology and Applications. Springer Nature (2019)

32. Mukherjee, R., Purandare, M., Polig, R., Kroening, D.: Formal techniques for
effective co-verification of hardware/software co-designs. In: DAC. pp. 1–6 (2017)

33. Nguyen, M.D., Wedler, M., Stoffel, D., Kunz, W.: Formal hardware/software co-
verification by interval property checking with abstraction. In: Proceedings of the
48th Design Automation Conference. pp. 510–515 (2011)

34. Ničković, D., Lebeltel, O., Maler, O., Ferrère, T., Ulus, D.: Amt 2.0: qualitative
and quantitative trace analysis with extended signal temporal logic. International
Journal on Software Tools for Technology Transfer 22(6), 741–758 (2020)

35. Niemann, B., Haubelt, C., et al.: Assertion-based verification of transaction level
models. In: MBMV. pp. 232–236. Citeseer (2006)

36. Pêcheux, F., Grimm, C., Maehne, T., Barnasconi, M., Einwich, K.: SystemC AMS
based frameworks for virtual prototyping of heterogeneous systems. In: ISCAS.
pp. 1–4 (2018)

37. Radojicic, C., Grimm, C., Schupfer, F., Rathmair, M.: Verification of mixed-signal
systems with affine arithmetic assertions. VLSI Design (2013)

38. Steinhorst, S., Hedrich, L.: Model checking of analog systems using an analog
specification language. In: DATE. pp. 324–329 (2008)

39. Tabakov, D., Vardi, M.: Monitoring temporal SystemC properties. In: MEM-
OCODE. pp. 123–132 (2010)

40. Tabakov, D., Vardi, M., Kamhi, G., Singerman, E.: A temporal language for Sys-
temC. In: FMCAD. pp. 1–9 (2008)

41. Vardi, M.Y.: Formal techniques for SystemC verification. In: DAC. pp. 188–192
(2007)

42. Weiss, R.J., Ruf, J., Kropf, T., Rosenstiel, W.: Efficient and customizable inte-
gration of temporal properties into SystemC. In: Applications of Specification and
Design Languages for SoCs, pp. 101–114. Springer (2006)

43. Xie, F., Liu, H.: Unified property specification for hardware/software co-
verification. In: 31st Annual International Computer Software and Applications
Conference (COMPSAC 2007). vol. 1, pp. 483–490. IEEE (2007)

Towards System-level Assertions for Heterogeneous Systems 15

44. Yuan, J., Pixley, C., Aziz, A.: Constraint-based Verification. Springer (2006)
45. Zivkovic, C., Grimm, C., Olbrich, M., Scharf, O., Barke, E.: Hierarchical verifi-

cation of AMS systems with affine arithmetic decision diagrams. TCAD 38(10),
1785–1798 (2019)

