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Abstract—Rapid and efficient design space exploration is the
key enabler for effective Domain Specific Architectures (DSAs)
development. In this paper, we present a DSA monitoring
framework that supports users in determining an effective
HW/SW partitioning for SW application kernels. Our framework
leverages Virtual Prototypes (VPs) to record HW metrics when
executing the application kernels. The core of our framework is
a novel monitoring approach using runtime code manipulation
on the VP binary. The approach does not necessitate any
modification of the VP or SW. We demonstrate the quality of
our approach on a RISC-V VP platform running canny edge
detection on video frames.

I. INTRODUCTION

While the consensus is that technology-driven improve-
ments are slowing down, Moore’s Law is still driving the elec-
tronic industry [1]. To continue making exponential progress,
a lot of innovation is required challenging process technol-
ogy (e.g. three dimensional transistors, multi-patterning) as
well as the system architecture. More specifically on the
latter, Domain Specific Architectures (DSAs) fall into the
class of heterogeneous architectures that integrate specific
Hardware (HW) accelerators to meet the performance and
power improvements for the considered application Soft-
ware (SW) [2]. Among many research challenges [3], this
approach brings in a very deep interdependence of HW and
SW as the data flow of the application is optimized via HW
acceleration while maintaining programming flexibility.

The development of DSAs renewed the importance of
HW/SW co-design techniques, in particular for rapid and
efficient design space exploration (see e.g. [4], [5].) In this
context Virtual Prototypes (VPs) are of major importance. A
VP is a high-level, executable model of the entire HW platform
which runs unmodified production SW [6], [7]. As an industry-
proven methodology VPs are utilized to facilitate concurrent
development of HW and SW, alongside exploration of design
alternatives [8]–[10].

The predominant language for creating VPs is SystemC, a
standardized C++ class library [11]; for a broader overview on
SystemC we refer the reader to [12]–[14]. SystemC-based VPs
allow for orders of magnitudes faster simulation in comparison
to Register Transfer Level (RTL) models [6]. The key here
is Transaction Level Modeling (TLM) [15] which abstracts
unnecessary communication details but fully captures the HW
behavior while the SW is executed on the simulated proces-
sor. Such a processor is modeled in form of an Instruction
Set Simulator (ISS) and is surrounded by accelerators and

peripherals forming the VP platform. For simulation, SystemC
offers the event-driven SystemC kernel which is compiled
together with the VP platform into the VP binary for a host
(e.g. a x86 machine). Executing this VP binary simulates the
system. From the application SW as well as the DSA design
perspective, a major task is to determine an optimal HW/SW
partitioning early in the design process. Specifically, it is
necessary to identify and potentially transfer CPU-intensive
and time-consuming application kernels (hotspot functions
invoked frequently in loops) into the HW.
Contribution: In this paper, we present a DSA monitoring
framework that supports users in determining an effective
HW/SW partitioning for application SW. Our framework
leverages VPs to record HW metrics when executing the
application kernels. These metrics include simulation time as
well as memory accesses patterns, necessary to analyze the
SW kernels. By this, we enable early design space exploration
of DSAs wrt. application kernels.

The proposed monitoring approach for recording HW met-
rics in relation to SW execution is based on tracing in the
sense that we record information of the current system state
at regular intervals. Given the crucial importance of very fast
VP-simulation speed, two main requirements emerge: (1) only
minimal additional overhead for monitoring during simulation,
and (2) all HW/SW interactions wrt. kernel execution have
to be visible. Current tracing approaches only partially meet
these requirements. By implementing the tracing technologies
directly into HW or SW, these solutions focus either on the
HW perspective or the SW perspective, lacking the full system
view. Approaches which combine both do this by creating
a trace from the HW perspective and a trace from the SW
perspective and combine these two in an expensive post-
processing step. In contrast, our approach takes an external
monitoring perspective that encompasses both, the HW
and the SW, facilitating a holistic view as a unified system.
To realize our approach we use the runtime code manipulation
system DynamoRIO [16], [17] for monitoring. DynamoRIO
offers an interface for performing custom instrumentation at
the binary level during runtime. The interface serves as basis
to instrument the unmodified VP binary with our monitors at
runtime. These monitors record the value of the ISS program
counter (keeping track of the current position within the
executed SW) as well as read/write accesses to memories (to
built memory access statistics). Overall, this allows to maintain
high simulation performance and manageable data amounts to



be recorded while keeping the precise HW/SW relations.
To evaluate our DSA monitoring framework, we consider

a RISC-V VP platform running a canny edge detection ap-
plication SW consisting of a hierarchy of SW kernels. We
run canny with different image resolutions and demonstrate
that the performance overhead of recording the monitoring
dataset is less than a factor of 2 for large image resolutions.
Moreover, we show that the analysis of the dataset allows the
user to identify and transfer SW kernel parts of canny into HW,
resulting in a significantly improved system performance.

Summarizing, the major contributions of this paper are:
• Development of a DSA monitoring framework leveraging

the observability of VPs
• Use of runtime code manipulation on the VP binary for

monitoring, thereby maintaining high simulation perfor-
mance

• Implementation of specialized monitors for SW kernel
profiling, keeping recorded data amount low

This paper is structured as follows: First, related work is
discussed in Section II. Thereafter, in Section III, we present
the core of our approach. We describe the general Host-to-SW
memory hierarchy of a VP simulation followed by the pre-
sentation of our monitoring approach through runtime code
manipulation on the VP binary. Section IV introduces the
proposed DSA monitoring framework. The evaluation of our
framework is given in Section V. Finally, the paper is con-
cluded in Section VI.

II. RELATED WORK

Recently, in [3] a survey has been published which pre-
sented various research directions and challenges in designing
and developing DSAs. The importance of virtual emulation
frameworks and TLM-based VPs for DSAs is highlighted.
According to the authors, there is a clear demand for dynamic
analysis and transformation techniques to scope applications
and extract kernels and flow graphs to support design space
exploration. In contrast to approaches like [18], [19] and
[20], our framework aims to fulfill this demand by leveraging
SystemC-based VP platforms for these tasks.

In general, to support the user in design space exploration
of a DSA VP platform, the dynamic behavior of the VP
simulation has to be taken into account. For VPs, different
approaches in this direction have been developed. The first
approach we want to mention is [21], which implements a
custom C++ library. Due to the high customization which
is necessary when using the library, this solution is very
intrusive in terms of source code. An alternative approach
which removes the necessity to instrument the SystemC source
code was presented in [22]. This approach is changing the
dynamically linked SystemC library to a custom library, which
includes tracing capabilities at runtime. However, using a
custom SystemC library limits the use in industrial settings.
Moreover, extracting information on the running application
SW also requires extensions of the SystemC models. The
already mentioned solutions have in common that the trace
is generated while a SystemC simulation is executed. [23] is
implementing a different approach by tracing the execution

flow of an application outside SystemC and in a second step
simulates this trace in SystemC to generate the HW metrics.
This solution introduces a large overhead because multiple
tools are necessary to generate the desired output. Tracing of
HW and SW separately and combining the data has also been
considered (see e.g. [24] and [25]), but is overall too costly.

The works [26] and [27] uses the GNU Debugger (GDB)
to trace the simulation. While these approaches allow for
dynamic insights without instrumenting the source code, due
to the utilization of GDB, these methods introduce significant
execution time overhead, rendering them impractical for trac-
ing complex HW/SW interactions.

Our framework in contrast builds upon a comprehensive
understanding of the Host-to-SW memory hierarchy which
forms the basis to realize our monitoring via runtime code
manipulation of the VP binary; this facilitates a holistic view
as a unified system. In addition, we tailor our monitors
specifically to identify SW kernels and compute metrics to
support HW/SW partitioning.

III. HOST-TO-SW MEMORY HIERARCHY IN VP
SIMULATION AND DATA MONITORING

In this section, we present the core of our monitoring
approach. First, we analyze the precise memory locations of
the data, e.g. Program Counters (PCs), within the Host-to-SW
memory hierarchy designated for monitoring during the sim-
ulation (Section III-A). Based on these locations, we then in-
troduce our monitoring approach and show how the VP binary
is instrumented at runtime using DynamoRIO (Section III-B).
Last, we show how our framework can be tailored to SW
kernel monitoring (Section III-C).

A. Locating Simulated HW/SW Data in Host-to-SW Memory
Hierarchy

Simulation at early design stages is done by representing
the HW in form of a VP platform which is typically modeled
in SystemC. As SystemC is a standardized C++ class library
including the simulation kernel, the VP platform is compiled
into the VP binary for simulation. Loading this binary on
a host system and executing the contained VP instructions
simulates the HW behavior. The VP platform, i.e. the DSA
design, is composed of a processor surrounded by accelerators
and peripherals. The processor itself is modeled in the form
of an ISS, enabling the execution of application SW within
the VP platform.

Like the HW, the SW is also present in the form of a
binary. Consequently, the VP platform additionally includes a
mechanism to load the application SW into the HW memory at
the beginning of the simulation. After the SW has been loaded,
the ISS can execute the contained SW instructions. Fig. 1
visualizes the Host-to-SW memory hierarchy when executing
the VP binary, i.e. simulating a DSA design.

The gray boxes represent the Host, the HW and the SW, re-
spectively. The host is an abstract representation for a machine
executing the simulation. An example for such a machine is
an x86 workstation running Linux. The host contains registers
(registershost) as well as an instruction memory (imemhost)
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Fig. 1: Host-to-SW memory hierarchy showing simulated HW/SW data locations as basis for monitoring

and a data memory (dmemhost). These memories contain the
HW, i.e. the VP binary (cf. arrow starting from Host box to
the HW box).

Like the host, the HW also contains registers (registersHW )
as well as an instruction memory (imemHW ) and a data
memory (dmemHW ). In contrast to the host, these memories
contain the application SW binary. From the HW perspective,
the components registersHW , imemHW and dmemHW are
part of the processor. From the host perspective these compo-
nents are variables stored in dmemhost.

Diving deeper, we can see that the registershost contain the
PChost. This PChost register contains an address pointing to
a VP instruction (representing the HW of the DSA design)
within imemhost. As an example in Fig. 1, we see that
the PChost points to address 0x373ec which contains the
instruction responsible to simulate a read from dmemHW .

As stated above, dmemhost contains variables representing
the registersHW . One of these registers is the PCHW

containing an address pointing to a SW instruction within
imemHW . In the concrete example of Fig. 1, PCHW is
pointing to address 0x12834, where we find the SW instruction
to increment the SW variable c.

Understanding the respective memory locations and their
meaning wrt. the HW and SW of the considered DSA design
in the Host-to-SW memory hierarchy is essential for our
monitoring approach. Leveraging this knowledge, we can take
an external perspective for monitoring and get a holistic view
as a unified system. The concrete implementation in terms of
monitoring is presented in the next section.

B. Monitoring via Runtime Code Manipulation on the VP
Binary

A major goal of our monitoring approach is to maintain high
simulation performance. Although the data of interest could be
monitored by implementing tracing technologies directly into
the HW/SW system (i.e. the VP and/or application SW), such
an implementation would introduce a large overhead during
simulation and influences the HW/SW interaction since addi-
tional code has to be interpreted by the ISS. Leveraging the
locations of the data along the Host-to-SW memory hierarchy
as described in the previous section and illustrated in Fig. 1, we
now aim to record the current position and state of the HW

simulation and the contained application SW by monitoring
registers and memories of the host. One solution would be
to use technologies like ptrace [28] which allows to stop and
to continue the simulation with host interrupts and record the
current system state. However, the extremely frequent stopping
and resuming of the host execution results in a tremendous
overhead due to the required context switches on the host
system. To solve this problem, we leverage the Dynamic
Binary Instrumentation (DBI) tool DynamoRIO. DynamoRIO
allows users to insert custom instrumentation code into a
running program without the need to modify its source code or
recompile it. DynamoRIO operates at the binary level, making
it possible to observe and modify program behavior during
execution. When DynamoRIO is dynamically instrumenting a
target program, it allows users to specify certain events for
which they want to be notified. When the target program en-
counters one of these events during its execution, DynamoRIO
invokes the corresponding event handler. Essentially, these
event handlers are callback functions that users can define to
respond to specific events. In this work we make use of Basic
Block1 (BB) events. A BB event is triggered in DynamoRIO,
whenever the program enters or exits a BB of code. In our
approach, we register respective event handler and realize our
monitors as follows:

a) Monitoring PCHW : The code in Listing 1 shows part
of the code which performs dynamic code insertion into the
VP binary for monitoring the PCHW . Given the VP binary
instructions of a BB as identified by DynamoRIO, the code
in Listing 1 is run for each instr of the BB. It first checks
whether the current BB-instruction of the VP binary writes into
the dmemhost by calling the instr_writes_memory()
function of the DynamoRIO API. If this is the case, the address
of the memory write operand of the instruction is retrieved.
Next, at Line 6 of Listing 1 it is checked whether the address
matches the PCHW (pc_hw) address to be monitored (see
Fig. 1 and address 0xf33c88). If so, a clean call to the
function clean_call_pc_hw is inserted which will records
the PCHW value. A clean call is a function call which stores

1A basic block is a block of host instructions that are executed sequentially.
Additionally, these instructions contain only one entry point and one point for
leaving the block, meaning only the last instruction is allowed to be a branch.



1 if(instr_writes_memory(instr)){
2 addr = opnd_get_addr(
3 instr_get_dst(instruction, i)
4 );
5
6 if(addr == pc_hw) {
7 dr_insert_clean_call(
8 ..., clean_call_pc_hw, ...);
9 }

10 }

Listing 1: DynamoRIO code fragment performing
instrumentation for monitoring the PCHW

1 pc_host = instr_get_app_pc(instr);
2 if (monitor_pc_host[pc_host]) {
3 dr_insert_clean_call(...,

clean_call_hw_mem_read, ...);
4 }

Listing 2: DynamoRIO code fragment performing
instrumentation for monitoring HW memory access

the host state when entering, and restores the host state when
leaving. This ensures that the simulation is not affected by the
function call.

b) Monitoring HW Memory Access: For monitoring the
access to dmemHW , we also use the BB event of DynamoRIO
and therefore again for each instr of a BB we run the
code in Listing 2. Note that the VP source code contains
several locations where the dmemHW is accessed. For these
locations we are able to derive the PCs, i.e. for each a concrete
PChost; in Fig. 1 see address 0x373ec as an example. For
instrumentation via DynamoRIO Listing 2 starts by retrieving
the PChost of the VP binary instruction in the current BB.
Then, it is checked whether this PChost should be monitored,
i.e. if it is a location like 0x373ec. The Boolean array
monitor_pc_host provides exactly this information and
is filled as described in Section IV. Finally, a clean call to
clean_call_hw_mem_read() will be executed which is
recording a VP memory read event.

How we tailor the monitoring for SW kernels is described
in the next section.

C. SW Kernel Monitoring

Application kernels are fragments of the application SW
which are frequently executed, i.e. typically in loops. Listing 3
shows an example of nested application kernels implementing
a Gaussian filter for smoothing image rows. The information
within this code fragment we are interested in is the runtime
behavior based on the contained kernels. In the example, we
see three for-loops. The first one ranging from Line 1-12
looping through the image columns. This first kernel contains
a nested kernel looping through the image rows and ranges
from Line 2-11. Line 4-9 contain the deepest kernel of our
example.

As already said before, when compiled this code is stored
in form of SW instructions within the imemHW . Typically,
identifying how much time has passed and how many memory

1 for(c=0;c<cols;c++) {
2 for(r=0;r<rows;r++) {
3 ...
4 for(rr=(-center);rr<=center;rr++) {
5 row = r + rr;
6 if(row >= 0 && row < rows) {
7 ...
8 }
9 }

10 smoothedim[r*cols+c] = ...
11 }
12 }

Listing 3: Nested kernels implementing gaussian filter for
smoothing image rows

accesses occurred is done by recording all HW instructions and
extracting the information in a post-processing step. However,
this results in an exceedingly large volume of data (reaching
hundreds of GBs). In contrast, we only record the advancing
PCHW alongside accumulated simulation time and memory
access metrics. This significantly reduces the amount of data
(few hundreds of MBs).

Based on the described monitors, we introduce the proposed
DSA monitoring framework in the next section.

IV. DSA MONITORING FRAMEWORK

In this section, we present the proposed DSA monitoring
framework. The main purpose of the framework, besides
monitoring and analyzing the results, is to translate the address
based interaction of our monitoring approach into source code
based interaction for the user.

We begin by showing the framework overview and then pro-
ceed to describe its individual components in the subsequent
subsections.

A. Overview

Starting point of our DSA framework, as presented in Fig. 2,
builds the Framework Configuration file. This file is manually
created by the user and contains the links to the HW and SW
binaries as well as the source code references tailoring the
framework for application kernel profiling.

As our monitoring approach expects host addresses but a
user usually wants to interact based on source code references,
a Source Code Translator is implemented and a resulting
Address Table is handed over to the DSA Monitor.

Next, the DSA Monitor executes our monitoring approach
as described in Section III, creating the Monitoring Dataset.

In the last step, the monitoring dataset is processed by the
DSA Analyzer. In this step, the monitoring results are analyzed
in correlation to the source code of the SW.

The following sections elaborate these components in more
detail.

B. Source Code Translator

The first component of our framework which is executed
is the source code translator. The framework configuration, as
shown in Listing 4, is parsed at the beginning of the translation
and is built up as a list of tags with corresponding values.
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Fig. 2: DSA monitoring framework: Boxes highlighted in blue are the main components of our framework. Boxes highlighted
in gray show the input/output exchanged between them. Boxes drawn in white are given.

1 HW:’riscv_vp’
2 ...
3 PC_HW:’PC_VP’
4 ...
5 MEM_READ_HW:’/riscv_vp/memory.h:76’
6 ...

Listing 4: Framework Configuration excerpt

1 PC_HW:’0xf33c88’
2 ...
3 MEM_READ_HW:’0x373ec’
4 ...

Listing 5: Address Table excerpt

Line 1 contains the HW tag with the value of the binary to be
simulated, in our case a RISCV-VP binary (riscv_vp). As
we want to instrument our VP binary on a Linux machine, it
is compiled as Executable and Linkable Format (ELF) binary.
To be able to translate the source code references into host
addresses, the binary also needs to be compiled with enabled
DWARF debugging information. DWARF was developed along
with ELF and is the default format used in debuggers like the
GNU Debugger (GDB). It’s important to note that enabling
DWARF debug information does not have any impact on
performance.

Line 3 of Listing 4 tells the framework the name of the
PCHW variable within the simulator, in our case the variable
is called PC_VP. The MEM_READ_HW tag in Line 5 tells the
framework, that executing this line of code performs a memory
read within the simulated HW. Utilizing the debug information
extracted from the VP binary, the configuration is translated
into corresponding host addresses, resulting in an address table
as shown in Listing 5. Line 1 gives an example where we
see that the variable name PC_VP was translated into the
address 0xf33c88. Furthermore, the code line reference of
MEM_READ_HW was translated into address 0x373ec in Line 3.

With this information, the DSA Monitor is able to insert
our DSA tailored monitors.

C. DSA Monitor
Similar to the source code translator, the DSA monitor

obtains the links to the HW and SW binaries from the

Files
File[]

File
Function[]

Function
Kernel[]
Source Code Line[]

Kernel
Source Code Line[]

Source Code Line
PC_HW[]

PC_HW
Simulation Time
Memory Read
Memory Write

Fig. 3: Data structure used for analysis

framework configuration for simulation. The DSA Monitor is
implemented in accordance with the approach from Section III,
leading to the generation of the monitoring dataset. The
monitoring dataset is a binary file containing a sequential
list of PCHW values with corresponding HW metrics and
is handed over to the DSA analyzer.

D. DSA Analyzer
The DSA analyzer is designed as a standalone application

to separate the monitoring from the analysis. This allows to
conduct further analysis on the recorded data without the need
to rerun the simulation. Additionally, this separation enables
easier comparison between multiple simulations.

The DSA analyzer parses the framework configuration and
the monitoring dataset. The framework configuration contains
the SW binary link to parse the debug information of the
SW. This debug information is used to analyze the monitoring
dataset entries based on the SW source code. To do this, the
source code is statically analyzed to generate a data structure
containing a hierarchical representation of files, functions and
kernels as shown by the blue boxes in Fig. 3.

Functions and Kernels contain the references to source code
lines (purple box in Fig. 3). As a source code line usually is
compiled into multiple instructions, it contains an array of
correpsonding PCHW addresses. This allows us to link the
list entries from the monitoring dataset(green box in Fig. 3)
to the corresponding functions and kernels.

After the data structure is created, the analyzer becomes
capable of generating and correlating HW/SW interactions for
files, functions and kernels. In the next section, the results of
such analyses are shown.

V. EVALUATION

In this section, we present the evaluation of the proposed
DSA monitoring framework. We start to briefly describe the
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Fig. 4: Canny edge detection example

DSA design used in the experiments as well as the experi-
mental setup (Section V-A). Thereafter, we evaluate the costs
and scalability of our monitoring approach (Section V-B).
Finally, we demonstrate how our frameworks helps in HW/SW
partitioning (Section V-C).

A. DSA Design and Experimental Setup
The HW of our DSA design was modeled on top of the

open-source RISC-V VP from [29], [30]. More precisely, we
used the open-source RISC-V VP++ which provides several
improvements (e.g. [31]) and is available on GitHub2. The
RISC-V VP was configured with 32 MB of memory and an
instruction execution time of 1 ns which corresponds to a
1 GHz clock frequency.

As SW application we selected the well-known canny edge
detection algorithm which processes incoming video frames.
The respective images for the canny SW are captured via a
camera peripheral connected to the TLM bus. The camera
can be configured via corresponding registers to set up image
resolution and capture intervals. As basis for our experiments,
the canny algorithm is implemented fully as SW (consisting
of 35 kernels) and compiled with the RV32I base instruction
set. The main stages of the canny algorithm are:

• Gaussian smoothing
• Computing derivatives
• Computing magnitude of gradiant
• Performing non-maximal suppression
• Applying hysteresis

Applying canny to the image shown in Fig. 4(a) produces the
output image depicted in Fig. 4(b).

All evaluations have been performed on an Intel Core
i7-10700 with 64 GB RAM under Ubuntu 22.04.2 LTS.

B. Costs and Scalability of Proposed Monitoring
As the monitoring approach introduced in Section III builds

the heart of our framework, we wanted to evaluate it separately
in terms of scalability and costs. To obtain a representative
amount of samples, we varied the number of executed RISC-V
instructions and memory accesses. For our HW/SW setup, this
can be easily achieved by setting different frame resolutions.
We picked six resolutions from the CIF standard format [32].
To determine the upper bound for the CIF resolutions which
our system can compute, the expected memory usage for stor-
ing a frame while processing is calculated. For a resolution of

2https://github.com/ics-jku/riscv-vp-plusplus

9CIF, the canny application SW needs 18.27 MB of memory,
fitting into the configured RISC-V memory. We also evaluated
small resolutions since we expected much faster simulation
times. Table I summarizes the results running canny for a
single frame. The different configured resolutions are given
in the columns. The first row lists the number of executed
RISC-V instructions. Row two and three show the host time
needed for simulation without monitoring (Host time - no
monitoring) in minutes and the host time needed for simulation
with monitoring (Host time - monitoring), respectively. The
resulting overhead factor is given in row four (Overhead).

Finally, the last row lists the size of the monitoring dataset in
MB. Please note that starting from a resolution of 352x288 and
beyond, already billions of RISC-V instructions are simulated.
As can be seen, the performance overhead for simulation stabi-
lizes at the resolution of 44x36, i.e. from this point onward, it
always remains below a factor of 2. In addition, we plotted the
results. They are shown in Fig. 5. The first plot in Fig. 5(a)
illustrates the number of pixels needed to be calculated (y-
axis) in relation to the corresponding resolutions (x-axis). We
generated similar plots which relate the resolutions to host time
without monitoring (Fig. 5(b)), to host time with monitoring
(Fig. 5(c)), and to the monitoring dataset size (Fig. 5(d)). As
becomes evident from these plots, the same quadratic growth
as the number of pixels can be observed, in other words our
approach scales with number of to be computed pixels.

C. HW/SW Partitioning

To demonstrate that our DSA monitoring framework sup-
ports the users in determining an effective HW/SW partition-
ing, we use the results of our DSA analyzer.

However, before we can start to move SW parts of canny
(in particular SW kernel parts) into HW, we first have to
determine for which resolution we run the simulations and
still get representable results. This means out of the used
resolutions we want to find the one where the number of pixels
becomes the dominant factor. We did this by computing the
average deviation of the stages between two resolutions uti-
lizing our proposed framework. The deviation between 88x72
and 176x144 is only 0.59%, indicating that the resolution of
88x72 produces a sufficiently accurate result, enabling us to
extrapolate the findings to higher resolutions.

A natural approach for HW acceleration is to leverage
additional RISC-V ISA extensions [33], such as multiplication,
floating point, etc. We used our DSA monitoring framework
to analyze the SystemC simulation time for the different filter
stage kernels of the pure SW canny on RV32I as well as
on RV32IMAFC. The bar graphs are shown in Fig. 6(b) and
Fig. 6(c), respectively. Note that the results for RV32IMAFC
have been obtained by activating the Multiplication/division,
Atomic, Floating-point, and Compressed ISA extensions in the
RISC-V VP and recompiling the SW with this architecture
setting. The results of our framework with respect to memory
accesses of canny can be seen in Fig. 7(b) and Fig. 7(c),
respectively. We can see that the simulation time (Fig. 6(a))
and the number of memory accesses (Fig. 7(a)) has decreased
by comparing the bar for RV32I with the bar for +MAFC.



TABLE I: Costs and scalability of monitoring for different resolutions running canny edge detection
11x9 22x18 44x36 88x72 176x144 352x288 704x576 1056x864

Executed RISC-V instructions 2,918,759 7,350,190 25,637,385 98,984,371 395,274,305 1,584,436,030 6,502,028,739 14,746,998,363
Host time - no monitoring [min] 0.01 0.03 0.09 0.32 1.28 4.97 20.66 51.84
Host time - monitoring [min] 0.04 0.06 0.17 0.60 2.39 9.20 38.02 93.34
Overhead factor 3.45 2.19 1.91 1.84 1.86 1.85 1.84 1.80
Size of monitoring dataset [MB] 34 85 294 1,229 4,608 18,432 74,752 168,960

(a) Number of pixels (b) Host time - no monitor. [min] (c) Host time - monitoring [min] (d) Monitoring dataset size [MB]

Fig. 5: Plotted scalability for monitoring

(a) Overall (b) RV32I (c) +MAFC extensions (d) +HW smoothing

Fig. 6: SystemC simulation time [ns]; overall (blue) and separated simulation times of filter stage functions (magenta)

(a) Overall (b) RV32I (c) +MAFC extensions (d) +HW smoothing

Fig. 7: Memory accesses; overall (blue) and separated memory accesses of filter stage kernels (cyan)

The plus in performance for the stages are mainly caused by
the fact that without multiplication/division and floating point
support in HW expensive SW emulations are included (e.g. a
soft-float library).

The most significant performance improvement, when en-
abling the MAFC extensions, was observed for smoothing and
suppression, but still smoothing remains the hotspot of the
canny SW. Therefore, we decided to move smoothing into
HW. More precisely, the camera module performs smoothing
directly on the image. The results of this acceleration are
shown in Fig. 6(d) and Fig. 7(d), respectively. We observed
a strong reduction in total simulation time (Fig. 6(a)) as

well as memory accesses (Fig. 7(a)) by comparing the bar
for +MAFC with the bar for +HW. Additionally, we can
see that smoothing is not part of our SW kernel analysis
anymore. It is crucial to highlight that even though there
are similarities, we observe a distinct change in the filter
stages that are still implemented in SW. It appears that parts
of magnitude have moved into hysteresis. Given that we are
simulating a VP platform with peripherals, our simulation also
incorporates interrupts along with their corresponding interrupt
service routines. As we have moved smoothing into HW, the
remaining filter stages complete earlier, leading to interrupts
occurring at a subsequent filter stage. In this case the interrupt



TABLE II: Final FPS results for canny

RV32I +MAFC +HW
Kernel 0 [ms] 329.71 77.28 37.88
FPS 3 12 26

did not appear in the magnitude stage but in the hysteresis
stage. This highlights the valuable insights we obtain through
our DSA monitoring framework.

Finally, we evaluate the performance of the different
HW/SW partitionings based on the Frames Per Second (FPS).
Table II reports the results. Each canny implementation is
shown in a column, i.e. RV32I, +MAFC, and +HW, respec-
tively. The simulation time for the frame capture kernel for
the different implementations are given in row Kernel 0 in
milliseconds while the resulting FPS is shown in row FPS.
As can be seen, the first implementation achieves only 3 FPS,
but using an RV32IMAFC core and moving HW smoothing
into HW leads to 26 FPS.

VI. CONCLUSIONS

In this paper we introduced a DSA monitoring framework
for HW/SW partitioning of application kernels leveraging
VPs. The core is a novel monitoring approach that centers
around the Host-to-SW memory hierarchy in SystemC VP
platform simulations. This approach enabled us to observe
the simulation from a holistic view, perceiving it as a unified
system. Leveraging the dynamic binary instrumentation tool
DynamoRIO allowed us to insert monitors into the simulation
with a very low overhead. Instrumenting only application
kernel specific monitors kept the data amount manageable,
tailoring our approach for DSAs.

In our framework, the user specifies the code to be moni-
tored, which is subsequently translated into PC addresses for
the monitoring process. To analyze the dataset collected during
monitoring, we have developed a DSA analyzer as part of our
framework. The analyzer correlates HW/SW interactions for
files, functions and kernels and generates graphs.

In our evaluation, we considered a RISC-V VP platform
running a canny edge detection application SW. Using our
framework, we were able to make informed decisions about
the minimum resolution, which is also valid for HW/SW parti-
tioning at higher resolutions. Furthermore, we successfully im-
plemented HW accelerations to enhance system performance.

In future work, we plan to integrate advanced user-specific
analysis programs via [34] into our framework.
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