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Abstract—Often the full range of all possible input combi-
nations of circuits is not needed for a specific use case. For
example, an embedded processor might only use a small subset
of all available instructions, or the operands to a multiplier are
guaranteed to be within certain bounds. These external don’t
cares result in the interesting case of gates in the netlist that are
completely inactive (or redundant), since they are never activated
by the inputs to the design. Those gates can be safely eliminated,
reducing the size of the netlist without loss of functionality.

In this paper, we present PSYN, an approach to detect
and eliminate inactive gates using Property Checking (PC). Our
approach can be viewed as a technology-independent logic
optimization to be used before technology mapping. PSYN uses
only free and open-source tools for each step from synthesis
to formal. We split the underlying large problem into many
small sub-problems, which can be effectively distributed over
multiple machines. This enables PC-based gate optimization on
a large scale, eventually producing an optimized netlist. In the
experiments, we show that our approach can lead to significant
logic reductions in moderate runtimes, even for large netlists.

I. INTRODUCTION

In Very Large Scale Integration (VLSI) design, synthesis
refers to the process of transforming a high-level hardware
description, typically given as a Register Transfer Level (RTL)
design, into a gate-level representation.

During synthesis, various optimizations are applied to im-
prove the design’s performance, timing characteristics, power
consumption and area utilization. These optimizations include
logic minimization, technology mapping, resource sharing, and
clock tree synthesis. In this work, our focus is on technology-
independent logic minimization of Verilog netlists.

Logic optimization has been fundamental for digital circuit
design. In the early days of digital design, logic optimization
primarily targeted the reduction of a Boolean function to a
two-level sum-of-products form. In the late 1980s, multi-level
logic optimization techniques gained prominence. Methods
like algebraic manipulation, factoring, common sub-expression
elimination, and functional decomposition were employed to
minimize logic complexity [1]. The techniques further evolved
and Don’t Cares (DCs) started to play a central role in
logic optimization [2]. DCs provide significant flexibilities for
optimization algorithms. Typically, Internal Don’t Cares and
External Don’t Cares are distinguished. Internal DCs result
from the netlist structure in the presence of reconvergent paths.
They are divided into Satisfiability Don’t Cares (SDCs) and
Observability Don’t Cares (ODCs). In essence, SDCs occur
when certain input combinations are not generated for a node,
while ODCs arise when the output value of a node is not

important under specific conditions. The computation of both
has been formulated using incompletely specified functions
also called permissible functions [3], [4]. Strong improvements
became possible by using simulation and SAT, see e.g., [5].

The above-mentioned external DCs are given by the en-
vironment or explicitly by the user. While there have been
attempts to unify the characterization of the different DC
types [6], the challenge when targeting external DCs is that
the optimization problem changes from considering a (com-
pletely specified) Boolean function to optimizing a Boolean
relation [7]. Moreover, as also reported in [7] there is currently
no open-source synthesis tool available which accepts external
DCs. From a practical perspective, it is crucial that the
specification of external DCs is very user-friendly such that
the full optimization potential can be leveraged.

To the best of our knowledge, [8] is the only existing
work in the direction of user-friendliness: formal properties
are used to specify external DCs. However, the paper targets
the very specific application of eliminating the logic in a
processor for unneeded instructions from an Instruction Set
Architecture (ISA). More precisely, it presents the Property-
Driven Automatic Transformation (PDAT) framework. The
user specifies properties to capture the unneeded instructions,
essentially assumptions for the instruction signal. Then, PDAT
operates on the processor netlist and uses PC to detect gates
that are guaranteed not to toggle for the reduced ISA. This is
done by checking several properties per gate. Finally, PDAT
eliminates these non-toggling gates to generate a new design.
While the general PDAT approach is very interesting, the paper
has several deficiencies: First, PDAT only uses commercial
tools. Second, the properties which are annotated to each gate
are not fully provided as well as other important details on the
(verification) directives to the commercial tools are missing.
Finally, no run-times are reported in the experiments. All
these deficiencies motivated us to revisit the principle of the
property-based optimization idea.
Contribution: In this paper, we present PSYN, an approach
to detect and eliminate inactive gates using PC. Our approach
leverages open-source tools for each step from synthesis to
formal, in particular Yosys [9] which integrates ABC [10]. The
user can specify assumptions about the input data1 (describing
external DCs) in form of Verilog assertions. Then, for each
gate in a Verilog netlist, a set of properties is generated. A
distinct PC problem must be solved for each of these prop-

1PSYN can also be used to assume properties on internal signals.



erties, all while considering the user-specified assumptions
to be true. Undoubtedly, there is a substantial potential for
parallelization. We split the underlying large problem into
many small sub-problems, which can be effectively distributed
over multiple machines, thus enabling PC on a large scale,
eventually producing an optimized netlist.

In our experiments, we analyze the performance and gate
reduction capabilities of PSYN. First, since the number of
gates that are handled in each PC problem simultaneously is
configurable, we experimentally find advantageous task sizes
depending on the size of the netlist in Section VI-B. Next,
we evaluate how much impact the assumptions have on the
runtime of PSYN. For this, we apply PSYN to several designs
from the EPFL logic synthesis benchmarks using randomized
assumptions. Then, in Section VI-D, we recreate several opti-
mized versions of the Ibex processor based on subsets of the
RISC-V ISA as presented in [8]. Finally, in Section VI-E we
compare the open-source Yosys backend against the backend
using a well-known commercial formal verification tool.

The rest of this paper is structured as follows. First, we
give an overview about PSYN and the distributed computation
in Section II. Next, with a particular focus on open-source
software, Section III introduces which tools are used in PSYN.
Then, we present the architecture of PSYN in Section IV
followed by a description of the main algorithm in Section V.
Finally, after an experimental section in Section VI we con-
clude this paper in Section VII.

II. OVERVIEW AND METHODOLOGY EXTENSIONS

This section provides a brief overview of our PSYN flow.
We based PSYN on the idea of finding redundant gates using
PC as presented in [8] as PDAT. We try to answer the
question which gates can be safely removed from a Verilog
netlist without changing the function of the circuit. By adding
(temporal) properties to each gate, which can detect such
behavior, and by considering user-provided assumptions on
the input data describing the external DCs, we can solve this
problem using a property checker. Therefore, we first need
to attribute every gate with the corresponding properties as
partially described in [8].

At this point, our PSYN flow extends the PDAT methodol-
ogy. We noticed that the PC problems for all annotated gates
are independent of each other. This means that we can solve
them separately, which we also found to be a very effective
way to make the open-source PC tools handle large netlists.
Therefore, we split the problem according to our resources into
smaller tasks of a few hundred gates each. These tasks can then
be distributed to as many machines as available, making use
of the high parallelization potential. The result of all checked
PC problems is a list of gates together with rules how they
can be replaced without compromising the functionality of the
design.

In the next step, the original netlist is rewritten according
to this list of possible optimizations. In this step, we go over
the complete netlist and, if we come across a gate that can
be optimized, we remove the gate adhering to the mentioned

rules. In general, there are two kinds of rules for most gates:
we either assign one of the inputs to the output of the gate,
or we assign a constant value to the output of the gate. Since
more than one property can be satisfied for a gate at the same
time, the properties are prioritized. Within this priority system,
a constant value is given priority over a wire.

Every such property can now be used to change a single
gate in the circuit. Once this replacement is done, we resyn-
thesize the circuit with Yosys. This allows us to simplify the
circuit further, by incorporating any cascading effects the gate
removal had into the design. This resulting circuit is then used
for a comparison with the initial circuit, to generate our gate
count metrics.

III. UTILIZED SOFTWARE

One of the main goals of PSYN is that it is implemented
using open-source tools exclusively, and that PSYN itself is
available open-source2. This is especially important consider-
ing the highly specialized tools required for the PSYN flow,
namely logic synthesis and formal verification. Until recently,
these tools were only available from commercial vendors,
which posed a very high entry barrier for smaller companies,
researchers, and hobbyists. Only recently it became feasible
to perform all steps of the hardware design flow including
synthesis, place and route, and formal verification using only
free and open-source tools. This is in large part thanks to
Yosys [11], which acted as a crystallization point for the open-
source EDA community.

Yosys is also at the heart of our flow, leverages ABC [10]
and provides both, the synthesis and formal verification to
PSYN. Additionally, we utilize sby, a front-end for the formal
verification capabilities of Yosys, for solving our properties.
We currently use Z3 [12] as the solver engine, however since
sby supports multiple engines (e.g., Boolector [13], Yices [14])
supporting them is one of our next goals.

As we will present in Section IV-2, the optimization of a
design is split into many smaller tasks. Each task is a subset
of gates for which properties will be checked in a single call
to sby. Ideally, we would like to add the properties of a task to
the gates in the design using SystemVerilog’s bind construct.
However, this is not supported in the currently available open-
source version of Yosys, and thus we had to implement this
feature in another way. We circumvented this problem by
injecting the properties of a task into the netlist just before
sby is started. This is done using the AWK text processing
language. Finally, PSYN itself is implemented as a Python
application with a simple command-line interface.

IV. PSYN ARCHITECTURE AND CONFIGURATION

This section presents the proposed PSYN approach in
detail. First, we describe the two available backends in PSYN
in Section IV-1. These include a backend utilizing only free
and open-source tools and a backend utilizing a well-known
commercial formal verification tool. Then, in Section IV-2,

2PSYN is available at: https://github.com/ics-jku/psyn
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we present how multiple machines can be connected to form
a compute cluster onto which PSYN can effectively distribute
the computation. Finally, Section IV-3 briefly introduces how
PSYN and the compute cluster can be configured.

1) PSYN Backends: The PSYN flow can utilize different
backends to perform the property-driven synthesis. We im-
plemented two backends, one using only the previously men-
tioned open-source tools and one backend using a commercial
PC tool. Adding new backends is straightforward, as each
backend is a class that has to provide only three functions:
(1) inject, which adds the assumptions to the design; (2)
bind, which binds the properties to the gates; (3) work, which
performs the PC. In the remainder of this section, we will
focus only on the open-source backend, as this backend allows
the large-scale distributed flow and is therefore our main
contribution.

2) Open-source Backend Compute-Cluster: Our open-
source backend leverages sby and allows distributing PC onto
multiple machines, if the machines are connected in a specific
setup. An overview of this setup is shown in Fig. 1. First, the
number of machines in the setup is not limited, however one of
the machines must act as the main coordinating process (light
red box around Worker 1). This process is the entry point
to PSYN and performs the initial synthesis, rewrites and re-
synthesizes the netlist, and performs the equivalence checking.
It also provides the task API, to which the workers connect
during PC to get new tasks. To this end, a port on the main
machine must be open such that they can make requests to the
task API (blue lines).

Further, all machines must have access to a shared direc-
tory over a network file system (orange lines and cylinder).
This shared directory is required to exchange the netlist, the
assumptions, and the redundant gates. Finally, ssh connections
between the machines must be possible so that the coordinat-
ing process can start the clients on all workers (red lines).

3) Configuration and Usage: Each hardware design is
unique and distinct from one another. Therefore PSYN pro-
vides configuration features: First, the config.ini file is the main
place for declaring designs that should be made available to
PSYN. To add a new design, a new section has to be added
to the config file. Listing 1 shows an exemplary configuration
for the Ibex processor. A new section is declared by writing
the name inside brackets. The filename and the name of
the top module are specified using the keys design and top
respectively. Next, the file holding the assumptions is specified
using the assumptions key. If the design is sequential, the reset
signal and its polarity can be set via the reset and active-low
keys. Additionally, the number of times a sequential design is
unrolled and the number of cycles that are skipped by the PC
tool are declared using the unroll and skip keys.

The next configuration file defines which machines are used
by PSYN. This is done using a workers.json file, which must
contain a JSON dictionary with the hostname of the workers
being the keys and the number of parallel threads on a worker
being the values. An example of this is shown in Listing 2.
Note, that the main machine that runs the coordinating process

Listing 1 PSYN configuration file.

1 [ibex]
2 design = ibex_top.v
3 top = ibex_top
4 assumptions = ibex_assumptions.v
5 reset = rst_ni
6 active -low = 1
7 unroll = 8
8 skip = 2

Listing 2 Worker configuration file.

1 {
2 "worker1 ": I,
3 "worker2 ": J,
4 ...
5 "workerN ": K
6 }

does not have to be, but can be, included in this list, it only
has to be connected to the workers like discussed above.

V. PSYN ALGORITHM

In this section, we present the main algorithm of PSYN. The
algorithm consists of three phases. The first phase, in which
the design is synthesized into a suitable netlist, happens before
PC starts and is presented in Section V-B. After the first phase,
PC is distributed to the defined workers. This second phase
is explained in Section V-C. Finally, in Section V-D the third
phase is described. In this phase, the netlist is rewritten based
on the PC results, the netlist is cleaned-up, and an equivalence
check with the original netlist is performed.

A. Preparing the Assumptions

Before PSYN can be applied to a design, users have to
provide a file containing the assumptions they would like to
make about the input data. An exemplary assumption file is
shown in Listing 3. In this example, we want to remove some
instructions from a RISC-V processor. To accomplish this, we
write an assumption about the signal coming into the core
from the instruction memory. In this assumption, we enable
specific instructions that should be included in the final netlist
by only allowing certain legal values for the op, funct3, and
funct7 values of RISC-V instruction words. Now, removing
an instruction is as simple as commenting out a line from the
assumption. For example, the assumptions below enable all
RV32I instructions3 except the slli instruction (Line 6–8).

B. Before PC

In this section, we describe all steps of the PSYN flow
that are executed by the coordinating process using our open-
source backend. This includes the first synthesis to a netlist of
standard gates (Section V-B1), the distribution of tasks via an
HTTP API (Section V-B2), the rewriting of the netlist (Sec-
tion V-D1) with the following re-synthesis (Section V-D2), and
the final equivalence check of the original and the optimized
netlists (Section V-D3).

3We omit most assumptions for brevity.



Fig. 1: The distributed architecture of PSYN.

Listing 3 An exemplary assumption file for removing instruc-
tions from a RISC-V core.

1 always @* begin
2 assume (( instr [6:2] == 5'b01101) // lui
3 || (instr [6:2] == 5'b00101) // auipc
4 || (instr [6:2] == 5'b11011) // jal
5 ...
6 // || ((instr [31:25] == 7'b0000000)
7 // && (instr [14:12] == 3'b001)
8 // && (instr [6:2] == 5'b00100)) //

slli

9 || ((instr [31:25] == 7'b0000000)
10 && (instr [14:12] == 3'b101)
11 && (instr [6:2] == 5'b00100)) //

srli
12 ...
13 );
14 end

1) First Synthesis: In this first step of the PSYN flow, the
design specified in the configuration file is synthesized to a
standard gate-level library. PSYN can be applied to Register
Transfer Level (RTL) level designs and to netlists. However,
since the format of the netlist is important for the following
phases of PSYN, synthesis has to be performed even if the
design is already a netlist to get the expected output format.
The TCL script controlling the Yosys synthesis is shown
in Listing 4. The top-level module is set via the environment
variable PS_TOP which is set by PSYN before the script is
started. Most of the synthesis commands follow a basic Yosys
synthesis, however the call to ABC [10] is very important. This
maps the logic elements to a small set of gates which is build
into Yosys: In fact, this guarantees that all gates are mapped
to standard Verilog unary and binary logic operators (i.e., &, |,
^, and ~). For each of these basic operators, PSYN contains a
set of properties that are used to check if a gate is redundant.
These properties will be presented in detail in Section V-C1.

2) Task Server and Worker assignment: After the first
synthesis is done and the problem was split into tasks, the
tasks have to be distributed to the workers. For this, PSYN
starts an HTTP server that provides thread-safe access to a
queue of all remaining tasks. The server provides an API with
four endpoints that is used to synchronize and exchange tasks
between the workers and the PSYN coordinating process. Each
endpoint either returns a result in the form of JSON data, or
it can be used to POST JSON data to update the state of a

Listing 4 TCL script for the first synthesis stage of PSYN.

1 yosys read_verilog -sv -formal -DSYNTHESIS=1 work
/step1.v

2 yosys hierarchy -check -top $::env(PS_TOP)
3 yosys flatten
4 yosys proc
5 yosys opt
6 yosys fsm
7 yosys opt
8 yosys memory
9 yosys opt

10 yosys techmap
11 yosys opt
12 yosys abc -g gates
13 yosys opt -full -share_all
14 yosys clean -purge
15 yosys write_verilog work/synthesized.v

task. The four endpoints of the API are:
/task/get Retrieve an unsolved task from the queue.
/task/done Mark a task as solved.
/done Check if all tasks have been solved.
/remaining Return the number of remaining tasks.

This API is started by the open-source backend after the
design was synthesized and split into tasks. On startup, the
API server reads the list of all tasks and inserts them into a
thread-safe queue data structure. It also creates a hash map in
which the state of all tasks (i.e., if the task was already solved)
is kept. This hash map is initialized with all tasks set to the
state of “not-solved”.

After the task server is started, the number of tasks is
compared to the number of available threads on all workers.
PSYN now assigns each available worker a number of threads
on which runners should be started. This assignment tries to fit
as many tasks as possible to the workers in the worker.json file,
starting with the first specified worker. Therefore, if the num-
ber of tasks is smaller than the number of all available threads,
not every worker is assigned to start runners. All assigned
tasks are stored in the .assigned_worker.json file. Following
the task assignment, the coordinating process connects to every
worker with assigned tasks to start the psyn_client application,
which in turn spins-off as many runner processes as have been
assigned to this worker.

Now, the main phase of the PSYN flow starts in which
all tasks are solved by the workers following the principle
we will present in Section V-C. The API server is bundled



with the PSYN application and no additional software has
to be installed. In particular, executing one psyn run config
command on one of the workers is enough to start the full
flow, everything else including synthesis, task dispatching, and
PC is done automatically. While all tasks are being processed,
the coordinating process waits until all runner processes on all
workers are stopped. If all runner processes stopped, the final
work is continued as presented in Section V-D.

C. On Worker

This section presents the parts of PSYN that are executed
on the workers by the psyn_client application. The client
application first reads the number of assigned threads from
.assigned_worker.json file and starts as many runners as were
assigned to this worker.

1) Enriching: Now, each runner process starts asking the
API for an unsolved task by requesting the API endpoint
/task/get. If the API returns a task, the gates of this task
must be annotated with properties. The SystemVerilog bind
statement is not available in Yosys without commercial add-
ons; therefore, we had to implement a different method to
add the properties. Since every design must go through the
first synthesis step, we can expect the netlist to always follow
the same format. In particular, each gate of the netlist is
implemented as a statement following the assign _n_ = a OP

b; format, where N is an integer number corresponding to the
gate numbers from the task and OP is one of the basic Verilog
operands &, |, or ^. Additionally, gates can also come inverted
in a format like assign _n_ = ~(a OP b);. We exploit this regular
format by parsing each assign statement and, if the assign
belongs to a gate from the task, keep a list of all gates and
the type of this gate. After all gates are parsed, the properties
are injected into the netlist by adding a module containing
the properties for every required gate. The type of the module
is injected depending on the type of the gate. By wiring the
correct input and output signals into the module, the properties
get bound to a gate. This property injection is implemented
using the AWK text-processing language, and the result is a
rewritten netlist containing the injected properties. We call this
the enriched netlist which is saved into the enriched.v file in
a task-specific local working directory.

Gate Properties: The gate properties we use are based on
the ones in [8] and are listed in Listing 5. We support the gate
types and, or, not, and xor. For all gate types with two inputs,
we check 4 basic assertions. A gate can be simplified if either
the output is constant, which we denoted by the _Y_0_p1 and
_Y_1_p2 assertions, or if it always follows one of the inputs,
denoted by the _Y_A_p3 and _Y_B_p4 assertions. For the not
gate only the constant output assertions apply.

The properties follow the simple naming scheme
name_output_value_weight. This naming scheme means,
that if this property holds, the gate can be replaced by output.
Additionally, each property is assigned a weight. This is
required, as each gate is assigned multiple properties, of
which some can hold at the same time. In this system, low
weights mean a higher optimization potential. We assigned

Listing 5 Verilog properties for the supported gate types.

1 `ifdef FORMAL
2 module and2_properties(input A, B, Y);
3 always @(*) begin
4 and_Y_0_p1: assert (Y == 1'b0);
5 and_Y_1_p2: assert (Y == 1'b1);
6 and_Y_A_p3: assert (!A || B);
7 and_Y_B_p4: assert (!B || A);
8 end
9 endmodule

10
11 module or2_properties(input A, B, Y);
12 always @(*) begin
13 or_Y_0_p1: assert (Y == 1'b0);
14 or_Y_1_p2: assert (Y == 1'b1);
15 or_Y_A_p3: assert (!B || A);
16 or_Y_B_p4: assert (!A || B);
17 end
18 endmodule
19
20 module not1_properties(input A, input Y);
21 always @(*) begin
22 not_Y_0_p1: assert (Y == 1'b0);
23 not_Y_1_p2: assert (Y == 1'b1);
24 end
25 endmodule
26
27 module xor2_properties(input A, B, Y);
28 always @(*) begin
29 xor_Y_0_p1: assert (Y == 1'b0);
30 xor_Y_1_p2: assert (Y == 1'b1);
31 xor_Y_A_p3: assert (!B);
32 xor_Y_B_p4: assert (!A);
33 end
34 endmodule
35 `endif

the weights using a simple method: replacing a gate by a
constant value (e.g., Line 4), is better than replacing it by a
wire (e.g., Line 6).

2) PC and Redundant Gate detection: After the enriched
netlist is written, the runner calls SymbiYosys to perform PC.
When sby is done with PC, it creates a log file with the
PC results. This log file contains lines indicating if a given
property failed during solving or if it holds. This means that
we have to identify all properties for which no failing line
exists in the log file. Like the property injection step before,
we implemented this behavior with AWK by keeping track
of a mapping of all properties and if they failed. Initially, all
properties are set to holding. Then, all lines of the log file are
analyzed if they contain information about a failing property.
If all lines are processed, we eliminate all failing properties
from the mapping and write out a list of all holding properties
together with their gate into a file in the shared directory.
However, as every gate has multiple properties that can hold
at the same time, we also have to filter out the best holding
property for each gate. This is done using the property weights
described in Section V-C1.

At this point, the runner is finished with the current task. It
then posts the task to the /task/done endpoint of the task API
to mark this task as completed. Now, the runner checks if any
tasks are left to do by requesting the task/get endpoint of the
task API. If a task is returned by this request, the runner starts
executing this task, else the runner stops itself.



D. After Property Synthesis

After all tasks are processed and all runners are stopped,
the control is returned to the coordinating process. At this
stage, the only thing left to do is to rewrite the netlist with
the optimization results, to re-synthesize the rewritten netlist to
perform additional optimizations and clean-up, and to perform
the equivalence checking on the rewritten netlist.

1) Netlist Rewriting: In this stage, the netlist is rewritten
based on the files containing the holding properties for each
gate which were produced by the runners. Similar as in
previous steps, the netlist rewriting is implemented using an
AWK program that performs the rewriting directly in the
Verilog netlist. First, this program parses the file containing
all gates and their rules according to which the gate can be
optimized. Next, it checks each line of the netlist for a gate
that can be optimized. If such a gate is found, it is rewritten
according to the rules presented in Section V-C1.

2) Resynthesis: Rewriting the netlist results in two addi-
tional optimization cases. First, the rewritten netlist might
contain new optimization potential for the traditional logic
synthesis in Yosys. Second, the rewritten netlist might contain
noise like chains of wire assigns (e.g. a = b = c) that can
be reduced (e.g. to a = c). For this, we perform a second
synthesis on the rewritten netlist using a very similar set of
commands as in the first synthesis. The result of this second
synthesis is also the final result of the PSYN flow.

3) Equivalence Checking: Cutting out big parts of a design
is an aggressive process and therefore requires certain checks
to ensure the correctness. To this end our pipeline includes
equivalence checking of the resulting circuit with the base
one. Because the parts we cut out could only be removed
under certain assumptions, we also have to annotate both
circuits with the same assumptions because we only expect
them to be equivalent under these circumstances. Following
the annotation, we can use the Yosys equivalence checking
flow with a miter circuit to check for equivalence.

VI. EXPERIMENTAL RESULTS

In this section, we present experimental results demonstrat-
ing the optimization potential and performance characteristics
of PSYN on various experiments ranging from arithmetic cir-
cuits all the way to RISC-V processors. First, the experimental
setup including the compute cluster on which the experiments
were conducted is presented in Section VI-A. Next, in Sec-
tion VI-B we find an advantageous number of gates that make
up a task to decrease the overall runtime of PSYN. Then,
in Section VI-C we analyze the runtime behavior of PSYN by
running selected designs from the EPFL synthesis benchmarks,
each 20 times using randomized assumptions. Section VI-D
presents experiments reducing logic for a RISC-V processor.
Finally, we compare the open-source against the commercial
backend in Section VI-E.

A. Experimental Setup

All experiments are conducted on a cluster of five compute
servers (workers) running Ubuntu 20.04 LTS, connected over
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Fig. 2: Runtime for increasing task sizes.

a local network and a shared NFS file system. Four of these
workers have Intel Core i7-10700 8-Core processors with
16 threads, of which two have 64 GB RAM and two have
128 GB RAM. The last worker has an AMD EPYC 7713
64-Core Processor with 128 threads and 256 GB RAM.

B. Determining Favorable Task Sizes

As described before, after synthesizing the netlist it is
divided into multiple tasks, each representing a slice of all
gates that have to be checked. Slicing the design into many
smaller tasks has not only the advantage of enabling large-
scale parallelism, but it also significantly speeds up the time
required to solve each task. For example, solving all properties
on all gates at once quickly overwhelms the solver, on the other
hand, solving each gate individually is fast, but it also incurs
some additional cost as the solver has to be started more often.
Finding the sweat spot between solver speed and reducing the
overhead of additional startups is therefore mandatory.

In this section, we experimentally find a favorable task
size by applying PSYN on selected designs from the EPFL
benchmarks with different task sizes. The EPFL benchmarks
contain arithmetic and non-arithmetic designs including an
adder, memory controller, arbiter, and router. Fig. 2 shows
a chart of the runtimes for the four largest designs from the
random_control directory of the EPFL benchmarks, ordered
from smallest (i2c) to largest (mem_ctrl). The runtimes are
normalized, with the runtime of a task size of 10 serving as
the baseline, and are shown on the y-axis. For each design,
the task size is increased in steps of 50 starting with a task
size of 10 all the way up to a task size of 1500. This process
is stopped prematurely if either the task size is larger than
the number of gates, or the runtime surpasses the baseline
value. The graph indicates that a small task size significantly
increases the runtime, and that runtimes sharply decrease with
growing task sizes. However, this effect peaks at some point
and starts to reverse for growing task sizes. A good task size
depends on the size of the design, with larger designs requiring
a larger task size. For example, the advantageous task size for
the i2c design is at around 100 gates, while the advantageous
task size for mem_ctrl is at around 400 gates.
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Fig. 3: Distribution of property checking runtimes for the 20
randomized runs.
C. Gate Reductions and Runtime

In this section, we apply PSYN on the EPFL benchmarks
using randomized assumptions to analyze the reduction and
runtime behavior for varying assumptions. For each selected
design of the EPFL benchmarks, we generate 20 test cases
with random assumptions on the top-level signals and observe
the number of reduced gates and the runtime. By generating
randomized assertions, we try to verify that the assumptions
have little impact on the runtime of our PSYN flow. The
results for the randomized runs are shown in Table I. The
first row lists the names of the selected benchmarks, and
the second row lists the number of gates in this benchmark
after the first synthesis step. The next rows list the selected
task size, the summed runtime of all 20 runs, followed by
the mean gate reductions and mean runtimes. Since it takes
some time to start up the API server, a 3-second wait time
is included in the original measurements. This waiting time
distorts the following results for smaller designs, and therefore
we subtracted these 3 seconds from all runtimes. The last row
shows the average runtime per gate. The results in Table I
show that PSYN can handle even large netlists with more
than 40, 000 gates in a moderate amount of time. In particular,
PSYN scales for these larger netlists with no drop in the time
each gate takes to check.

In addition to the time each gate takes to check, we
investigated how much the runtime varies for different as-
sumptions. This is a very interesting metric, since knowing
the runtime scales approximately with the size of the design
and independently of the assumptions makes running PSYN
more predictable. The runtimes of the three largest EPFL
benchmarks are plotted in a box plot in Fig. 3. Note, that the
runtimes are plotted relative to the shortest measured runtime.
In our experiments we observed, that the runtimes vary by
at most 26% and that larger netlists result in less varying
runtimes.

D. Reducing Netlists of RISC-V Processors

We used our PSYN flow to synthesize different config-
urations of the Ibex processor and compare the resulting
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Fig. 4: Results for different RV32I subsets of the Ibex proces-
sor.

gate counts. These configurations are based on the ones used
in [8]. The first configuration, Full, puts the Ibex core without
any additional assumptions into our tool and is used as a
comparison value. RV32im limits the processor to instructions
in the RV32im standard. RV32i removes the multiplication
instructions. Reduced Addressing further removes any R-type
instructions from the core. Safety Critical also removes JALR,
AUIPC, FENCE, ECALL and EBREAK. Lastly RISC16 limits
the core to the ADD, ADDI, AND, XOR, LUI, LW, SW,
BEQZ and JALR instructions. The results of applying PSYN
to the Ibex core follow those in [8]. In particular, we see a
similar large decrease in gate count when limiting the core
to a set of instructions and once again having a noticeable
decrease when further limiting the core to the RISC-16 ISA.
All 6 configurations can be processed by PSYN in roughly
the same time, taking around 8.5 minutes (approximately 500
seconds) for the PC using a task size of 80 and all machines
described in Section VI-A.

E. Comparison to Commercial Tools

In addition we implemented a PSYN backend using a well-
known commercial formal verification tool. The general flow
stays the same, but instead of injecting assertions in the netlist
file, we can use SystemVerilog’s full capabilities to bind the
assertions to the gates. Similar to the open-source backend, the
commercial backend can also solve multiple tasks in parallel.
However, the number of concurrent processes is limited by the
number of available licenses, which is 10 in our case.

The runtimes using the Yosys and the commercial backend
for selected designs of the EPFL benchmarks are shown in Ta-
ble II. We applied PSYN to 5 designs of the EPFL benchmarks
selected to cover a range of netlist sizes. Each design was
optimized with PSYN, using a task size of 80. First, we ran
PSYN using the open-source backend on the largest machine
once using all the available machines from Section VI-A (Row
“Open-Source Full”) and once with only 10 parallel tasks
(Row “Open-Source 10”). Then, we ran PSYN twice using the
commercial backend. In the first commercial run, we employed



TABLE I: Results of 20 runs for each selected EPFL benchmark with randomized assumptions.

Benchmark ctrl int2float router dec cavlc priority i2c voter arbiter mem_ctrl

Gates 99 201 207 304 633 641 1,086 6,164 11,843 40,876
Tasksize 80 80 80 80 80 80 80 200 200 400
Summed Runtimes [s] 39 42 65 51 70 140 141 2716 2058 7765
Mean Gate Reduction [%] 83.44 65.97 93.57 81.65 76.12 18.73 7.46 1.44 1.69 4.44
Mean Runtimes [s] 1.95 2.10 3.25 2.55 3.50 7.00 7.05 135.80 102.90 388.25
Time per Gate [s] 0.02 0.01 0.02 0.01 0.01 0.01 0.01 0.02 0.01 0.01

the tool’s parallelization feature, utilizing all 10 licenses in
parallel for solving (Row “Commercial Multi”). In this run,
we split the assertions into sub-tasks using PSYN with a task
size of 200. These sub-tasks are passed to the commercial
tool which then distributes the assertions to the parallel tasks.
In the second run (Row “Commercial PSYN”) we applied the
same settings of PSYN to split the assertions into smaller tasks
which are then distributed to 10 workers without using the
parallelization option of the commercial tool.

Both backends result in the same removed gates. However,
the open-source backend is significantly faster even when
restricted to only 10 workers. We attribute the better perfor-
mance of the open-source backend primarily to the behavior
of the assertion checking process: The open-source backend
can find multiple failing assertions at the same time, while
the commercial tool checks all assertions individually. In a
design considering realistic assumptions, most gates cannot
be optimized which means that most of the assertions are
expected to fail. This particular setup, coupled with the re-
quirement to verify a vast number of assertions which are
most likely to fail, appears to result in a significantly reduced
overhead in our case. However, from the data, we see that
the commercial backend starts catching up with the open-
source backend with increasing design sizes. Therefore, we
believe that the commercial tool is geared towards solving
“few” very complex assertions on large designs and not
towards numerous very simple assertions. Considering this, we
assume that the commercial backend starts outperforming the
open-source backend for very complicated designs. However,
the open-source backend will always have the advantage of
practically unlimited scaling since it is not limited by the
number of available licenses. Moreover, exploring new task-
finding heuristics and innovative formal problem formulations
that make use of specific proof engines can only be achieved
when the source code can be accessed.

Finally, we also compared the multithreaded mode of the
commercial tool (Row “Commercial Multi”) to solving multi-
ple tasks of the split up problem using PSYN at the same time
(Row “Commercial PSYN”). We found, that the commercial
tools multi-threading offers less of a speed-up than solving
more of the small sub-tasks if confronted with larger circuits.
In this case, it pays off to let PSYN handle all parallelism.

VII. CONCLUSIONS

In this paper we presented PSYN, an approach to detect
and eliminate inactive gates leveraging PC and distributed

computing. By only performing PC on a small part of the
netlist’s gates, we can effectively distribute the problem and
TABLE II: Runtime comparison between the open-source
backend and the commercial backend.

Benchmark ctrl int2float cavlc adder arbiter

Gates 99 201 633 772 11,843
Open-Source Full [s] 4 4 5 8 64
Open-Source 10 [s] 4 4 5 8 234
Commercial Multi 10 [s] 12 25 63 82 2,677
Commercial PSYN 10 [s] 70 109 101 103 818

thus achieve significant runtime reductions. Further, our flow
is implemented using only freely available open-source tools.
We have shown in multiple experiments that PSYN can lead
to significant reductions of the number of gates in a netlist in
moderate runtimes.
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