
Enhancing Compiler-Driven HDL Design with
Automatic Waveform Analysis

Frans Skarman†
Linköping University
Linköping, Sweden

frans.skarman@liu.se

Lucas Klemmer†
Johannes Kepler University

Linz, Austria
lucas.klemmer@jku.at

Oscar Gustafsson
Linköping University
Linköping, Sweden

oscar.gustafsson@liu.se

Daniel Große
Johannes Kepler University

Linz, Austria
daniel.grosse@jku.at

Abstract—The time-to-market of a new product is one of its
most crucial factors for success, therefore, reducing this time is
of utter importance. However, this reduction must not come at
the expense of a less thorough development process.

This paper presents a compiler-driven approach for auto-
matically analyzing metrics such as transaction delays or bus
throughput on simulation waveforms of projects developed in
the Spade Hardware Description Language (HDL). By utilizing
the Spade compiler’s knowledge about design internals, an
automatic analysis of the waveforms created during simulation is
possible using the Waveform Analysis Language (WAL). Analysis
programs can be bundled with Spade projects or libraries, such
that they are automatically detected by Spade and can be reused
by other projects using simple annotations. We call these bundled
WAL programs analysis passes, since they fit into the Spade
workflow and provide thorough analysis at no additional cost to
the users of these libraries.

In a detailed description, we present how new analysis passes
can be defined using the example of a data streaming interface.
Additionally, we highlight the possibilities of analysis passes in
two case studies, including Finite State Machine (FSM) and
Wishbone protocol analysis.

Index Terms—Performance Analysis, Hardware Description
Languages, Debugging

I. INTRODUCTION

One of the most critical aspects for the success of a new
product is the time it takes from the conception of the idea
to the time the product is available on the market. When it
comes to shortening this time-to-market no other industry has
been as successful as the software industry. This agility we
see in the software domain today is to a large extent enabled
by continuous improvements to tools and workflows.

Compared to software tooling, the hardware domain saw
relatively little advancements in this area until the emer-
gence of the open-source Electronic Design Automation (EDA)
community, with tools such as Yosys [1], [2] or the Chisel
Hardware Description Language (HDL) [3]. This is, in part,
due to the naturally much lower abstraction level of hardware
design. Register Transfer Level (RTL) languages, such as
Verilog and VHDL, typically express very little high-level
design intent to simulators, synthesis flows, and other tools.
The description consists of instantiations of individual com-
ponents that manipulate individual signals, but properties of

† Authors contributed equally to this work.

those signals and instances, such as which signals make up a
bus, or which registers correspond to a pipeline versus which
are used for state machines, is not expressed in the language.
This makes it difficult to build re-usable tools for analysis and
debugging, which in turn means that debugging often has to be
done through manual waveform inspection, a tedious process
which has to be re-done for every design change.

Waveform Analysis Language (WAL) [4] is a language
which allows writing programs to perform automatic wave-
form analysis. For example, it can be used to analyze bus
traffic, analyze the transitions of state machines, or measure
the performance of processors [5] [6]. However, because RTL
languages allow great flexibility in expressing designs, there
is relatively little, if any, shared structure between different
designs. Therefore, these analysis programs have often to be
written on a per-design basis.

Spade [7] is a statically typed HDL with explicit constructs
for registers, pipelines, and memories. In addition to boosting
productivity by adding more abstraction, Spade exposes more
high-level design intent to the compiler. Registers comprising
a state machine become explicit, pipelines being built into
the language makes the compiler aware of which registers
are used for pipelining, and which signals logically belong
together. Finally, via Spade’s strict type system for defining
buses and other related signal groups, such as ready-valid
interfaces, information about which analysis is applicable to
which signals is readily available to WAL.

By bundling WAL analysis programs with Spade projects,
they can query the Spade compiler for additional information
about the design and they become automatically discoverable
by the Spade toolchain. We call WAL programs bundled with
Spade projects analysis passes as they can be automatically
run as an additional step in the build and simulation flow.

The tight integration of Spade and WAL allows users to
directly take advantage of these analysis passes simply by
annotating the signals or structures they want the analysis
to be performed on. Thanks to the knowledge the compiler
has, these annotations are all that is required to connect the
design with the analysis. Now, compiling, simulating, and
analyzing is handled automatically by the Spade build system.
In addition, this not only works for a single Spade project, but
analysis passes can seamlessly be re-used across the Spade
ecosystem. This allows library (IP) authors to provide not only979-8-3503-0737-5/23/$31.00 ©2023 IEEE

[libraries.wishbone]
git = "https :// gitlab.com/spade -lang/lib/fishbone"
branch = "main"
[plugins.wal_analysis]
git = "https :// gitlab.com/spade -lang/wal_analysis"
branch = "main"

Listing 1: The Wishbone implementation and WAL analysis plugin can be
included as a dependency in the swim project configuration file.

an implementation but also analysis passes, thus giving their
users a head start on ensuring design quality.

The main contributions of this work are twofold. The first
and primary contribution is the integration of WAL and Spade
specifically. This includes augmenting the Spade compiler and
language with additional annotations to mark types and values
for analysis as well as adding several functions and macros to
WAL which make it easier to write Spade specific analysis
passes. In addition, we developed a plugin for the Spade build
system to bundle WAL analysis passes with Spade libraries
and to detect and run those automatically. This plugin is
available to Spade users on GitLab.1 The code for the example
analysis passes is also available on GitLab.2 The changes to
the Spade compiler have been included in its repository.

The second major contribution of this work is the method-
ology used to perform the integration. Its core is to bind
analysis programs to designs using compiler-generated signals
leveraging a strong type system. This methodology can be used
to integrate WAL or similar tools with other modern HDLs.

The rest of the paper is structured as follows. First, an
example showcasing the power of the proposed automated
waveform analysis is given in Section II. Then, in Section III,
Spade and WAL are introduced. In Section IV, a more thor-
ough example of how analysis passes are used and created is
given. Section V presents the built-in state machine analysis
pass. Finally, related work is discussed in Section VII, and the
paper is concluded in Section VIII.

II. MOTIVATING EXAMPLE

As a motivating example, we will study a sample design
consisting of two Wishbone masters, which communicate
with a shared slave via an arbiter. Wishbone [8] is a widely
used on-chip communication protocol with broad adoption
especially in the open-source hardware community. It utilizes
handshaking-based communication and allows the implemen-
tation of various network topologies such as buses or point-
to-point communication.

A Spade implementation of the Wishbone bus is available
in a git repository,3 which can be added as a dependency to
a Spade project via a configuration file for the build system,
Swim. This is shown in Listing 7.

The top level of our motivating example is shown in
Listing 2. A more thorough description of the Spade language
is given in Section III-A, but for this example, the most
interesting statements are on Line 5 and Line 7, which define

1https://gitlab.com/spade-lang/wal_analysis
2https://gitlab.com/TheZoq2/remora-code
3https://gitlab.com/spade-lang/lib/fishbone

1 entity wb_harness(clk: clock , rst: bool)
2 -> (int <16>, int <16>)
3 {
4 #[wal_trace(target=wb1 , clk=clk , rst=rst))]
5 let (wb1 , wb1inv) = port;
6 #[wal_trace(target=wb2 , clk=clk , rst=rst))]
7 let (wb2 , wb2inv) = port;
8
9 let _ = inst wishbone_arbiter(

10 clk , rst , wb1inv , wb2inv , ...
11);
12 let o1 = inst wishbone_master(
13 clk , rst , wb1 , ...
14);
15 let o2 = inst wishbone_master(
16 clk , rst , wb2 , ...
17);
18
19 (o1, o2)
20 }

Listing 2: Spade description of two wishbone masters communicating via a
shared arbiter. The novel #[wal_trace(...)] annotations enable the analysis
for an interface

two wishbone buses, wb1 and wb2. On Lines 9–17, the ports
are passed to the arbiter and the two masters. The arbiter is
configured to reply to port 1 with a latency of 3 cycles, and
port 2 with a latency of 6 cycles (not shown in Listing 2).
The masters perform single random reads or bursts of writes,
with write bursts being more common and reads happening
randomly between the write bursts.

To meet the systems requirements, passing functional tests is
not enough. Let us look at the bus example: Given a workload,
i.e. simulation trace, various metrics such as the delay and
number of read/write transactions, average read/write latency,
number of idle cycles etc. have to be determined. Usually, the
engineer starts using a waveform viewer using features like
markers to determine the initial results based on fully manual
inspection. However, this quickly becomes unfeasible for tasks
such as finding the average delay over the complete simulation
trace. Therefore, later in the design process, custom monitoring
logic is added to the design or the testbench is extended with
analysis logic. Both approaches have their drawbacks as they
require lots of additional work by users of the Wishbone
library, either by invasive changes to the design logic for
debugging purposes (which should be avoided), or by writing
custom testbenches which are hardly re-usable across projects.

By tightly coupling Spade and WAL, the users of the
Wishbone library who wish to determine the metrics men-
tioned above only have to annotate the Spade code with a
single additional line per Wishbone instance as shown on
Line 4 and Line 6 of Listing 2. Now, by simply running
swim plugin analysis, the design is compiled, simulated and the
WAL analysis programs are executed automatically for every
simulation trace. Listing 3 shows the output of the Wishbone
analysis pass which collects performance metrics. The output
includes information about the number of reading and writing
transactions, average read and write delays, the number of
error responses by the slave, and the number of cycles in
which the interface is idle. These metrics are analyzed and

[ANALYSIS] # wb_harness.wb1
[ANALYSIS] Nr. transactions : 697
[ANALYSIS] Nr. reads : 16
[ANALYSIS] Avg read latency : 6 clock cycles
[ANALYSIS] Nr. writes : 681
[ANALYSIS] Avg write latency: 9 clock cycles
[ANALYSIS] Inactive cycles : 6%
[ANALYSIS] # wb_harness.wb2
[ANALYSIS] Nr. transactions : 421
[ANALYSIS] Nr. reads : 0
[ANALYSIS] Avg read latency : - clock cycles
[ANALYSIS] Nr. writes : 421
[ANALYSIS] Avg write latency: 12 clock cycles
[ANALYSIS] Inactive cycles : 22%

Listing 3: Analysis results of the Wishbone analysis pass.

Fig. 1: Histogram of transactions on Wishbone interfaces. The y-axis value
is the number of transactions in a given time slice of the simulation (bin).

presented for every annotated Wishbone interface, in the case
of this example the two interfaces wb_harness.wb1 (wb1) and
wb_harness.wb2 (wb2).

Additionally, the Wishbone analysis pass also generates a
histogram containing the transactions of every traced Wish-
bone interface. The generated histogram displays the activity
of all interfaces over the complete simulation time using a
stacked bar-chart. Each colored bar of the histogram represents
the number of transactions on a given Wishbone bus in a
slice of the simulation time. Fig. 1 shows the activity of
the two Wishbone interfaces. From the chart we can see that
the two traced interfaces show different behaviors. wb1 (blue)
is sending a constant stream of data while wb2 (orange) is
sending data in larger chunks. Interestingly, the number of
transactions by wb1 spikes three times. This always happens
when wb2 is not accessing the bus, thus leaving more band-
width to wb1. Another notable observation is that the total
number of completed transactions is higher when only wb1 is
used, compared to when both wb1 and wb2 are active. This is
because the requests from wb2 take longer to finish, 6 cycles
compared to 3.

From the perspective of library maintainers providing analy-
sis programs is as simple as placing them in an analysis direc-

tory in their libraries. Then, these programs are automatically
detected by Swim and by this become analysis passes.

The key takeaway from this example is that by bundling
analysis passes with libraries, and having convenient annota-
tions for opting into those analysis passes, one can, almost
without effort, get a large amount of information about the
dynamic behavior of the system. Information that would be
very difficult to find simply by looking at wave forms in a
traditional waveform viewer, or very cumbersome to generate
in traditional testbenches.

III. LANGUAGES

In this section, we introduce the two languages that are
central to this paper: Spade and WAL.

A. Spade

Spade [7] is a statically typed open source HDL which
adds abstraction without sacrificing low level control over
the generated hardware. These abstractions include language
level support for pipelines, explicit constructs for registers
and memories, as well as support for ports with linear type
checking to ensure correctness.

In addition, Spade integrates several ideas found in modern
software languages. Rather than being imperative, it is expres-
sion based, meaning that the result of a conditional, like an
if expression, is assigned to a variable, instead of the variable
being set in each branch. The language has type inference,
meaning that types usually do not have to be explicitly spelled
out, the compiler will infer them and report errors if it detects
inconsistencies.

For a full description of the Spade language, see [9]. How-
ever, for the purpose of this paper, it is enough to understand
the code shown in Listing 4, which will also be used as a
running example throughout the rest of the paper. At a high
level, this defines a compute-unit which takes a stream of
commands and processes them one at a time. There are two
types of commands: first the mode selectors, Mult and Add,
and secondly Data which contains two values to be multiplied
or added depending on the previous mode command. The
enum type containing these commands is defined in Lines 1–
5. The input and outputs to the module are streamed with a
data valid signal. Line 7 defines this stream type as a struct
that is generic over type T and contains the valid bit as well
as data of type T. The last type for this example is defined on
Line 9. It specifies the internal states that the unit can have:
Add and Mult.

The implementation of the unit starts in Line 11, beginning
with its name and specifying that it is a pipeline of depth 3,
i.e. a pipeline that has 3 registers between input and output.
The next four lines specify the inputs and outputs, apart from
a clock and a reset, the unit takes a stream of commands, and
produces a stream of computed values. Lines 16–22 define a
register containing the current state of the unit. The register is
called state, is clocked by clk and is reset back to the Mult
state by the rst signal. The next state is given by the match
expression in Lines 17–22, which retains the current state if

1 enum Cmd {
2 Data{l: int <16>, r: int <16>}
3 Mult ,
4 Add ,
5 }
6
7 struct Stream <T> { valid: bool , data: T }
8
9 enum State { Add , Mult }

10
11 pipeline (3) main(
12 clk: clock ,
13 rst: bool ,
14 cmd: Stream <Cmd >
15) -> Stream <int <16>> {
16 reg(clk) state reset(rst: State::Mult()) =
17 match cmd {
18 Stream(true , Cmd::Mult) => State::Mult(),
19 Stream(true , Cmd::Add) => State::Add(),
20 Stream(true , Cmd::Data(_, _)) => state ,
21 Stream(false , _) => state
22 };
23
24 let (out_valid , l, r) = match cmd {
25 Stream(true , Cmd::Data(l ,r)) =>
26 (true , l, r),
27 _ =>
28 (false , 0, 0)
29 };
30
31 let sum = trunc(l+r);
32 let prod = trunc(l*r);
33 reg * 3;
34 let result = match state {
35 State ::Mult => Stream(out_valid , prod),
36 State ::Add => Stream(out_valid , sum)
37 }
38 result
39 }

Listing 4: A Spade unit processing a stream of commands into a stream of
integers.

the command is not valid, or if it is data to be processed.
Otherwise, the state is set to perform addition or multiplication
depending on the command.

Lines 24–32 extract the left- and right-hand operands of
data commands if present before performing both addition and
multiplication. The trunc function truncates a variable to the
bit-width of the target variable. In the case of the truncations
on Lines 31–32 the correct bit-width is inferred by the Spade
compiler from the type parameter T of the Stream result of
the pipeline. Line 33 specifies that before doing anything else,
the compiler should insert three pipeline registers for all the
signals in the design. Using three registers allows the synthesis
tool to efficiently map the multiplication into a DSP-block (the
dedicated hardware for, among other things, multiplication)
in an FPGA. Finally, in Lines 34–37, the output is selected
depending on the state, validity of the result and the sum
and product. The pipeline construct ensures that the state
variable here refers to the state of the unit at the time when
the computation was started.

To highlight how the pipelines work, Fig. 2 contains an ex-
ample trace of the unit performing one product, then switching
the mode to addition to compute a single sum before returning
to multiplication mode. In the interest of space, the pipelined

clk

cmd.data 3,2 Add -1,4 Mult

state Mult Add Mult

prod 6 -4

Stage 1:

state Mult Add Mult

prod 6 -4

Stage 2:

state Mult Add Mult

prod 6 -4

Stage 3:

state Mult Add Mult

prod 6 -4

sum 5 3

result.data 6 3

Fig. 2: Waveform of the pipeline defined in Listing 4 processing a short data
stream.

copies of the sum variable have been omitted.
Spade also comes with a build system called Swim4. Among

other things, this build system runs synthesis and simulation
tools, manages dependencies and supports extensions through
plugins. The plugin and dependency system is of particular in-
terest in this paper, as it allows developers of Spade libraries to
bundle WAL analysis passes with their libraries. Additionally,
it allows the build system to automatically detect and run these
passes when requested.

B. Waveform Analysis Language (WAL)

WAL [4] is a programming language created specifically for
debugging and analyzing waveforms. The main idea behind
WAL is that getting the value of a signal from a waveform
should be as simple as getting the value of a variable in any
other programming language and, that other concepts central
to hardware design such as time and design hierarchy are
integral parts of the language. Thus, accessing signals in WAL
is similar to accessing variables, with the difference that the
returned value depends on the loaded waveform and the time
at which the signal is accessed.

WAL also allows writing generic programs that can exploit
recurring structures present in nearly every design (e.g. stan-
dard buses or state machines).

WAL’s syntax is based on Symbolic expressions [10] (S-
expressions for short) which are common in languages related
to Lisp, such as Common Lisp or Scheme. S-expressions can
be either atoms or lists. Atoms are literals like numerical
or string values, e.g. 1, 0xff, "text", or symbols. Lists are
multiple S-expressions separated by white space and enclosed
in parentheses (expr1 expr2 ...). All operators and function
calls are written in prefix notation, e.g., (+ 3 b) to compute
the sum of 3 and b.

WAL extends standard S-expressions to accommodate typ-
ical hardware development tasks into the language. First and

4https://gitlab.com/spade-lang/swim

Fig. 3: An annotated waveform showing the WAL programming principle.

foremost, free symbols (i.e. symbols to which no values
have been assigned) are interpreted as signals in the loaded
waveform. This means, that if a free symbol is evaluated (i.e.
its value is computed) the value is looked-up in the loaded
waveform. Since looking up the value in a waveform depends
on time, WAL keeps track of a pointer into the waveform
which is called INDEX. The index can be moved forwards or
backwards using the (step offset) function or, for a specific
expression only, using the expression@offset syntax.

To show the programming principle of WAL consider the
waveform in Fig. 3. After starting WAL and loading this
waveform the INDEX points to the start of the waveform (this
is indicated by the blue arrow). If we now evaluate the
expression data we get the value 0x00. Evaluating (step 10)

moves the index forwards by ten timestamps (indicated by
the orange arrow). Note, that the index is not incremented for
each rising edge of the clk signal but whenever any signal
is changed. Now, evaluating the same data expression results
in the value 0xCC. Finally, we can move the index locally for
just one expression using the expression@offset syntax. Using
this syntax the expression is evaluated at INDEX + offset and
after the evaluation the index is restored to its previous value.
Thus, evaluating data@-2 at INDEX = 10 results in the value 0xBB

(indicated by the magenta arrow).
Additionally, WAL allows writing generic analysis programs

by decoupling signals from their location inside a design.
This works by specifying only the local name of a signal and
filling in the full path only later during program runtime. For
example, the expression (in-scope 'tb.dut (&& ~clk (! ~rst)))

evaluates the expression (&& ~clk (! ~rst)) in the scope tb.dut

and thus the signal ~clk expands to tb.dut.clk.
WAL’s language features for timing and writing generic

programs allow expressing hardware analysis problems in a
natural and efficient way. However, to make expressing these
problems even simpler, WAL also contains a range of higher-
level functions that are often required while analyzing wave-
forms. For example, the whenever function can be understood as
a while loop on wave forms, since it evaluates the expressions
in its body at every timestamp at which the condition evaluates
to true. Further, there are functions to find time stamps at
which an expression evaluates to true, to change when signal
values are sampled, to get information about signals or scopes,
and more.

IV. USING AND DEFINING ANALYSIS PASSES

In this section we will show how the automatic waveform
analysis is integrated into a Spade program. We will use the

7 #[wal_traceable(uses_clk , uses_rst)]
8 struct port Stream <T> { valid: bool , data: T } {

12 pipeline (3) main(
13 clk: clock ,
14 rst: bool ,
15 #[wal_trace(clk=clk , rst=rst)]
16 cmd: Stream <Cmd >
17) -> Stream <int <16>> {

34 #[wal_trace(clk=clk , rst=rst)]
35 let result = match state {
36 State::Mult => Stream(out_valid , prod),
37 State::Add => Stream(out_valid , sum)
38 }

Listing 5: Tracing added to the streams from Listing 4

running example from Listing 4 and show how it is augmented
to both define and use analysis passes.

The primary candidates for analysis in the running example
are the two streams of data going into and out of the unit.
Those can be analyzed by applying the wal_trace attribute
to the input stream in Line 14, and to the output stream in
Line 34 as shown in Listing 5.

However, because the Stream type is defined in the project,
not fetched as a library which already includes analysis passes,
we need to also define how streams should be analyzed. For
most passes, this is done in three steps: annotating the struct
to inform the compiler that it is an analyzable struct, writing
the WAL code for performing the analysis, and, optionally,
writing a Python wrapper for additional Python integration.

A. Struct Annotation

The first step in enabling automatic analysis is annotating
the structs which can be analyzed with the #[wal_traceable]
attribute as shown in Line 7 of Listing 5. This an-
notation communicates that an analysis pass is available
and allows specifying if clock and reset signals need to
be provided in addition to the struct signals. With the
wal_trace and wal_suffix signals in place, the Spade
compiler will generate X__valid__proj::main::Stream and
X__data__proj::main::Stream signals as well as corre-
sponding signals for the clock and reset signals for each
instantiation of the Stream struct. For each instance of the
stream interface X is replaced by the hierarchical name of the
variable defining the stream. The path proj::main::Stream
is the fully qualified path of the struct in a Spade project, and
depends on the name of the project and which file the struct
is defined in. It is unique and unchanged when a library is
added as a dependency to another project.

B. WAL Code

The WAL analysis program for the stream type is defined
in Listing 6. This program uses WAL’s grouping feature
together with the Spade integration to automatically run the
stream-utilization function for every detected stream instance.
Lines 1–3 use the spade-struct macro create a list of all groups
of signals which are generated by the wal_trace attribute.
This list is then passed to the in-spade-struct macro in Line 5,

1 (define stream-instances
2 (spade-struct proj::main:: Stream
3 [clk rst valid data]))
4
5 (in-spade-structs
6 proj::main:: Stream stream-instances
7 (let [(send 0) (idle 0)]
8 (whenever (&& (rising #clk) (= 0 #rst))
9 (if #valid

10 (inc send)
11 (inc idle)))
12 (define time-sending
13 (round (* (/ send (+ send idle)) 100)))
14 (log/analysis CG ":␣" time-sending "%")))

Listing 6: The WAL implementation of the stream analysis pass in file
“utilization.wal”.

1 class StreamUtilizationPass(WalAnalysisPass):
2 def __init__(self , pass_dir , wavefile):
3 super ().__init__(pass_dir , wavefile)
4
5 def run(self):
6 self.wal.eval_str('(require␣utilization)')

Listing 7: The Python implementation of the stream analysis pass in file
“utilization.py”.

which performs analysis on each of the stream interfaces.
The in-spade-struct macro replaces #field with the signal
corresponding to that field, for example, #valid is expanded to
X__valid__proj::main::Stream where X is the name of the struct
instance being analyzed. One metric that is of interest to users
of the stream interface is the utilization of an instance of this
interface, i.e. the percentage of time at which valid data is
transmitted. This is measured in Lines 8–14. First, the whenever

function is used to visit every time step at which the clock
rises and the reset is low (Line 8). These are the time steps at
which potential data transactions can occur. Next, depending
on the value of the #valid signal, the send or idle variables
are incremented in Line 9–11. Finally, the fraction of time
the interface is sending is calculated in Line 13. This result
is then printed together with the name of the interface (stored
inside the special variable CG which stores the Current Group)
(Line 14).

C. Making the Pass Discoverable

To make an analysis pass discoverable by the swim build
tool, it has to be placed inside the Spade project at a predefined
location. All analysis passes must be placed inside a wal
directory in the root of the Spade project.

There are two ways to make an analysis pass discoverable
by the swim build tool: 1) the pass can be implemented using
plain WAL files, providing a run-pass function or macro defini-
tion and 2) the pass can be implemented using WAL files and
Python wrappers. If one of the two options is implemented,
the swim analysis plugin automatically discovers the pass and
runs it on every produced wave file.

The analysis pass presented in this example uses the second
option of using a Python wrapper class. Therefore, the Spade
project contains the two files “utilization.py”, which contains
the Python wrapper , and “utilization.wal”, which contains

[INFO] Running Stream Utilization Pass on tb.vcd
[ANALYSIS] proj::main::main.cmd_n1: 80%
[ANALYSIS] proj::main::main.result: 26%

Listing 8: Example output of the analysis.

the WAL program presented that Section IV-B.5 A Python
wrapper must be a class that inherits from WalAnalysisPass,
which in turn initializes the WAL interpreter, sets up the Spade
compiler integration, and provides new WAL functions, for
example for translating Spade values. The constructor for the
WalAnalysisPass class takes two arguments, the directory of
the pass (i.e., the path to the current Spade project) and the
waveform that will be analyzed by this pass. WAL analysis
passes without a Python wrapper are wrapped automatically
so that they have access to the same Spade integration.

Lines 2–3 contain the constructor of the class which in this
case only initializes base class. The run function is defined
in Line 5. As most of the logic for this pass is implemented
in the WAL program, all the run function does is requiring the
utilization.wal file in Line 6 which evaluates all the expressions
it contains. This is done by evaluating the (require utilization

) expression using the eval_str function of the WAL object,
which was already created by the base class.

To run all analysis passes, the swim build tool is invoked
as swim plugin analysis, which in this case produces the output
shown in Listing 8 when run on a stream of 1000 random
commands with a four in five chance of generating a valid
command. As one might expect, the percentage of valid
commands is around 80%, while the output, having to switch
between modes on roughly one in three valid commands,
contains valid data at around 26% clock cycles. This gives a
designer a valuable insight: re-ordering computations to avoid
mode switches would improve the throughput of the system.

Finally, Listing 9 defines an analysis pass without a Python
wrapper. The pass prints the operands and results of all
valid multiplications, along with the time at which they were
performed. The first two lines define the pass and specify the
scope of the following signals, to avoid having to type out
the name of the top module several times. Lines 3–8 filter out
all time stamps under which the prod variable has valid data.
Line 7 calls the spade/translate function to query the compiler
for the Spade representation of the current value of the state
variable. Listing 10 shows the result of this pass on a short
sequence of inputs.

V. FINITE STATE MACHINE ANALYSIS PASS

The analysis plugin contains a set of pre-defined analysis
passes, one of them providing Finite State Machine (FSM)
tracing. This pass analyzes the state distribution and state
transitions of state machines. All users have to do to analyze
a state machine is to add an #[fsm] annotation to the signal
containing the state as shown in Listing 11. The FSM analysis
pass produces two outputs for each annotated state machine.

5The file names of analysis passes are irrelevant for auto-detection by the
swim analysis plugin.

1 (defun run-pass []
2 (in-scope 'proj::main::main
3 (whenever
4 (&& (rising ~clk)
5 (= ~rst 0)
6 (= "Mult"
7 (spade/translate "state" ~state))
8 ~out_valid)
9 (log INDEX ":" ~l "*" ~r "=" ~prod))))

Listing 9: A simple WAL analysis pass which prints valid values of the
product variable in Listing 4.

[INFO] 2 : 10241 * 38434 = 58914
[INFO] 6 : 16111 * 1527 = 25497
[INFO] 20 : 63773 * 46328 = 47128
[INFO] 24 : 56822 * 10195 = 27586

Listing 10: Sample output of the pass defined in Listing 9.

First, it produces a Control Flow Graph (CFG) like the
graph shown in Fig. 4. This CFG shows every visited state
together with further analysis results about this state. These
analysis results include the percentage of time the FSM was
in a given state, the average time the FSM spends in a state,
and the number of times each state transition was taken. For
example, Fig. 4 shows the CFG of wb1 from the previously
presented Wishbone masters that were analyzed on the same
simulation results as the analysis passes in Section II. Of the
three states, the Write state was active the longest time, and
most transitions happened between this and the Wait state.
Additionally, the 16 transitions between the Wait and Read
states reflect the 16 reads we observed in Section II.

Secondly, all state transitions are rendered into sequentially
numbered images. A selection of these images is shown
in Fig. 5 (read from left to right and from top to bottom). These
images contain the full control flow graph, in which the current
state and the transition that led to this state are colored in red.
Additionally, the current state register value is translated using
the Spade compiler integration into a string representation
of the state name, including its name and current values.
This state transition animation allows stepping through each
transition, closely following the execution of the FSM.

The FSM analysis is an example of an analysis pass that
uses external software packages. Since WAL is fully interop-
erable with Python, analysis pass authors can use the extensive
Python ecosystem to report analysis results in a fitting format,
or to integrate the analysis into other existing workflows.

VI. IMPLEMENTATION

The implementation of the WAL integration into Spade is
primarily based on the generation of groups of signals with a
known suffix, which WAL analysis passes look for. The use
of these suffixes allows the WAL passes to be written without
much involvement of the compiler. In particular, the suffixes
communicate clearly which signals should be traced and which
should not, and exposes individual fields of structs without
requiring knowledge of the struct packing. The compiler
simply emits Verilog signals with these known suffixes for
signals, or parts of signals that should be traced. The compiler
exposes a Python API for cases where WAL needs information

#[fsm]
reg(clk) state reset(rst: State::Mult()) =

match cmd { ... }

Listing 11: Annotating the FSM from the running example to opt into FSM
analysis.

Wait
Active:5.9%

Avg.: 6 cycles

Write
Active:92.59%

Avg.: 124 cycles

53

Read
Active:1.51%
Avg.: 7 cycles

1652 16

Fig. 4: State distribution and state transitions.

from the compiler, such as to translate a value from its bit
representation to a human-readable Spade value.

The Spade compiler is a multi-stage compiler with an
architecture as shown in Fig. 6. The compilation process
starts with lexing and parsing to generate an Abstract Syntax
Tree (AST). This AST is lowered into a High-level Inter-
mediate Representation (HIR), a process which retains the
tree structure of the AST but resolves names and scoping
rules, and performs initial semantic analysis. On the HIR, type
checking and some transformation passes are performed, and
the HIR along with the type information is used to generate
a Mid-level Intermediate Representation (MIR). In this step,
more semantic analysis is performed, and the tree structure is
flattened to a list of simple statements.

Attributes are part of the AST, and are baked into the HIR
nodes during AST lowering. The WAL related attributes are
type checked, and then lowered into dedicated MIR statements
during HIR lowering. Finally, those statements are lowered to
standard MIR statements which alias the required signals or
sub-signals. This has to be done so late in the process since
the final names and types of variables and instances is not
decided until the MIR has been generated.

It is also worth discussing the benefits of integrating WAL
with Spade compared to directly using WAL. WAL’s primary
method of discovering all signals for analysis is, as discussed,
via signals with dedicated suffixes. Without integration, these
signals must be defined manually. For example, the tracing
of the result struct in our running example would look
like Listing 12, as compared to the last block of Listing 5.
Of course, the same signals would also need to be defined
for the cmd bus. In addition to being much more tedious to
write, this also requires the user to update all the extra signals
whenever the fields of a struct are updated. This is extra
problematic as the struct being traced in this case is defined
in an external library. In the proposed implementation, the
compiler also emits an error when the user attempts to trace
a struct which is not marked as wal_traceable. This ensures
that only structs with associated analysis passes are traced,
another guarantee which is lost without integration. Finally,
without integration with the build tool, it would not be as
easy to bundle WAL passes with libraries in a structured way
and have those analysis passes run automatically.

Fig. 5: Frames from the generated FSM state transition animation.

Fig. 6: Architecture of the Spade compiler.

VII. RELATED WORK

There are several modern HDLs available. Perhaps the most
well known is Chisel [3], a hardware construction language
where hardware description takes the form of Scala programs
which instantiate hardware components. Several other hard-
ware construction languages exist, for example, SpinalHDL
[11], also embedded in Scala and Amaranth [12] which is em-
bedded in Python. Other notable projects include Clash [13],
a compiler from Haskell to hardware, Pipeline-C [14], a HDL
heavily inspired by C, and Silice [15], a standalone HDL
primarily focused on describing algorithms. To the best of the
authors’ knowledge however, none of these projects integrate
the automated waveform analysis described in this paper.

In [16], the authors explore FIRRTL [17], the Flexible
Internal Representation for RTL, as a basis for hardware
libraries. They also argue that traditional design languages
have been slow to adopting abstraction and modularity and
that these features can significantly improve the design speed
and reusability. FIRRTL also provides design analysis options
such as design coverage instrumentation or logic optimization.
However, simulation analysis is not the main focus of FIRRTL
and the coverage analysis relies on code transformations that
inject additional logic into design. Compared to [16], our ap-
proach also injects additional signals into the design, however,
these only provide the bridge to a fully-fledged programming
analysis that provides much more analysis capabilities. In
addition, our approach emphasizes that new analysis passes
are provided by library authors, and that this is possible with
as little work as possible, often with just one automatically
detected file inside the library. Overall, since FIRRTL also en-
codes the high-level design intent similar to Spade, integrating
WAL analysis passes into FIRRTL should be no problem.

Yosys [1] can be used to extract FSMs from a flattened
netlist after synthesis. However, this approach only provides
a static view on an FSM, so state distribution and state tran-
sitions as well as frames for FSM transitions wrt. simulation
scenarios cannot be determined.

33 let result = match state {
34 ...
38 };
39 let result__valid__stream = result.valid;
40 let result__data__stream = result.data;
41 let result__clk__stream = result.clk;
42 let result__rst__stream = result.rst;

Listing 12: Tracing added to the streams from Listing 4

VIII. CONCLUSION

By integrating the WAL waveform analysis language with
the Spade hardware description language, developers can
easily get more information out of their simulation wave
forms. A few examples of this include finding the performance
characteristics of a wishbone bus, and the run time behavior
of finite state machines. The integration of WAL in the Spade
ecosystem allows library authors to define custom analysis
programs for the types and designs they provide, and for users
to take advantage of these programs by simply annotating the
signals they would like to analyze.

ACKNOWLEDGMENTS

This work has partially been supported by the LIT Secure
and Correct Systems Lab funded by the State of Upper Austria.

REFERENCES

[1] C. Wolf, “Yosys open synthesis suite,” https://yosyshq.net/yosys/.
[2] D. Shah, E. Hung, C. Wolf, S. Bazanski, D. Gisselquist, and M. Mi-

lanovic, “Yosys+nextpnr: An open source framework from Verilog to
bitstream for commercial FPGAs,” 2019, pp. 1–4.

[3] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. Avižienis,
J. Wawrzynek, and K. Asanović, “Chisel: Constructing hardware in a
Scala embedded language,” in DAC, 2012, pp. 1212–1221.

[4] L. Klemmer and D. Große, “WAL: a novel waveform analysis language
for advanced design understanding and debugging,” in ASPDAC, 2022,
pp. 358–364.

[5] ——, “Waveform-based performance analysis of RISC-V processors:
late breaking results,” in DAC, 2022, pp. 1404–1405.

[6] L. Klemmer, E. Jentzsch, and D. Große, “Programmable analysis of
RISC-V processor simulations using WAL,” in DVCON Europe, 2022.

[7] F. Skarman, G. Sörnäs, and O. Gustafsson, “Spade,” Apr. 2023.
[Online]. Available: https://doi.org/10.5281/zenodo.7729341

[8] OpenCores, “Wishbone B4,” Tech. Rep., 2010. [Online]. Available:
https://cdn.opencores.org/downloads/wbspec_b4.pdf

[9] F. Skarman and O. Gustafsson, “Spade: An expression-based HDL
with pipelines,” in 3rd Workshop on Open-Source Design Automation
(OSDA), 2023.

[10] J. McCarthy, “Recursive functions of symbolic expressions and their
computation by machine, Part I,” Commun. ACM, vol. 3, no. 4, pp.
184–195, Apr. 1960.

[11] SpinalHDL contributors, “SpinalHDL,” https://github.com/SpinalHDL/
SpinalHDL, 2022.

[12] Amaranth contributors, “Amaranth HDL,” https://github.com/
amaranth-lang/amaranth, 2022.

[13] C. Baaij, “Digital circuits in cλaSH,” PhD. Thesis, University of Twente,
Jan. 2015.

[14] J. Kemmerer, “PipelineC,” Nov. 2022. [Online]. Available: https:
//github.com/JulianKemmerer/PipelineC/tree/ab87bb0b

[15] S. Lefebvre, “Silice,” https://github.com/sylefeb/Silice/tree/5003ec72,
Nov. 2022.

[16] A. Izraelevitz, J. Koenig, P. Li, R. Lin, A. Wang, A. Magyar, D. Kim,
C. Schmidt, C. Markley, J. Lawson, and J. Bachrach, “Reusability is
firrtl ground: Hardware construction languages, compiler frameworks,
and transformations,” in ICCAD, 2017, pp. 209–216.

[17] P. S. Li, A. M. Izraelevitz, and J. Bachrach, “Specification for the
firrtl language,” EECS Department, University of California, Berkeley,
Tech. Rep. UCB/EECS-2016-9, Feb 2016. [Online]. Available:
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-9.html

