
GUI-VP Kit: A RISC-V VP Meets Linux Graphics – Enabling
Interactive Graphical Application Development

Manfred Schlägl
Institute for Complex Systems
Johannes Kepler University

Linz, Austria
manfred.schlaegl@jku.at

Daniel Große
Institute for Complex Systems
Johannes Kepler University

Linz, Austria
daniel.grosse@jku.at

ABSTRACT
Today, Virtual Prototypes (VPs) are heavily used to enable early
software development and to accelerate the design process. The
aim of this work is twofold: (i) enable the early development of
interactive graphical applications running on Linux, and (ii) provide
an easy-to-use and configurable solution for RISC-V.

In this paper, we presentGUI-VP Kit.GUI-VP Kit includesGUI-VP ,
a greatly extended and improved RISC-V VP, as well as configu-
rations to build a runnable Linux environment, and input/output
drivers that form the interface between peripherals and Linux ap-
plications. In our experiments employing GUI-VP Kit, we show that
well-known X-applications can be executed in GUI-VP using a VNC
network connection. Moreover, we demonstrate reasonable speed
for a Linux port of a classic first-person 3D-game.

CCS CONCEPTS
• Hardware → Simulation and emulation; • Software and its
engineering→ Development frameworks and environments;
• Computer systems organization→ Embedded software; • In-
formation systems→ Open source software.

KEYWORDS
Virtual Prototype, RISC-V, SystemC, TLM, Simulation, Linux, Graph-
ics, Software development, Network, X Window System, VNC

ACM Reference Format:
Manfred Schlägl and Daniel Große. 2023. GUI-VP Kit: A RISC-V VP Meets
Linux Graphics – Enabling Interactive Graphical Application Development.
In Proceedings of the Great Lakes Symposium on VLSI 2023 (GLSVLSI ’23),
June 5–7, 2023, Knoxville, TN, USA. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3583781.3590253

1 INTRODUCTION
A Virtual Prototype (VP) is a high-level, executable model of the
entire Hardware (HW) platform which runs unmodified production
Software (SW) [11, 18]. Since VPs allow to parallelize the HW and
SW development and improve the communication through the
supply chain they provide an efficient and effective means for the
development of electronic systems. Significant cost reductions are

This work is licensed under a Creative Commons Attribution
International 4.0 License.

GLSVLSI ’23, June 5–7, 2023, Knoxville, TN, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0125-2/23/06.
https://doi.org/10.1145/3583781.3590253

achieved with VPs by exploring design alternatives and validating
system functionality before the physical HW is built.

Today, VPs are predominantly created in SystemC. SystemC is a
standardized class library for C++ (IEEE 1666, [17]) and provides
Transaction Level Modeling (TLM) [20] to describe the communica-
tion and interactions between components of a system in an abstract
way. As a consequence, simulation speed is orders of magnitude
higher in comparison to Register Transfer Level (RTL) models [11].
For a broader overview on SystemC we refer the reader to [12–14].

A central element of a HW platform is the processor. In the re-
cent past, the open and royalty-free Instruction Set Architecture (ISA)
RISC-V [21, 22], which features an extremelymodular design, gained
enormous momentum in academia and industry. Many RISC-V pro-
cessors, open-source and commercial ones, have been developed.
This also holds for VP-based solutions supporting RISC-V, see for
instance [3, 6, 7, 10, 19].
Contribution: In this paper, we consider the open-source SystemC
RISC-V VP introduced in [1, 15, 16] that is available on
GitHub [6]. While this VP has been used in several (research)
projects, all these projects focused either on bare-metal SW, or on
application SW on top of a “small” Operating System (OS) without
virtual memory management. However, when it comes to graph-
ical application SW development on top of Linux, the RISC-V VP
has a number of limitations. To address these, we propose several
extensions and improvements to RISC-V VP . The extensions and
improvements are a consequence of a careful analysis of the
complex simulation stack which has to be understood and man-
aged to (i) realize a Linux Bring-Up on a VP, (ii) provide graphical
output, and (iii) provide input for the to be developed graphical
application.

Altogether, this results inGUI-VPKitwhich includes theGUI-VP
as well as configurations to build a Linux system and drivers that
form the interface between peripherals and Linux applications.
Hence, GUI-VP Kit enables the execution of complex Linux graph-
ics frameworks and interactive GUI applications, as we will show
later. In addition, the VP’s networking capabilities allow users to ap-
ply the same well-known SW development workflows used for real
embedded systems, such as rapid development, test, and debug iter-
ations using Network File System (NFS) or Secure Shell (ssh) for SW
deployment and the GNU Debugger (GDB) for remote debugging.

To demonstrate the potential of GUI-VP Kit for the development
process of interactive graphical applications, we present two kinds
of experiments. First, we show the use of X.Org [9] applications
as an example for a non-trivial graphics framework. The full stack
(Linux boot on GUI-VP , X.Org startup, application start) is available
in less then 3 minutes and runs smoothly thereafter. Second, we

https://doi.org/10.1145/3583781.3590253
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3583781.3590253


GLSVLSI ’23, June 5–7, 2023, Knoxville, TN, USA Manfred Schlägl and Daniel Große

investigate the performance of PrBoom, a Linux port of a classic
first-person 3D-game [5]. We analyze different configurations and
receive reasonable frame rates considering the complexity of the
3D game scenes.

Finally, we open source1 GUI-VP Kit to facilitate further advance
of the RISC-V open-source ecosystem in general.
Related Work: Above we have already mentioned some exam-
ples of VP-based solutions supporting RISC-V. In the open-source
space there are solutions using QEMU [7]. However, their ISS and
platform parts are not in the SystemC world, hence accuracy and
granularity cannot be modeled following the SystemC standard.
[10] presents an interesting combination of QEMU and SystemC.
However, it is not available and it does neither target graphic appli-
cations nor respective interfaces for input. Both, [19] and [3] have
no memory management unit and hence do not support Linux. To
the best of knowledge, the RISC-VP [6], which we use as basis, is the
only freely available SystemC-based VP that is capable of booting
Linux. Finally, the commercial VP tools, e.g. Synopsys Virtualizer
or Siemens EDA/Mentor Vista, are proprietary. In contrast, GUI-VP
Kit is available as open-source on GitHub.

2 GUI-VP KIT SIMULATION STACK
Figure 1 shows the complex simulation stack of the GUI-VP Kit
with all extensions and improvements that enables the develop-
ment of interactive graphical Linux applications. The heart is the
GUI-VP (Hardware Level), that runs on top of the Host System
(Host Level). The GUI-VP creates a simulated environment for
the Linux kernel (Operating System Level) as basis for the Linux
Userland, where the graphic frameworks reside and the graphical
SW applications are running (Application Level).

The green blocks in Figure 1 show the components that are
provided by RISC-V VP [15, 16]. The VP comes with RISC-V 32 bit
(RV32) and 64 bit (RV64) models capable of running Linux. This
includes: (i) Instruction Set Simulators (ISSs) to execute RV32 or RV64
instructions, (ii) a Memory Management Unit (MMU) for virtual
memory management, (iii) Memory to hold programs and data, (iv)
Core Local- and Platform-Level Interrupt Controllers (CLINT and
PLIC) that provide system timers and interrupt handling, (v) two
UARTs, where one is used as console for user textual interaction and
one to realize network functionality using the Serial Line Internet
Protocol (SLIP) and the Network Tunnel Driver (TUN).

A runnable Linux system image is required as a basis for ourGUI-
VP Kit. We discuss the basic steps of this Linux bring-up in Section 3.
This also covers the initial Device Tree (DT), a data structure passed
to the Linux kernel, that describes the available HW components,
so that the kernel knows how to use and manage them.

The orange and red blocks in Figure 1 show the components
we replace (orange) and add (red) to support interactive graphical
applications. To realize graphical output and mouse input, we adopt
the Virtual Network Computing (VNC) graphical desktop-sharing
system that provides an interface for generic VNC clients on the
Host Level. We integrated VNC in GUI-VP using the powerful
libVNCServer open-source C library [4] and the custom C++ wrap-
per VNCServer. Based on this, we implemented the SystemC TLM

1https://github.com/ics-jku/GUI-VP_Kit

modules VNCSimpleFB for the graphics side and VNCSimpleInput
for the mouse input side.

In order for Linux to use the new modules, we customize the DT
and add drivers for them into the kernel. We add support for the
simple framebuffer driver family as a counterpart to VNCSimpleFB,
which supports either the Linux Frame Buffer (fbdev), or the Direct
Rendering Manager (DRM) interface. As counterpart to VNCSim-
pleInput, we introduce the newly developed simpleinput driver that
provides an Event Device (evdev) interface.

Details on our respective extensions and their interfaces are
given in Section 4 for the graphics side, and in Section 5 for the
mouse input side. As final modification, we introduce the alternative
CLINT implementation lwrt_clint, which ensures that the clock rate
of the simulated system wall clock matches that of the host.

Finally, bringing the whole GUI-VP Kit to live means to run
applications at the Application Level. The respective components
are covered in Section 6.

3 FOUNDATION FOR GUI-VP KIT : LINUX
BRING-UP

In this section we lay the foundation for GUI-VP Kit and show all
necessary steps to run Linux on it. As a starting point for GUI-VP ,
we first show basic changes to RISC-V VP in Section 3.1 that are
made to facilitate all further extensions. After that, we illustrate
how Linux images are created that can be booted on the GUI-VP
in Section 3.2. Finally, with the Device Tree (DT), we present the
form in which GUI-VP is described to the Linux kernel so that it
can correctly handle the HW provided to it in Section 3.3.

3.1 GUI-VP: Generic & Configurable Top-Level
The RISC-V VP contains two SystemC top-levels, from which a
model of an RV32 and a model of an RV64 multi-core system are
created. To also get runnable single-core models and to simplify
further extensions, we merge the two top-levels of RISC-V VP into a
single, parameterizable one. As final result the GUI-VP build system
can now create four models from this single SystemC top-level: (i)
RV32 single-core, (ii) RV32 quad-core, (iii) RV64 single-core, (iv)
RV64 quad-core.

3.2 Runnable Linux System Image
To get a runnable RISC-V Linux system image including bootloader,
kernel and user space we use Buildroot in its most recent version
2022.11.1. Buildroot is a simple, efficient and easy-to-use tool to
generate embedded Linux systems through cross-compilation [2].

Buildroot itself does not contain sources for Linux system com-
ponents. Instead, it comes with an extensive collection of automated
recipes for components, that describe what dependencies exist on
other components, where to find the source code, how to build it,
and how to assemble the resulting artifacts into a runnable system.
This whole process is highly customizable by a configuration file.

To have a basis for our GUI-VP RV32 and RV64 models, we
need two Buildroot configurations. We use the respective default
configurations for RV32 and RV64 which are included in Buildroot
as a starting point and customize them in the following way:

• Add support for generation of OpenSBI, which handles the
initial board bring-up and Linux kernel start.

https://github.com/ics-jku/GUI-VP_Kit


GUI-VP Kit : A RISC-V VP Meets Linux Graphics – Enabling Interactive Graphical Application Development GLSVLSI ’23, June 5–7, 2023, Knoxville, TN, USA

Figure 1: GUI-VP Kit Simulation Stack

• Add support for Linux kernel image generation. The Linux
kernel configurations are also based on default configura-
tions for RV32 and RV64 included in the kernel sources.
However, they are optimized by removing unneeded func-
tionality (e.g. unneeded drivers).

• Add support for SLIP (Linux kernel and user space tool) to
enable networking.

• Add tools for debugging and testing
• Enable generation of a fully integrated, bootable single SW
image that contains the OpenSBI Bootloader, the Linux Ker-
nel and the root file system.

3.3 Device Tree
Having now the GUI-VP models and bootable Linux images, there
is still one part missing to get running systems: The description
of the simulated HW components of the models, so that the Linux
kernel knows how to use and manage them, the DT.

The DT is typically written in a human readable form, the Device
Tree Source (DTS) and then compiled to a compact binary represen-
tation, the Device Tree Binary (DTB). In our case the DT contains:

• The number and descriptions of the cores (RV32/RV64), in-
cluding the available extensions and the address-translation
scheme in use by the MMU.

• The size of the memory and its location in the memory map.
• The interrupt controllers (CLINT and PLIC) and their register
locations and parameters.

• The peripherals, in our case two UARTs. Their location, in-
terrupt sources, default baud rate and an indication which
driver the Linux kernel should use to handle the peripheral,
the compatible string.

Similar to the VP top-levels in Section 3.1, we also introduce a single
parameterizable DTS. Based on this, the build system automatically
creates the DTBs for the four VP models presented above

With the resulting build system that creates the executable
GUI-VP models, the Linux system images, and the DTBs, we now
have the foundation for our GUI-VP Kit. In the following sections
we show how this initial version is extended to support GUI ap-
plications by adding support for graphics output (Section 4) and
mouse input (Section 5).

4 GRAPHICS OUTPUT
In this section, we describe the realization of the graphical output
from applications running within GUI-VP to the outside world.

The main concept used for this, is that of the Frame Buffer (FB).
A FB is a specific memory area that contains a bitmap of an image,
in which all pixels of the image are arranged one after the other
in a specific format. A typical use case for FBs is the realization of
efficient interfaces between graphics HW and SW: The SW updates
part or all of the FB content according to its graphics output. The
graphics HW periodically outputs the entire FB to a display device.

Our realization of the graphics output consists of three major
parts: First, the interface, that provides the graphical output from



GLSVLSI ’23, June 5–7, 2023, Knoxville, TN, USA Manfred Schlägl and Daniel Große

GUI-VP to the outside world, is presented in Section 4.1. Second,
the interface provided by GUI-VP to the Linux system, is described
in Section 4.2. Third, and finally, the interface between the HW and
the Linux applications provided by a Linux kernel driver, is covered
in Section 4.3.

4.1 Interface: Hardware/Host Level
First, we focus on the interface from GUI-VP to the outside world.
To provide a generic and easy way to access the output, we adopt
the VNC graphical desktop-sharing system for this task.

VNC relies on the Remote Frame Buffer Protocol (RFB), which
provides transport of graphical output from a server to a client over
a TCP/IP based network, and also the transport of input events
(e.g. mouse, keyboard) in the opposite direction. By using such a
widely spread solution, users can utilize a large number of different
clients according to their requirements and personal preferences.

For integration of VNC in the GUI-VP we use the powerful
libVNCServer open-source library. This C library not only provides
a fully functional VNC/RFB server implementation, but can also be
configured to perform protocol handling in dedicated threads. This
is particularly useful in our case, as it means that protocol handling
does not add to the load on the SystemC thread and thus does not
reduce simulation performance.

For the basic integration of libVNCServer, we implement the C++
class VNCServer, which not only serves as the basis for graphics out-
put, but also facilitates the integration of mouse event propagation
as presented later in Section 5.

After configuration and initialization of VNCServer, its run-time
interface for graphics consists of two parts. First, a pointer to the
RFB Frame Buffer (RFB-FB) with configured size (width and height)
and format (e.g. color order, bits per pixel). Second, a function to
indicate a modified area of the RFB-FB and to trigger an update on
RFB (RFB Trigger).

4.2 Interface: Hardware/Operating System Level
The secondmajor part is the hardware interface provided byGUI-VP
to the Linux system. This is realized by the SystemC module
VNCSimpleFB. Using SystemC TLM, it provides a virtual, memory-
mapped peripheral that translates accesses to its memory region to
changes in the RFB-FB provided by VNCServer.

Conceptually, we could directly map TLM transactions to the
RFB-FB and call the RFB trigger on any change. However, TLM
transactions are generated by load/store instructions and are there-
fore very fine granular (8 to 64 bit). This would result in RFB triggers
being called very frequently, which would have a negative impact
on simulation performance. To prevent this, we decouple FB up-
dates from RFB triggers in the following way: Each TLM transaction
is applied directly to the RFB-FB. When a change is made (TLM
write), the RFB trigger is not called, but instead a flag is set to
indicate the change. The flag is checked periodically by another
SystemC thread. If the flag indicates a change, the RFB trigger is
called and the flag is reset.

To finally enable VNCSimpleFB in GUI-VP , we integrate it in our
SystemC top-level and map it at address 0x11000000.

4.3 Operating System Level
The third and last major part is the Linux driver that handles the
HW and provides a standardized interface for Linux applications.
For this we utilize the already existing drivers in the category of
simple-framebuffer. These drivers are normally used to access FBs
that were already configured and initialized by other SW that ran
before the Linux kernel was started (e.g. firmware, bootloader, . . . ).
They don’t include any functionality to configure FB peripherals,
but rather provide a simple representation of a memory mapped
FB in the Linux kernel.

In a first step, we have to make the FB known to the Linux kernel.
We therefore add a new node to our DT, that contains:

• The address range, the FB is mapped: 0x11000000 to 0x11ffffff
• The pixel format: rgb565, which corresponds to 2 bytes per
pixel, where the lowest 5 bits represent blue, the next 6 bits
represent green and the highest 5 bits represent red

• The resolution (width, height): 800x480 (WVGA)
• The number of bytes in a line: 800 ∗ 2 bytes per pixel = 1600
• The compatible string simple-framebuffer, from which the
Linux kernel determines the driver to handle the peripheral

The second step is to enable support for the driver in the Linux
kernel configuration. Here we can choose between two alternative
implementations. One is enabled by CONFIG_FB_SIMPLE and pro-
vides support for the relatively compact and simple, but deprecated
fbdev interface. The other is enabled byCONFIG_DRM_SIMPLEDRM
and provides support for the more powerful, but also more complex
DRM. Since DRM is more modern and flexible and comes with an
emulation of fbdev anyway, we choose this approach as default.

After these last steps, GUI-VP Kit is now able to run Linux ap-
plications with graphics output. In Section 5 we now discuss how
GUI-VP Kit is extended to support mouse input.

5 MOUSE INPUT
This section covers the realization of the propagation of mouse
events from the outside world to SW running within GUI-VP .

Similar to the graphics output described before, our implemen-
tation of mouse input again consists of three main parts: First, the
interface that provides the mouse input from the outside world to
GUI-VP , is presented in Section 5.1. Second, the interface provided
by GUI-VP to the Linux system, is described in Section 5.2. Third,
and finally, the interface between the HW and the Linux applica-
tions provided by a Linux kernel driver, is covered in Section 5.3.

5.1 Interface: Hardware/Host Level
We will first focus on how the events are propagated to GUI-VP .
Events are provided by libVNCServer by using C callbacks that can
be installed in the initialization phase. However, these mechanism
is not directly applicable to call member methods of C++ Classes
as used in GUI-VP . To solve this, we first take a closer look at the
interface provided by libVNCServer.

The arguments of the C callbacks contain not only event related
data, but also a pointer to a data structure rfbClient corresponding
to the client from which the event originated. Each rfbClient has a
pointer to the rfbScreen data structure corresponding to its parent
server, which is created during the initialization phase. Finally,
rfbScreen contains a member screenData implemented as a void



GUI-VP Kit : A RISC-V VP Meets Linux Graphics – Enabling Interactive Graphical Application Development GLSVLSI ’23, June 5–7, 2023, Knoxville, TN, USA

EN: ENables event propagation; EP: Event Pending
R/M/L: Right/Middle/Left mouse button

Figure 2: Simpleinput Register Interface

pointer that can be used to provide custom, application-specific data.
This is now used in the followingway: In the initialization phase, we
set the screenData such that it points to our VNCServer instance. We
then install static C functions as callbacks for connection-, mouse-,
and keyboard-related events. This functions now serve as wrappers
for C++ methods. They extract the VNCServer instance via rfbClient
as described above and call event handling member methods of this
instance corresponding to the event type. With this we now have
VNCServer method calls for all events provided by libVNCServer.

To propagate the input events to other C++ objects, we introduce
the new interface VNCInput_if. This interface is realized as abstract
C++ class and declares event handling member functions for mouse
and keyboard events. VNCServer provides a method to register
objects of classes that implement this interface. If such an object
is registered, the implemented interface methods are called by the
event handling methods of VNCServer.

5.2 Interface: Hardware/Operating System Level
The next major component is the HW module, that handles the
propagation of the input events to the SW that is running on GUI-
VP . This is realized by the SystemC module VNCSimpleInput. The
module implements the VNCInput_if interface and is registered in
the VNCServer instance by the top-level of GUI-VP .

In contrast to the FB handling presented in Section 4, the Linux
kernel does not come with a generic driver for this task. We there-
fore have to specify our own register-based interface for the module
and we have to implement a corresponding Linux driver for it.

The register interface consists of the six registers show in Fig-
ure 2. If the EN bit is set by the SW in the CTRL register, all mouse
events that are propagated by the VNCServer callbacks are put at
the end of a queue that is restricted to hold 10 events. A SystemC
thread monitors the queue and triggers an interrupt when events
are present. A beginning TLM read of BMASK removes the first
event from the queue and loads it in the registersX, Y and BMASK. If
there are still queued events, the EP bit in BMASK is set to indicate,
that further events are ready to be read.

To finally enable VNCSimpleInput in GUI-VP , we integrate it in
our SystemC top-level and map it at address 0x12000000.

5.3 Operating System Level
As counterpart to the VNCSimpleInput module we implement a new
Linux driver simpleinput. The driver code is provided by GUI-VP Kit
as a patch for the Linux kernel and is automatically applied when
the kernel is built.

The driver registers itself as so called platform driver with a
specific device id and a probe function. On Linux kernel boot, the
DT is checked for a node with a compatible string matching the
device id. If this is the case, the driver’s probe function is called,
which requests all required resources and registers with the Linux
kernel’s input subsystem. The resources are the area containing the
memory-mapped registers and the interrupt, for which a handler
function is also installed. Both resources are described in a node in
the DT, as we will see below.

When registering with the input subsystem, the driver must also
define its capabilities, i.e. the type and code of events it provides
(defined in the Linux kernel sources). For the mouse buttons, it
defines the mouse buttons codes BTN_LEFT, BTN_MIDDLE and
BTN_RIGHT of type EV_KEY. The values for this type of events are
implicitly interpreted as boolean, reflecting either pressed (true) or
released (false). The mouse coordinates are provided by VNC as ab-
solute values, so they are defined as codesABS_X andABS_Y of type
EV_ABS. For these types of events, the driver must explicitly specify
a range that their values can take. This ranges are determined by
reading the values from the registersWIDTH and HEIGHT.

Also part of the registration is the installation of handlers that
are called by the input subsystem, when the according input device
is opened and closed. In the open handler the driver enables event
propagation and thus also interrupts by setting EN in the CTRL
register. Correspondingly, event propagation is disabled in the close
handler by resetting the EN bit. In this way, unnecessary load in
the VP and kernel is avoided when the device is not in use.

The event propagation itself is finally done in the interrupt han-
dler function. This function first reads the current event from the
BMASK, X and Y registers. As described above, it is important that
BMASK is read first, as this ensures that valid data from the HW
module is loaded into all other registers. The coordinate values
read from X and Y are reported directly to the input subsystem
as ABS_X and ABS_Y. For the mouse buttons, the value read by
BMASK is compared to the last value read to avoid redundant re-
porting of events. Only if there is a difference, the key bits L, M
and R are decoded and reported to the input subsystem accordingly
as BTN_LEFT, BTN_MIDDLE and BTN_RIGHT. The completion of
reporting the current event to the input system is indicated by a call
of the function input_sync. To improve event forwarding through-
put, this entire sequence is repeated as long as the EP bit of BMASK
indicates that more events are pending in the HW queue.

The final steps are now to enable support for the driver in the
Linux kernel configuration and to make the device known to the
Linux kernel in the DT.

The former is done by adding CONFIG_INPUT_SIMPLEINPUT
to the configuration. For the latter, a new node is added to our DT,
that contains the following descriptions:

• The addr. range themodule ismapped: 0x12000000-0x12000fff
• The interrupt parent and number: PLIC interrupt no. 10
• The compatible string simpleinput, from which the Linux
kernel determines our driver to handle the peripheral

After these last steps, GUI-VP Kit is now able to run Linux applica-
tions with graphics output and mouse input. This is now demon-
strated in Section 6.



GLSVLSI ’23, June 5–7, 2023, Knoxville, TN, USA Manfred Schlägl and Daniel Große

6 DEMONSTRATION AND EVALUATION
In this section, we present the experiments conducted with
GUI-VP Kit. All experiments were performed on a standard note-
book with an Intel Core i7-8565U and 16 GiB RAM under Debian 11.

Due to the generic nature of the simulation stack provided by
GUI-VP Kit, nearly any Linux graphics framework and application
can be run on GUI-VP . As an example for this, we present the use of
the very common graphical X Window System X.Org, in Section 6.1.
We show two examples of interactive X applications running on
the Linux system on GUI-VP , including a lightweight web browser.

In Section 6.2 we show that the performance is sufficient for
more complex applications. Here, we use PrBoom, a Linux port
of a classic first-person 3D-game, which is based on the Simple
DirectMedia Layer (SDL) library [8]. We evaluate the performance
based on the average Frames Per Second (FPS) that PrBoom achieves
on different GUI-VP models and in different configurations.

6.1 X Window System and Applications
On Unix-like operating systems the X Window System is a very
common framework to realize GUI applications. It is designed as a
client-server architecture. The X server only manages the devices
(graphics card, mouse, . . . ) and provides an abstract interface for
basic operations like graphics output and keyboard and mouse
input. The applications themselves are implemented as X clients.
They use the interface provided by the X server for their graphics
output and event input.

For the following demonstrations we use the wide-spread, free
and open-source implementation X.Org, which is provided by the
X.Org Foundation [9] and also available in Buildroot.

For graphics output, X.Org uses the Linux kernel’s DRM inter-
face. As presented in Section 4, DRM transports graphics output via
the simple-framebuffer Linux driver to our TLM module VNCSim-
pleFB in GUI-VP . From there, we transport the image data via our
VNCServer wrapper, the libVNCServer library and RFB to the VNC
client. For mouse input, X.Org uses the Linux evdev input device,
that was presented in Section 5. Mouse input from the VNC client
is passed to GUI-VP via RFB, libVNCServer and VNCServer. From
there, we deliver the events to our VNCSimpleInput TLM module.
This module is then handled by our Linux driver vncsimpleinput,
which provides the evdev interface. The full stack can be seen in
the architecture diagram in Figure 1.

To integrate X.Org in our setup, we simply enable support for it in
the Buildroot configuration included inGUI-VP Kit. The applications
used in the following demonstrations are also selected from the
wide range of X applications available in Buildroot.
X.Org Standard Applications: A screenshot of the VNC client
connected via network to GUI-VP is depicted in Figure 3. It shows
a running X.Org server with the lightweight fluxbox window man-
ager on top. We have started well-known X applications, from top
to bottom and left to right: xlogo, xclock, xcalc, xeyes and xev. On our
machine it takes about 170 seconds from startup of the GUI-VP to a
fully functional state. Until this point, the RV64 ISS of GUI-VP exe-
cuted approximately 4.1 billion RISC-V instructions. The interaction
with the running X applications is smooth and responsive.
X.Org Web Browser Application: The respective screenshot is
shown in Figure 4. Again it shows a running X.Org server. However,

Figure 3: X.Org with Window Manager and Applications

Figure 4: X.Org with Web Browser

in this case the lightweight web browser dillo is started directly
without a window manager. The web browser shows a website
hosted locally on the simulated system. On our machine it takes
about 140 seconds from startup of the VP to a fully functional state.
Until this point, the RV64 ISS of GUI-VP executed approximately
3.3 billion RISC-V instructions.

6.2 GUI-VP Kit Performance: PrBoom
In this section, we investigate the performance of GUI-VP Kit using
the SDL-based classic first-person 3D-game PrBoom. A screenshot
of the VNC client connected to GUI-VP via network, showing the
graphical output of PrBoom is given in Figure 5.

In our experiments, we examine the average frame rate, mea-
sured in FPS, achieved by PrBoom in different setups described
below. For the measurements, we modify PrBoom so that it cal-
culates the average FPS. To make our experiments reproducible
and thus obtain comparable data from multiple runs, we use the
non-interactive demo mode of PrBoom. This mode is started auto-
matically when no user interacts with the game and runs several
demos one after another. As final result for each experiment, we
take the average FPS after the first demo is finished.

The results obtained from the experiments on our machine are
summarized in Figure 6. The Y-axis shows the average FPS achieved



GUI-VP Kit : A RISC-V VP Meets Linux Graphics – Enabling Interactive Graphical Application Development GLSVLSI ’23, June 5–7, 2023, Knoxville, TN, USA

Figure 5: PrBoom on RV32 Single-Core (640x480)

Figure 6: Average FPS achieved with PrBoom on GUI-VP

in a setup. The X-axis shows the different setups, as combinations of
theGUI-VP model (RV32 or RV64) and the game resolution (640x480
or 352x250). The orange bars show the frame rate when using DRM.
The blue bars shows the frame rate when using fbdev.

The achieved average FPS range between 1.9 and 8.8. Quite
intuitively, a lower resolution results in higher FPS. Furthermore,
the compact and simple fbdev interface offers higher performance
than the more modern, but also more complex DRM interface. The
reason for the difference in performance between RV32 and RV64
is not so obvious and will be investigated further in future work.

Finally, to interpret the collected FPS values in terms of per-
formance, we have to take into account that the performance of
3D games does not only depend on the graphics output. Since 3D
scenes change a lot between frames, a high degree of recalculation
is necessary for each frame. In addition, the game logic, including
all actors, must be executed in sync with the scene. To put this in
perspective: On our GUI-VP ISS, we can observe up to 13.7 mil-
lion RISC-V instructions executed per frame. Considering this, the
achieved FPS on GUI-VP are in a reasonable range.

7 CONCLUSIONS
In this paper we presented GUI-VP Kit, a full simulation environ-
ment that enables the development of interactive graphical Linux ap-
plications early in a system design process. GUI-VP Kit comes with

(i) GUI-VP , a RISC-V VP capable of running Linux that was greatly
extended to support graphics output and mouse input, which is
made available to the user via VNC, and (ii) all necessary configura-
tions to generate a fully functional Linux environment, including all
necessary drivers to handle the new peripherals, and the example
frameworks and applications.

The capability of the GUI-VP Kit simulation stack to run generic
Linux graphics frameworks was demonstrated by two examples
based on the X.OrgWindow System. We have shown that GUI-VP is
able to boot a Linux system with an X server and X applications in
less than 3 minutes. The performance of GUI-VP Kit was evaluated
using PrBoom, a Linux port of a classic 3D-game. In terms of con-
crete results, we showed that with up to 8.8 FPS the performance is
reasonable considering the complex calculations (up to 13.7million
RISC-V instructions) required for each frame.

GUI-VP Kit and all experiments are available as open-source on
GitHub.

In the future, we plan to further improve GUI-VP’s simulation
performance and extend GUI-VP Kit with additional features use-
ful for developing graphical applications, such as keyboard input,
persistent storage capabilities, and 3D graphics.

ACKNOWLEDGMENTS
This work has partially been supported by the LIT Secure and
Correct Systems Lab funded by the State of Upper Austria.

REFERENCES
[1] Accessed: 2023-02-19. http://systemc-verification.org.
[2] Accessed: 2023-02-19. Buildroot. https://www.buildroot.org.
[3] Accessed: 2023-02-19. DBT-RISE. https://github.com/Minres/DBT-RISE-Core.
[4] Accessed: 2023-02-19. libVNCServer. https://libvnc.github.io.
[5] Accessed: 2023-02-19. PrBoom. https://prboom.sourceforge.net/.
[6] Accessed: 2023-02-19. RISC-V Virtual Prototype. https://github.com/agra-uni-

bremen/riscv-vp.
[7] Accessed: 2023-02-19. RISCV-QEMU. https://github.com/riscv/riscv-qemu.
[8] Accessed: 2023-02-19. SDL. https://www.libsdl.org/.
[9] Accessed: 2023-02-19. X.Org. https://www.x.org.
[10] Amir Charif, Gabriel Busnot, Rania Mameesh, Tanguy Sassolas, and Nicolas

Ventroux. 2019. Fast Virtual Prototyping for Embedded Computing Systems
Design and Exploration. In Proceedings of the Rapid Simulation and Performance
Evaluation: Methods and Tools. 3:1–3:8.

[11] TomDe Schutter. 2014. Better Software. Faster!: Best Practices in Virtual Prototyping.
Synopsys Press.

[12] Daniel Große and Rolf Drechsler. 2010. Quality-Driven SystemC Design. Springer.
[13] Muhammad Hassan, Daniel Große, and Rolf Drechsler. 2022. Enhanced Virtual

Prototyping for Heterogeneous Systems. Springer.
[14] Vladimir Herdt, Daniel Große, and Rolf Drechsler. 2020. Enhanced Virtual Proto-

typing: Featuring RISC-V Case Studies. Springer.
[15] Vladimir Herdt, Daniel Große, Hoang M. Le, and Rolf Drechsler. 2018. Extensible

and Configurable RISC-V based Virtual Prototype. In Forum on Specification and
Design Languages. 5–16.

[16] Vladimir Herdt, Daniel Große, Pascal Pieper, and Rolf Drechsler. 2020. RISC-V
based Virtual Prototype: An Extensible and Configurable Platform for the System-
level. Journal of Systems Architecture - Embedded Software Design 109 (2020),
101756.

[17] IEEE Std. 1666 2011. IEEE Standard SystemC Language Reference Manual. IEEE
Std. 1666.

[18] Rainer Leupers, Grant Martin, Roman Plyaskin, Andreas Herkersdorf, Frank
Schirrmeister, Tim Kogel, and Martin Vaupel. 2012. Virtual platforms: Breaking
new grounds. In Design, Automation and Test in Europe. 685–690.

[19] Màrius Montón. 2020. A RISC-V SystemC-TLM simulator. arXiv:2010.10119
[20] OSCI 2009. OSCI TLM-2.0 Language Reference Manual. OSCI.
[21] Andrew Waterman and Krste Asanović. 2019. The RISC-V Instruction Set Manual;

Volume I: Unprivileged ISA. SiFive Inc. and UC Berkeley.
[22] Andrew Waterman and Krste Asanović. 2019. The RISC-V Instruction Set Manual;

Volume II: Privileged Architecture. SiFive Inc. and UC Berkeley.

http://systemc-verification.org
https://www.buildroot.org
https://github.com/Minres/DBT-RISE-Core
https://libvnc.github.io
https://prboom.sourceforge.net/
https://github.com/agra-uni-bremen/riscv-vp
https://github.com/agra-uni-bremen/riscv-vp
https://github.com/riscv/riscv-qemu
https://www.libsdl.org/
https://www.x.org
https://arxiv.org/abs/2010.10119

	Abstract
	1 Introduction
	2 GUI-VP Kit Simulation Stack
	3 Foundation for GUI-VP Kit: Linux Bring-Up
	3.1 GUI-VP: Generic & Configurable Top-Level
	3.2 Runnable Linux System Image
	3.3 Device Tree

	4 Graphics Output
	4.1 Interface: Hardware/Host Level
	4.2 Interface: Hardware/Operating System Level
	4.3 Operating System Level

	5 Mouse Input
	5.1 Interface: Hardware/Host Level
	5.2 Interface: Hardware/Operating System Level
	5.3 Operating System Level

	6 Demonstration and Evaluation
	6.1 X Window System and Applications
	6.2 GUI-VP Kit Performance: PrBoom

	7 Conclusions
	References

