
Fuzz-Testing of SpinalHDL Designs *

Katharina Ruep, Daniel Große
Institute for Complex Systems, Johannes Kepler University Linz, Austria
katharina.ruep@jku.at, daniel.grosse@jku.at

Abstract

In this extended abstract, we summarize our work from [11], where we proposed to bring Coverage-guided Fuzzing
(CGF) to the SpinalHDL design flow. We demonstrated for a wide range of SpinalHDL designs the effectiveness of
our tool in comparison to Constrained Random Verification (CRV). In addition, we present recent developments going
beyond [11].

1 Extended Abstract

Confronted with the end of Moore’s law and Dennard
scaling, a new golden age for computer architecture has
started [5]. However, to make this a reality, domain-
specific architectures and designs are essential and, hence,
the design productivity needs an enormous boost. There-
fore, alternatives to Register Transfer Level (RTL) design,
which is based on the classical Hardware Description Lan-
guages (HDLs) Verilog or VHDL, moved in the focus of
research. A very promising alternative is SpinalHDL [1].
SpinalHDL has been realized as an embedded Domain
Specific Language (DSL) in Scala and allows to describe
RTL designs by using object-oriented and functional pro-
gramming. Moreover, the meta-programming features of
Scala can be used for parametrization and hardware code
generation. In the final step of the SpinalHDL flow, a Ver-
ilog design is generated for the design. However, while
productivity gains by a factor of 3 or more have been re-
ported using meta-modeling and code generation [2], veri-
fication must keep up, since otherwise the verification gap
is widening even faster.
In this work, we focus on simulation-based verification of
SpinalHDL designs. To define the stimuli for simulation,
the verification engineer can either create directed tests or
make use of more advanced techniques, like Constrained
Random Verification (CRV) [13, 4]. The latter has been fur-
ther improved by integrating coverage feedback from sim-
ulations. This, however, requires adjustments of weights
and constraints, design-specific Bayesian networks [3], or
utilization of data mining techniques [7], each with high
manual effort.
In software testing Fuzzing is a well-established tech-
nique [9]. Fuzzing is a process where the Program Under
Test (PUT) is executed repeatedly with random-generated
inputs to find software bugs and security vulnerabilities.
State-of-the-art Coverage-Guided Fuzzing (CGF) aims to
maximize code coverage of the PUT. The core principle of
CGF is as follows: A corpus is created which contains at
least one initial test case. Then, the CGF feedback loop

*This work has partially been supported by the LIT Secure and Correct
Systems Lab funded by the State of Upper Austria.

starts, which consists of two main steps: (1) From the cor-
pus a test case is taken, mutated to create a new one and
then fed to the PUT. (2) If the overall coverage increases
during PUT execution, the new test case is added to the
corpus, otherwise it is discarded. With this prioritization
of interesting (coverage-increasing) test cases, CGF boosts
the efficiency of basic fuzzing significantly.
However, for hardware, only very few fuzzing approaches
have been presented so far (e.g. [10, 14],[6],[8],[12]). None
of these approaches target SpinalHDL and they all require
a lot of user interaction to setup fuzzing. Moreover, a com-
mon challenge for the hardware domain is the additional
ingredient of a harness. The harness has to (1) translate
a test case from the corpus, typically a byte stream, to the
input signals of the Device Under Test (DUT) and (2) sup-
port the sequential behavior of hardware, i.e. input values
over time.
In this extended abstract, we summarize our work
from [11], where we presented SPINALFUZZ, a CGF
approach for SpinalHDL designs to overcome these
mentioned challenges. During the development of
SPINALFUZZ our primary objective was to make fuzzing
of a SpinalHDL DUT as easy as possible and, hence,
automate as much as possible. For the integration of
fuzzing into the SpinalHDL design flow, we (a) lever-
age the SpinalHDL/Scala language features for various
generation tasks and (b) benefit from existing software
fuzzers. In several experiments, we were able to demon-
strate the effectiveness of SPINALFUZZ in comparison to
CRV on a wide range of SpinalHDL designs. In all cases
SPINALFUZZ outperformed CRV and reached a coverage
greater than 90%. In addition, we present recent develop-
ments going beyond [11].

2 Literature
[1] SpinalHDL. https://github.com/SpinalHDL.

[2] W. Ecker and J. Schreiner. Metamodeling and code gener-
ation. In S. Ha and J. Teich, editors, Handbook of Hard-
ware/Software Codesign, pages 1–41. Springer, 2017.

[3] S. Fine and A. Ziv. Coverage directed test generation for

https://github.com/SpinalHDL


functional verification using bayesian networks. In Design
Automation Conf., pages 286–291, 2003.

[4] F. Haedicke, H. M. Le, D. Große, and R. Drechsler.
CRAVE: An advanced constrained random verification en-
vironment for SystemC. In International Symposium on
System-on-Chip, pages 1–7, 2012.

[5] J. L. Hennessy and D. A. Patterson. A new golden age for
computer architecture. Comm. of the ACM, 62(2):48–60,
2019.

[6] V. Herdt, D. Große, H. M. Le, and R. Drechsler. Verifying
instruction set simulators using coverage-guided fuzzing. In
Design, Automation and Test in Europe, pages 360–365,
2019.

[7] C. Ioannides and K. I. Eder. Coverage-directed test gen-
eration automated by machine learning – a review. ACM
Trans. on Design Automation of Electronic Systems, 17(1):
7:1–7:21, 2012.

[8] K. Laeufer, J. Koenig, D. Kim, J. Bachrach, and K. Sen.
RFUZZ: Coverage-directed fuzz testing of RTL on FPGAs.
In International Conference on Computer-Aided Design,
pages 1–8, 2018.

[9] V. J. Manès et al. The art, science, and engineering of
fuzzing: A survey. IEEE Transactions on Software Engi-
neering, 47(11):2312–2331, 2021.

[10] M. Muench et al. What you corrupt is not what you crash:
Challenges in fuzzing embedded devices. In Network and
Distributed System Security Symposium, 2018.

[11] K. Ruep and D. Große. SpinalFuzz: Coverage-guided
fuzzing for SpinalHDL designs. In European Test Sympo-
sium, pages 1–4, 2022.

[12] T. Trippel, K. G. Shin, A. Chernyakhovsky, G. Kelly,
D. Rizzo, and M. Hicks. Fuzzing hardware like software,
2021. arXiv:2102.02308.

[13] J. Yuan, C. Pixley, and A. Aziz. Constraint-based Verifica-
tion. Springer, 2006.

[14] Y. Zheng, A. Davanian, H. Yin, C. Song, H. Zhu, and
L. Sun. FIRM-AFL: High-throughput greybox fuzzing of
IoT firmware via augmented process emulation. In USENIX
Security Symposium, 2019.


