
How We Learned to Stop Worrying
and Build a RISC-V VP with only one Microcode Instruction*

Lucas Klemmer, Sonja Gurtner, Daniel Große
Institute for Complex Systems, Johannes Kepler Universität Linz, Linz, Österreich
lucas.klemmer@jku.at, sonja.gurtner@gmail.com, daniel.grosse@jku.at

Abstract

In this extended abstract, summarizing [1] and [2], we present Goldcrest-VP a Virtual Prototype (VP) which serves as
an exploration platform for microcoded RISC-V cores leveraging the One Instruction Set Computer (OISC) principle.
Furthermore, we introduce a formal verification framework for the microcode procedures. Using Goldcrest-VP, we
developed SUBLEQ microcode that is fully RISC-V RV32I compliant. We were able to uncover several bugs in the
microcode using our formal verification framework.

1 Introduction

The idea to reduce the number of instructions of a Reduced
Instruction Set Computer (RISC) to the minimum, i.e. to
a single instruction, led to the ultimate RISC computer
or One Instruction Set Computer (OISC) [3, 4]. The
careful selection of the instruction makes an OISC Turing-
complete, i.e. it can solve any computing problem.
Depending on the selected instruction, three OISC types
can be distinguished:

1. Arithmetic-based architectures: This type uses an
arithmetic operation and a conditional jump. A
well-known example is to subtract and branch unless
positive, abbreviated as SUBLEQ [5].

2. Bit-manipulating architectures: These machines
perform bit operations, like bit-flipping or copying,
and pass the control flow either conditionally or
unconditionally. Due to their extreme minimalism
they are the least practical relevant OISC type [6].

3. Transport triggered architectures: While the only
available instruction is MOVE, arithmetic, control flow,
or other operations are available by writing to memory
mapped registers; see e.g. [7, 8].

The strengths of OISC machines lie in their extremely
small area footprint and their high flexibility wrt. very
specific use cases. Thus, OISC machines have
been considered in a wide variety of applications,
e.g. fault detection [9, 10], cryptography [11], stream
processing [12], carbon nanotube computer [13],
and (advanced) micro-controllers [14, 8]. However,
programming directly in OISC languages is extremely
complicated due to the limited features resulting in
exceptionally long programs that are hard to debug and
maintain. Further, most of these architectures require
customized software tooling, in particular from the
compiler side. This is due to the fact that typically

*This work has partially been supported by the LIT Secure and Correct
Systems Lab funded by the State of Upper Austria.

each OISC machine uses a custom Instruction Set
Architecture (ISA), thus hindering the emergence of a
common OISC ecosystem. Yet, the availability of a
mature and widely used hardware and software ecosystem
is one of the deciding factors for the success of most
technologies. Therefore, we have chosen RISC-V as
the outside interface of the VP since it is an open and
royalty-free ISA [15] with a lot of traction in industry and
research.
An often used OISC instruction is SUbtract and Branch
if Less than or EQual to zero (SUBLEQ) [5]. While
SUBLEQ is not as low-level as the bit-manipulating
instructions, it is still challenging to write efficient and
correct SUBLEQ procedures thus making it mandatory to
very thorougly verify the microcode procedures.
In this extended abstract, we present Goldcrest-VP,
an exploration platform for microcoded RISC-V cores
leveraging the OISC principle and a formal verification
framework for the microcode procedures.

1.1 Microcoded RISC-V VP: Goldcrest-VP
Goldcrest-VP [1]1 has been implemented in approximately
1,000 lines of plain C++ code. The current microcode
implementation(s) support RV32I, although the Instruction
Set Simulator (ISS) itself features all requirements to
support additional RISC-V extensions. An overview of the
architecture of Goldcrest-VP is shown in Figure 1. The ISS
core has been structured into four main components: (1)
the main memory, (2) the RISC-V interface, (3) the OISC
execution unit, and (4) the timing model. In Figure 1 and
the rest of this work all components (or data flows) related
to RISC-V are colored in blue, and all components (or data
flows) related to the OISC microcode are colored in red. In
the following sections, we describe all components in more
detail.

1https://github.com/ics-jku/goldcrest-vp

Figure 1 Architecture of the Goldcrest-VP

1.2 RISC-V Interface
To the user, Goldcrest-VP is a RISC-V compliant ISS,
completely hiding the microcode layer. Internally,
the RISC-V interface (center of Figure 1 with blue
background) handles loading RISC-V binaries, and
fetching plus decoding RISC-V instructions. Before the
ISS starts executing a RISC-V binary, it is loaded into
the main memory using the ELF loader (see blue dotted
line). Then, the ELF loader sets the initial RISC-V
program counter and starts decoding the first RISC-V
instruction. After the RISC-V interface has decoded an
RISC-V instruction, it sets up the OISC execution unit by
first putting register values and immediate values of the
RISC-V instruction at hand into the OISC registers. It
then looks up the address of the microcode implementation
for the current RISC-V instruction and hands over the
execution to the OISC unit. After the OISC unit finishes
its computation, the result, if one is produced, is loaded
from the OISC registers and stored back at the RISC-V
destination register. Then, the next RISC-V instruction is
processed.

1.3 OISC Execution Unit
The OISC execution unit (right side in Figure 1)
implements the execution loop of the OISC microcode2.
During execution, microcode instructions are fetched
from a very small microcode ROM (less than 1 KB),
executed, and then their results are written back to
the OISC registers. Moreover, microcode instructions
can perform additional operations (e.g. bit-operations) by
writing to memory-mapped functional registers. Using
these registers developers can integrate new operations and
evaluate their performance impact. By this, Goldcrest-
VP allows a hybrid OISC design space exploration of a
mixture of arithmetic-based and transport triggered OISC
architectures.

1.4 Memory
Often, OISC architectures are designed without dedicated
hardware registers, i.e. all registers are placed in the
system’s main memory. While this greatly reduces the
system’s complexity and area requirements, it also has a
high performance cost, since accessing memories is highly

2As already mentioned we use SUBLEQ microcode instructions, but
Goldcrest-VP can easily be extended to other OISC instructions.

sequential and slow compared to dedicated registers.
The Goldcrest-VP reflects this common feature of OISC
architectures by mapping all RISC-V and OISC registers
into the main memory3.

1.5 Timing Model
To enable design space exploration of different
architectures (e.g. dedicated registers vs. registers in
memory) every access to the memory is routed through
the timing model. In Figure 1, the timing model is located
between the memory and the RISC-V interface. In the
timing model developers can specify the time required
to access different registers or memory regions. The
timing model adds a delay to the simulation for every
read or write operation on the main memory and can
be customized by the user. To summarize, the timing
model enables early design space exploration thus helping
developers deciding on the hardware architecture.

2 Formal Verification Framework

In this section we present the formal verification
framework we developed to verify the correctness of the
microcode procedures of the Goldcrest-VP [2]4.

2.1 Overview
The scope of the formal verification is the microcode.
This means, that our verification starts after the RISC-
V Framework placed the correct register values in the
OISC Registers and stops after the microcode procedure is
done by checking that the microcode produced the correct
results.
Our formal verification framework is based on a SUBLEQ
ISS written in the Rosette [16, 17, 18] programming
language. Rosette [16, 17, 18] is a framework for designing
solver-aided domain-specific languages and an extension
of Racket. In practice, Rosette’s core verification part is a
wrapper around the SMT-LIB2 language, therefore most
operations can be easily translated to SMT-LIB2. The
SUBLEQ ISA is extremely minimal, therefore the Racket
ISS consists of just a single function (step) that totals
about 30 lines of code which implements the SUBLEQ
instruction.
The formal verification is performed by symbolically
evaluating a microcode procedure and checking that the
results always match the results of the specifications of the
RISC-V instruction the procedure implements. In the next
section we will briefly describe how RISC-V instructions
are specified for verification in our framework.

2.2 RISC-V Specifications
To formally capture the specification of each RISC-V
instruction we have defined the macro rv-verify. This
macro generates Racket code which handles the formal
verification, verification runtime measurement, and the

3Except the OISC program counter.
4https://github.com/ics-jku/goldcrest-microcode-verification

concrete execution of models, if a model is found. Listing 1
shows how the rv-verify macro is used for the JAL
RISC-V instruction.
1 (r v − v e r i f y
2 #:name "JAL"
3 #:init-pc JAL−PC
4 #:fuel 20
5 #:microcode microcode
6 #:solver (b o o l e c t o r)
7 #:spec
8 (lambda (r e s)
9 (and (eq? (list-ref r e s REG−RVPC)

10 (bvadd v a l − r v p c val−immi))
11 (eq? (list-ref r e s REG−RSLT)
12 (bvadd v a l − r v p c (bv 4 XLEN)))))
13 #:assumptions
14 (lambda (r e s)
15 (assume (eq? (bv 0 2)
16 (e x t r a c t 1 0 (list-ref r e s 1))))))

Listing 1 Full specification of the JAL instruction

Our rv-verify macro is responsible for executing the
respective SUBLEQ instruction, printing the result after
execution, verifying that the specification holds, and
providing information about the runtime of the verification.
The specification and assumptions have to be passed in a
lambda expression as they would otherwise be evaluated
immediately. This immediate evaluation is not possible
as both refer to register values after execution which are
not known to the macro at the time of definition. The
macro first symbolically executes the instructions starting
at the defined program counter, and saves the resulting
state of all registers. The selected SMT solver then tries
to find concrete values for the defined symbolic constants
which would lead to a violation of the specification. If no
such counterexample is found, the correctness is proven
and the function finally returns OK and the runtime for
the verification. Otherwise, it returns a model, which
consists of the register values that led to a wrong result after
executing the instructions, and prints the incorrect output.

2.3 Verification Results
We were able to prove the correctness of SUBLEQ
microcode procedures for the majority of the RV32I
instructions (28 out of 37). However, for 9 RISC-V
instructions the corresponding SUBLEQ procedures were
buggy.
Most instructions could be proven in a matter of seconds,
however for some of the more complex instructions (i.e.
and, xor, ...) we had to apply some tricks to bring down
the verification time. These tricks included first further
optimizing the procedures and scaling the bitwidth of the
microcode registers.

3 Conclusion

In this extended abstract, we presented Goldcrest-VP
which serves as a development platform for both, hardware
architecture and microcode procedures, and provides the
basis for early design space exploration. Additionally,
we presented a formal verification framework for the
Goldcrest-VP microcode. Our VP is a fully compliant
implementation of the RV32I ISA, whose instructions are

executed in microcode using the OISC paradigm. But still,
even tough the VP passes all RISC-V architectural tests
we found some bugs in the microcode with the formal
verification framework.

4 Literature
[1] L. Klemmer and D. Große, “An exploration platform for

microcoded RISC-V cores leveraging the one instruction set
computer principle,” in ISVLSI, 2022, pp. 38–43.

[2] L. Klemmer, S. Gurtner, and D. Große, “Formal verification
of SUBLEQ microcode implementing the RV32I ISA,” in
FDL, 2022, pp. 1–8.

[3] F. Mavaddat and B. Parhami, “URISC: The ultimate
reduced instruction set computer,” IJEEE, vol. 25, no. 4,
pp. 327–334, 1988.

[4] D. W. Jones, “The ultimate RISC,” SIGARCH Computer
Architecture News, vol. 16, no. 3, p. 48–55, Jun. 1988.

[5] O. Mazonka and A. Kolodin, “A simple multi-processor
computer based on subleq,” in arXiv:1106.2593, 2011.

[6] O. Mazonka, “Bit copying - the ultimate computational
simplicity,” in arXiv:0907.2173.2593, 2009.

[7] P. Jaaskelainen, A. Tervo, G. P. Vaya, T. Viitanen,
N. Behmann, J. Takala, and H. Blume, “Transport-triggered
soft cores,” in IPDPS, 2018, pp. 83–90.

[8] M. Crepaldi, A. Merello, and M. Di Salvo, “A multi-one
instruction set computer for microcontroller applications,”
IEEE Access, vol. 9, pp. 113 454–113 474, 2021.

[9] S. Ananthanarayan, S. Garg, and H. D. Patel, “Low cost
permanent fault detection using ultra-reduced instruction set
co-processors,” in DATE, 2013, p. 933–938.

[10] A. Rajendiran, S. Ananthanarayanan, H. D. Patel, M. V.
Tripunitara, and S. Garg, “Reliable computing with ultra-
reduced instruction set co-processors,” in DAC, 2012, p.
697–702.

[11] K. S. Dharshana, K. Balasubramanian, and M. Arun,
“Encrypted computation on a one instruction set
architecture,” in ICCPCT, 2016, pp. 1–6.

[12] M. Yokota, K. Saso, and Y. Hara-Azumi, “One-instruction
set computer-based multicore processors for energy-
efficient streaming data processing,” in RSP, 2017, p.
71–77.

[13] M. M. Shulaker, G. Hills, N. Patil, H. Wei, H.-Y. Chen,
H.-S. P. Wong, and S. Mitra, “Carbon nanotube computer,”
Nature, vol. 501, no. 7468, pp. 526–530, 2013.

[14] Maxim Integrated, “Maxq microcontroller family,”
https://www.maximintegrated.com/en/design/technical-
documents/userguides-and-manuals/5/5618.html, 2013.

[15] A. Waterman and K. Asanović, The RISC-V Instruction
Set Manual; Volume I: Unprivileged ISA, SiFive Inc. and
CS Division, EECS Department, University of California,
Berkeley, 2019.

[16] “Rosette guide,” https://docs.racket-lang.org/rosette-
guide/index.html, Accessed: 2022-05-20.

[17] E. Torlak and R. Bodík, “A lightweight symbolic virtual
machine for solver-aided host languages,” in PLDI, 2014,
pp. 530–541.

[18] ——, “Growing solver-aided languages with Rosette,” in
SPLASH, 2013, pp. 135–152.

