
Programming Language Assisted Waveform Analysis:
A Case Study on the Instruction Performance of SERV

Lucas Klemmer Daniel Große
Institute for Complex Systems, Johannes Kepler University Linz, Austria

{lucas.klemmer, daniel.grosse}@jku.at

https://wal-lang.org https://github.com/ics-jku/wal/tree/main/wawk

Abstract—RISC-V’s growing traction leads to the release of new
RISC-V cores on a near monthly basis. In this growing and diverse
ecosystem, understanding the performance and other properties of a
RISC-V core is of great importance since selecting the best fitting core is
mandatory for a successful project. Analyzing RISC-V cores by hand
is not possible due to the ever-increasing number of available cores
and available software benchmarks might not be fine-grained enough to
understand a core completely. Programming and powerful programming
languages have proven to provide the productivity that is required to
keep pace with these fast developments.

In this paper we present a case study1 in which we use WAWK, a
front-end for the open-source Waveform Analysis Language, to analyze the
performance of all instructions of SERV, a well known bit-serial RISC-V
core. With WAWK, only a few lines of code are necessary to calculate
the respective metric on the waveform generated during simulation.

I. INTRODUCTION

RISC-V is an open and royalty free ISA [1] striving for innovation
through collaboration, thus enabling even small companies as well
as community projects to develop their own processors which take
advantage from RISC-V’s permissive license and its extensibility
to explore new ideas and markets with often highly specialized
hardware. However, this openness and extensibility of RISC-V brings
its own set of challenges, since the sheer number of available RISC-
V cores, which are often highly configurable and extensible, makes
it very hard and time-consuming for both, designers and users, to
compare different cores against each other [2] [3].

In this paper, we use Waveform AWK (WAWK), a front-end for the
open-source Waveform Analysis Language (WAL) [4], [5]. WAWK
programs have direct access to all signal values of a waveform.
Accessing signals in a WAWK program is similar to accessing
variables in regular programming languages with the difference that
the value returned depends on the loaded waveform and the time at
which the signal is accessed. Since WAWK is compiled down to WAL
it has access to a very rich feature set that provides a large collection
of functions which can be used to analyze waveforms. Thus WAWK
allows creating analysis programs using the values from the VCD
waveforms generated during simulation of a RISC-V core.

With WAWK, we show that the analysis of RISC-V cores is
possible with only a handful of lines which give developers crucial
information about the performance of their or others cores.

II. RELATED WORK

In the context of processor architecture research several processor
simulators have been proposed. A prominent example is gem5 [6]
or multi2sim [7]. A complimentary direction are emulators, such as
qemu [8] or OVPSim [9]. Both simulators, and emulators can partially
be used to calculate (performance) metrics. However, they are not as

1The code for the case study is available at https://github.com/LucasKl/
serv-cpi

Fig. 1: SERV Instuction Lifecycle

flexible as a programmable approach such as WAWK for the problems
considered. WAWK allows developers to create programs and tailor
them to the exact requirements, such as IPC count, pipeline analysis
and more [10].

III. PRELIMINARIES

A. WAWK

In this paper we use WAWK, a language inspired from the popular
text-processing language AWK, that is compiled down to WAL. In
general, all WAWK scripts consist of multiple statements that follow
a condition: { action } scheme. For each time index in a
waveform, WAWK evaluates the condition of each statement, and,
if satisfied, executes the associated action.

B. SERV

SERV is a bit-serial implementation of the RISC-V ISA with a
heavy focus on very low area usage. The bit-serial implementation
dictates that all instructions are executed bit by bit such that for
example the RV32I add instruction is split over at least 32 cycles,
one for each bit of the result.

To analyze the runtime of individual instructions in the SERV
core we can observe the values of the instruction fetch bus. The
start of a new instruction is signalized by the core when the signal
i_ibus_ack rises. Therefore, the runtime of one instruction can
be calculated by observing two following rising edge events on
i_ibus_ack and calculating the time difference event2 − event1
between those two events. This is shown in Figure 1 where the first
instruction starts at time a. At time point b the next instruction starts
thus the CPI for this instruction can be calculated by the difference
between b and a.

IV. CPI ANALYSIS

The WAWK program for the CPI analysis is shown in Listing 1.
The analysis program consists of four WAWK statements. First,
after the program is started and before the waveform analysis is
started the first statement (Line 1) is executed once. This is triggered
by the BEGIN condition which is a special variable which is only
true after the program starts. This WAWK program uses the riscv-
model Python package to decode RISC-V instructions. Therefore, an
external Python script containing a few lines of Python glue code is

https://wal-lang.org
https://github.com/ics-jku/wal/tree/main/wawk
https://github.com/LucasKl/serv-cpi
https://github.com/LucasKl/serv-cpi


imported (Line 2) and the list of results which will store all measured
CPI values is initialized. Additionally, some aliases are created for
often used signals. Next, some aliases are declared which can be used
instead of the long full signal names.

The second statement (Line 9) is executed at the last cycle of
each instruction. However, the statement is only executed when the
opcode of the current instruction matches the opcode which we want
to analyze. This opcode has to be passed to the program as an
command line argument and it is available to the WAWK program in
the args variable. At this point, the difference to the starting time
of this instruction is calculated and added to the list of measured CPI
values.

The next statement (Line 13) is executed whenever a new instruc-
tion starts executing. At this moment, the current time index, which
is used to calculate the runtime of this instruction in the previous
statement, is stored and the current opcode is decoded and stored in
the op variable.

Finally, after all indices were processed by the program, the
final results, which consist of the average, minimum, and maximum
runtimes, are printed by the last statement (Line 18).

1 BEGIN: {
2 import(extern);
3 cpis = [];
4 alias(clk, TOP.servant_sim.dut.cpu.clk);
5 alias(fire, TOP.servant_sim.dut.cpu.i_ibus_ack);
6 alias(instruction,

TOP.servant_sim.dut.cpu.i_ibus_rdt);
7 }
8
9 clk, !fire, fire@2, op == args[0]: {

10 cpis = cpis + ((INDEX - start) / 2);
11 }
12
13 clk, fire: {
14 start = INDEX;
15 op = call(extern.decode, instruction);
16 }
17
18 END: {
19 if (cpis) {
20 if (min(cpis) == max(cpis)) {
21 printf("%10s %10d\n", args[0], average(cpis));
22 } else {
23 printf("%10s %10d %10d %10d\n", args[0],

average(cpis), min(cpis), max(cpis));
24 };
25 };
26 }

Listing 1: WAWK code for CPI the analysis

V. RESULTS

Table I shows the analysis results for each of the instructions of the
SERV core. The first column lists the name of the instruction, the
second lists the average number of cycles this instruction requires
to be executed, and the last two columns show the minimum and
maximum number of instructions required to execute this instruction
respectively. The table shows that the instructions mainly fall into two
categories. One half of the instructions always finishes execution in
constant time while the over half requires a variable number of cycles.

VI. CONCLUSION

In this paper we presented a programmable analysis of the perfor-
mance of individual instructions as implemented in the well-known
RISC-V core SERV. The analysis program is written in WAWK, a
DSL for waveform analysis inspired by the AWK text-processing
language. In only a few lines of code the program analyzes the
number of cycles per instruction required to execute a specific
instruction.

Opcode Avg. Min Max

auipc 35
lui 35
add 35
addi 35
sub 35
and 35
andi 35
or 35
ori 35
xor 35
xori 35
ecall 35
slt 68
slti 68
sltu 68
sltiu 68
sll 68
slli 68
sra 75 68 99
srai 70 68 99
srl 75 68 99
srli 75 68 99
jal 68 68 70
jalr 69 68 70
beq 68 68 70
bge 69 68 70
bgeu 69 68 70
blt 68 68 70
bltu 69 68 70
bne 68 68 70
lb 69
lh 69 69 70
lhu 69 69 70
lw 69 69 70
sh 69 69 70
sw 69 69 70

TABLE I: SERV CPI on Compliance Tests

ACKNOWLEDGMENTS

This work has partially been supported by the LIT Secure and
Correct Systems Lab funded by the State of Upper Austria.

REFERENCES

[1] A. Waterman and K. Asanović, The RISC-V Instruction Set Manual;
Volume I: Unprivileged ISA, SiFive Inc. and CS Division, EECS De-
partment, University of California, Berkeley, 2019.

[2] A. Dörflinger, M. Albers, B. Kleinbeck, Y. Guan, H. Michalik, R. Klink,
C. Blochwitz, A. Nechi, and M. Berekovic, “A comparative survey
of open-source application-class risc-v processor implementations,” in
International Conference on Computing Frontiers, 2021, p. 12–20.

[3] E. Sperling, “Which Processor Is Best?” https://semiengineering.com/
which-processor-is-best, 2022.

[4] L. Klemmer and D. Große, “WAL: a novel waveform analysis language
for advanced design understanding and debugging,” in ASP Design
Automation Conf., 2022, pp. 358–364.

[5] ——, “Waveform-based performance analysis of RISC-V processors:
late breaking results,” in Design Automation Conf., 2022, pp. 1404–
1405.

[6] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The gem5 simulator,”
SIGARCH Comput. Archit. News, vol. 39, no. 2, pp. 1–7, Aug. 2011.

[7] R. Ubal, J. Sahuquillo, S. Petit, and P. Lopez, “Multi2sim: A simulation
framework to evaluate multicore-multithreaded processors,” in SBAC-
PAD, 2007, pp. 62–68.

[8] “QEMU a generic and open source machine emulator and virtualizer,”
https://www.qemu.org/, 2022.

[9] “Technology OVPsim,” https://www.ovpworld.org/technology ovpsim,
2022.

[10] L. Klemmer, E. Jentzsch, and D. Große, “Programmable analysis of
RISC-V processor simulations using WAL,” in Design and Verification
Conference and Exhibition Europe, 2022.

https://semiengineering.com/which-processor-is-best
https://semiengineering.com/which-processor-is-best
https://www.qemu.org/
https://www.ovpworld.org/technology_ovpsim

	Introduction
	Related Work
	Preliminaries
	WAWK
	SERV

	CPI Analysis
	Results
	Conclusion
	References

