
A DSL for Visualizing Pipelines:
A RISC-V Case Study

Lucas Klemmer, Daniel Große

lucas.klemmer@jku.at, daniel.grosse@jku.at
Institute for Complex Systems, Johannes Kepler University Linz, Austria

Abstract
The number of available RISC-V cores is growing rapidly and the openness of RISC-V enabled even smaller
teams to develop their own cores. However, the wide variety of RISC-V cores available today and the high
modularity of the ISA makes it hard for development tools to keep up with the speed of development, as well
as to provide first class support for this growing ecosystem. In this paper, we present a Domain Specific
Language (DSL) for defining processor pipelines. With just a few lines of code in this DSL, information about
RISC-V pipelines can be collected from simulation waveforms for further processing. As one application of this
DSL, we present a web application that functions as a pipeline rendering backend, helpful for debugging and
design understanding.

Introduction

For a few years now, RISC-V development boards
in the embedded category are available, new open-
source cores are published regularly, and work is un-
derway to spread RISC-V into more and more do-
mains [1] [2]. Recently, even the first low-cost RISC-V
development boards capable of desktop environments
have arrived [3] bringing with them the potential to
popularize RISC-V with even more developers. Yet,
silicon alone is not enough to establish an ISA in the
long run, but a large and active software ecosystem as
well as first-class development tools are required.

On one hand, these advancements into wildly differ-
ent domains are a manifestation of RISC-V’s modular-
ity and customization potential. On the other hand, it
also means that, for RISC-V even more than for other
ISAs, no two cores are alike, and thus it is increasingly
complicated to provide excellent tool support for as
many cores as possible. It also means that the tools
must be as flexible as RISC-V itself.

In this paper, we present a DSL for specifying proces-
sor pipelines that can be used to extract information
about the pipeline from simulation waveforms. We
present a web application that can visualize RISC-V
pipelines with only a simulation waveform and a few
lines of declarations. Our DSL is based on the Wave-
form Analysis Language (WAL) [4, 5], a language for
analyzing waveforms, and thus complex pipelines can
be easily declared, and the analysis can be enriched by
fully fledged programs for further performing complex
analyzes on the waveform.

Defining Pipelines

In this section, we present an exemplary pipeline defini-
tion for a slightly enhanced version of the pipelined pro-
cessor introduced in [6]. This processor has 5 pipeline

stages consisting of fetch, decode, execute, memory,
and writeback stages, and it implements forwarding
using a hazard unit. Fig. 1 shows a block diagram of
the processor.
In our DSL, new stages are defined using the stage

keyword. The behavior of each stage can be configured
using a set of defined arguments. These arguments
control, for example, when a new instruction enters a
stage, when the stage is flushed, or they can compute
additional data that should be logged for the stage.
The concrete possible arguments are:

value The next value of the pipeline. If unspecified,
the value of the previous stage gets sampled. Re-
quired for the first stage.

update Controls when the stage gets updated. If
unspecified, defaults to true.

stall Controls when the stage is stalled. If unspecified,
defaults to false.

flush Controls when the stage is flushed. If unspeci-
fied, defaults to false.

log Additional data that gets logged for this stage.
Two expressions are required. The first expression
is the name under which the data is logged, and
the second is the WAL expression that is logged.
The expressions can be arbitrarily complex WAL
programs.

Listing 1 shows the pipeline definition for Fig. 1.
Take, for example, the decode stage. This stages loads
the next instruction when it is not stalled and when
it is not flushed. In this case, the instruction from the
fetch stage is loaded into the decode stage.

The definition of a pipeline is not linked to rendering
it. By uncoupling data collection and presentation,
both parts are now ready to be reused. Different
rendering “backends” can be selected, for example,
text output or the web application we present in the
following section.

RISC-V Summit Europe, Barcelona, 5-9th June 2023 1



Figure 1: Enhanced Pipelined Architecture from [6]

Listing 1: Pipeline Definition for processor from Fig. 1

1 (require pipeline)
2
3 (stage fetch
4 (value tb.dut.dp.instrf@1)
5 (stall tb.dut.dp.stallf)
6 (log stallf tb.dut.dp.stallf)
7 (log pc tb.dut.dp.pcf))
8
9 (stage decode

10 (update (! tb.dut.dp.stalld))
11 (stall tb.dut.dp.stalld)
12 (flush tb.dut.dp.flushd)
13
14 (log pc fetch-pc@-1)
15 (log rd tb.dut.dp.rdd)
16 (log rs1 tb.dut.dp.rs1d)
17 (log rs2 tb.dut.dp.rs2d))
18
19
20 (stage execute
21 (update (! tb.dut.dp.flushe))
22 (flush tb.dut.dp.flushe)
23 (log pc decode-pc@-1))
24
25 (stage memory)
26
27 (stage writeback)

Rendering Pipelines on the Web

In this section, we present a web application that
shows interactive visualizations of processor pipelines
based on pipeline specifications in the previously pre-
sented DSL. The application is processor-independent
and the visualization depends solely on the pipeline
specification made in our DSL.

Modern web technology allows highly dynamic and
interactive applications, which is perfect for visualizing
complex data such as processor pipelines. Additionally,
it makes sharing and cooperation much simpler and
allows working on mobile devices as well. After the
pipeline was specified, a waveform can be processed
to collect the information about all stages during the
complete simulation (or parts of it).
Fig. 2 shows our web application rendering the

pipeline from Fig. 1 for a given waveform. Each col-

Figure 2: Pipeline rendered as a website

umn represents a pipeline stage, and the rows represent
the time advancing with each clock cycle. Instructions
are shaded differently, to aid the eye while following an
instruction through the pipeline. Stalls and flushes are
marked in yellow and orange colors respectively, while
a single instruction can be specifically highlighted in
purple by hovering over it. The visualization can be
navigated using the arrow keys and by entering spe-
cial commands into an input field. Additionally, the
pipeline can be searched to highlight cells depending
on their contents (e.g., all stages with add instructions
or all stages that operate on register x5).

Conclusions

In this paper, we presented a DSL for visualizing
processor pipelines. We have shown how pipelines can
be defined in our DSL and how they can be presented,
for example as an interactive website.

Acknowledgments
This work has partially been supported by the LIT
Secure and Correct Systems Lab funded by the State
of Upper Austria.

References

[1] A. Walsemann et al. “STRV — a radiation hard RISC-V
microprocessor for high-energy physics applications”. In:
Journal of Instrumentation 18.02 (Feb. 2023), p. C02032.

[2] Federico Ficarelli et al. “Meet Monte Cimone: Exploring
RISC-V High Performance Compute Clusters”. In: Com-
puting Frontiers. 2022, pp. 207–208.

[3] Vision Five 2. https://www.starfivetech.com/en/site/
boards.

[4] Lucas Klemmer and Daniel Große. “WAL: A Novel Wave-
form Analysis Language for Advanced Design Understand-
ing and Debugging”. In: ASP Design Automation Conf.
2022, pp. 358–364.

[5] Lucas Klemmer and Daniel Große. “Waveform-based perfor-
mance analysis of RISC-V processors: late breaking results”.
In: Design Automation Conf. 2022, pp. 1404–1405.

[6] David Harris Sarah Harris. Digital Design and Computer
Architecture, RISC-V Edition. Elsevier, 2021.

2 RISC-V Summit Europe, Barcelona, 5-9th June 2023

https://www.starfivetech.com/en/site/boards
https://www.starfivetech.com/en/site/boards

	Introduction
	Defining Pipelines
	Rendering Pipelines on the Web
	Conclusions
	Acknowledgments-0.3cm

