
Daniel Große
Institute for Complex Systems (ICS)

Web: jku.at/ics

Email: daniel.grosse@jku.at

RISC-V VP++:
Unlocking the vast Linux ecosystem for
Open Source RISC-V Virtual Prototypes -
From Fast Bootup, VNC, Vector Extension to 3D-Games

2

Outline

• RISC-V

• RISC-V VP++ Overview

◦ Bare Matel Example

◦ Linux: GUI-VP Kit / 3D-Games

◦ Vector Extension

• Conclusions

RISC-V

• Open and royalty-free ISA

• Focus on simplicity and modularity

• Base Integer Instruction Set
◦ Mandatory

◦ 32, 64 and 128 bit configurations

◦ ~40 Instructions

• Extensions:
◦ M .. Multiply/Divide

◦ A .. Atomic

◦ F, D, Q .. Floating Point (Single, Double, Quad)

◦ C .. Compressed

◦ …

In
c
re

a
s
in

g
 o

rd
e

r
o

f
A

b
s
tr

a
c
ti
o
n

In
c
re

a
s
in

g
 o

rd
e

r
o

f
C

o
m

p
le

x
it
y

Application

Algorithm

Programming Language

Assembly Language

Machine Code

Instruction Set Architecture (ISA)

Micro Architecture

Gates/Registers

Devices (Transistors)

Physics

H
a

rd
w

a
re

S
o

ft
w

a
re

Layers of Abstraction

4

RISC-V VP++

• Open source on GitHub
◦ https://github.com/ics-jku/riscv-vp-plusplus

• Key features:
◦ SystemC TLM-2.0

◦ Bare metal/Small operating systems configurations, including:
▪ SiFive HiFive1 - FE310

▪ GD32VF103VBT6 microcontroller (Nuclei N205) including UI

◦ Linux RV32 and RV64, single and quad-core VPs (SiFive FE540)

◦ Full integration of GUI-VP, which enables simulation of interactive graphical Linux applications

◦ Support for RISC-V "V" Vector Extension (RVV) version 1.0

◦ Based on RISC-V VP introduced in 2018*

• More information: http://www.systemc-verification.org

https://github.com/ics-jku/riscv-vp-plusplus
http://www.systemc-verification.org/

5

RISC-V VP++

Bare Metal Example

6

RISC-V VP++: GD32V

•GD32VF103VBT6 microcontroller

(Nuclei N205)

• Implemented peripherals in RISC-V VP++
◦ GPIO, AFIO, EXTI, SPI, EXMC, RCU

• UI

◦ ILI9341 display w XPT2046 touch controller

◦ TFT_eSPI
▪ Widley used embedded graphics library

▪ Adapted for RISC-V

7

RISC-V VP++: GD32V Demo

8

RISC-V VP++: TFT_eSPI Verification Challenge

•Current verification:

Use TFT_eSPI and visually check the result

•Our approach:

Overcome need of physical HW via Metamorphic Testing
◦ Relates multiple program executions via Metamorphic Relations (MRs)

◦ If relation is violated, bug is found

9

Metamorphic Testing for TFT_eSPI leveraging VPs

Relates multiple program executions

drawLine(A, B)
compileAndRun

drawLine(B, A)
compileAndRun

Source Testcase

Follow-up Testcase =?

10

Metamorphic Testing Demo

11

Approach & Results

•Effective Firmware Testing Approach

◦No need for physical Hardware

◦No need for an Oracle

◦Highly automated

•Exposed 15 unknown bugs

in TFT_eSPI library

Number of MRs 21

∅ Testcases per MR 4300

Failed MRs 11

Total Bugs 15

Christoph Hazott, Florian Stögmüller, and Daniel Große. Verifying embedded graphics libraries

leveraging virtual prototypes and metamorphic testing. In ASP-DAC, 2024.
https://ics.jku.at/files/2024ASPDAC_Verifying_Embedded_Graphics_Libraries_leveraging_VPs_and_MT.pdf

https://ics.jku.at/files/2024ASPDAC_Verifying_Embedded_Graphics_Libraries_leveraging_VPs_and_MT.pdf

12

RISC-V VP++

Linux & GUI-VP Kit

GUI-VP Kit

Main Parts:

• GUI-VP
◦ RISC-V VP

◦ Real-Time behavior

◦ Graphics output

◦ Mouse/Keyboard input

◦ VNC server

• Linux Buildsystem
◦ Configurations

◦ Linux drivers

◦ Devicetree

Manfred Schlägl and Daniel Große. GUI-VP Kit: A RISC-V VP meets Linux graphics - enabling interactive graphical

application development. In GLSVLSI, 2023. https://ics.jku.at/files/2023GLSVLSI_GUI-VP_Kit.pdf

https://ics.jku.at/files/2023GLSVLSI_GUI-VP_Kit.pdf

GUI-VP Kit
Simulation Stack

• Based on RISC-V VP

GUI-VP Kit
Simulation Stack

• Based on RISC-V VP

• Modifications / Replacements

◦ Linux Bring-Up ➞ Device Tree

◦ Real-Time Behavior ➞ lwrt_clint

GUI-VP Kit
Simulation Stack

• Based on RISC-V VP

• Modifications / Replacements

◦ Linux Bring-Up ➞ Device Tree

◦ Real-Time Behavior ➞ lwrt_clint

• Extensions

◦ VNC Server

◦ Graphics Output

◦ Mouse Input (Ptr)

◦ Keyboard Input (Kbd)

Graphics Development:
Qt5

• < 2 Minutes

• ~ 2.8 billion instructions

• Smooth & Responsive

• Clean Drag & Drop

Demo: X.Org / Networking / Web

Video can be found here: https://ics.jku.at/research/systemc-verification

https://ics.jku.at/research/systemc-verification

Demo: PrBoom

◦ Up to 8.8 FPS ➞ Reasonable (up to 13.7 million instructions per frame)

Video can be found here: https://ics.jku.at/research/systemc-verification

https://ics.jku.at/research/systemc-verification

20

RISC-V VP++

Vector Extension (RVV)

21

RVV

VLEN can be set by the designer (not fixed in ISA)

22

Classic SIMD vs. Vector

Example: Calculate the sum of two vectors with 80 integers
(assume integer is 32 bit)

On Classic SIMD:
SW> I'll take some of your vectors with space for 4 integers

because ISA says 4 integers fits in 128 bit

HW> OK

SW> Calculate the sum of two such vectors

HW> OK

SW> Repeat this 80 divided by 4 times

HW> OK

• Available vector sizes are specified in the ISA

• Software must know vector sizes in advance

→ Software cannot automatically adapt to capacities of hardware

23

Classic SIMD vs. Vector

Example: Calculate the sum of two vectors with 80 integers

(assume integer is 32 bit)

On RVV (Vector Architecture):
SW> Give me some vectors with space for 80 integers

HW> I can give you only vectors with space for X integers

SW> OK

SW> Calculate the sum of two such vectors

HW> OK

SW> Repeat this 80 divided by X times

HW> OK

• Vectors are requested on demand

• Software does not need to know vector sizes (VLEN) of HW in advance

→ Software can automatically adapt (at runtime) to capabilities of hardware

24

RVV in RISC-V VP++ (1)

• 32 Vector Registers and 7 Control/Status Registers added

• Generic Implementation of 624 Instructions

• Integration in RV32 and RV64 ISS → Code Generator

25

RVV in RISC-V VP++ (2)
Progress and Outlook

Verification:

• Test Generation: FORCE-RISCV Framework (Instruction Sequence Generator)

• Trace Comparison: Handcar(Spike) vs. VP

• Coverage: 26936/33076 riscvOVPsim basic Coverage points → 81.44%

Current State: Released on November 10th 2023

• First successful bare-metal Case Studies (simple execution cycle model)

• GUI-VP Kit migrated to RISC-V VP++:

◦ Quick and easy-to-use Linux experimentation environment (linux-6.6, gcc-13)

◦ First Experiments: Linux Mainline with RVV, RVVRadar[1]

[1] Lucas Klemmer, Manfred Schlägl, and Daniel Große. RVVRadar: a framework for supporting the programmer in vectorization for RISC-V. In GLSVLSI, 2022.

(https://ics.jku.at/files/2022GLSVLSI_RVVRadar.pdf)

https://ics.jku.at/files/2022GLSVLSI_RVVRadar.pdf

26

Case Study: RVV VP for System Level Evaluation

• Simple Execution Cycle Model

• Varying two parameters corresponding to different micro-architectural RVV implementations

• Compare acceleration of vectorized algorithms to non-vectorized implementations

→ Valuable assessments for designs (e.g. Cost/Performance non-linear)

Manfred Schlaegl, Moritz Stockinger and Daniel Große. A RISC-V "V" VP: Unlocking

Vector Processing for Evaluation at the System Level. In DATE, 2024 (to appear).

27

Conclusions

RISC-V VP++

• https://github.com/ics-jku/riscv-vp-plusplus

• New bare metal configurations incl. virtual displays

• Linux / GUI-VP Kit

▪ VP-based experimentation environment for RISC-V, Linux and Graphics

▪ Development environment for interactive graphical Linux applications

• Vector extension

▪ 624 vector instructions using a code generator

▪ First very promising results

https://github.com/ics-jku/riscv-vp-plusplus

Daniel Große
Institute for Complex Systems (ICS)

Web: jku.at/ics

Email: daniel.grosse@jku.at

RISC-V VP++:
Unlocking the vast Linux ecosystem for
Open Source RISC-V Virtual Prototypes -
From Fast Bootup, VNC, Vector Extension to 3D-Games

