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Abstract—Embedded graphics libraries are part of the
firmware of embedded systems and provide complex function-
alities optimized for specific hardware. After unit testing of
embedded graphics libraries, integration testing is a significant
challenge, in particular since the hardware is needed to obtain
the output image as well as the inherent difficulty in defining the
reference result.

In this paper, we present a novel approach focusing on
integration testing of embedded graphic libraries. We leverage
Virtual Prototypes (VPs) and integrate them with Metamorphic
Testing (MT). MT is a software testing technique that uncovers
faults or issues in a system by exploring how its outputs
change under predefined input transformations, without relying
on explicit oracles or predetermined results. In combination
with virtualizing the displays in VPs, we even eliminate the
need for physical hardware. This allows us to develop a MT
framework automating the verification process. In our evaluation,
we demonstrate the effectiveness of our MT framework. On
an extended RISC-V VP for the GD32V platform we found 15
distinct bugs for the widely used TFT eSPI embedded graphics
library, confirming the strength our approach.

I. INTRODUCTION

In embedded systems, Software (SW) is closely tied to the
Hardware (HW) it runs on. An important part of the embedded
SW is the Firmware (FW) which provides low-level control for
the device’s specific HW. As many embedded systems include
displays to visualize information as well as to enable easy
interaction, FW libraries for these displays are very crucial
components. Over the years, these FW libraries have become
more and more powerful: One of the first implementations,
where the term FW was already used, has been presented in
[1]. This work interfaced different graphical terminals via the
FW. Today, much more complex functionality is integrated in
these embedded graphics libraries, extending the fundamental
support of drawing simple geometric elements on different dis-
plays to advanced objects, fonts, and even features like sprites.
Moreover, optimizations for different HW architectures are
performed improving the rendering performance. Due to this
increasing feature complexity, the importance of verification
of embedded graphics libraries progressively amplifies.

To address the growing complexity, advancements in sim-
ulators and emulators are leveraged to enable the adaption of
SW testing strategies for FW testing. The most fundamental
strategy which is adopted is testing of individual components

and functions in isolation, also referred to as unit testing [2].
While this approach is effective at uncovering numerous bugs,
blind spots emerge because unit testing does not capture
complex interactions among components, and overlooks in-
tegration challenges that can lead to functional and perfor-
mance issues. Integration testing complements unit testing by
focusing on these blind spots, capturing the interfaces and
interactions among components [3], [4].

For successful integration testing on embedded devices,
test inputs forcing the system into potential error cases have
to be defined as well as comprehensive reference models
are necessary to determine the test result. The latter may
be very difficult to create as the effort to implement such
models increases if more and more components (e.g. deeply
layered functions) interact and if complex SW-to-HW stacks
are involved. This challenge is well-known as test oracle
problem [5] and in case of embedded graphics libraries it
is even worse, as it typically means visual inspection of the
results when executed on the HW. Altogether, this makes
automating the verification very complicated.
Contribution: In this paper, we present a novel approach
focusing on integration testing of embedded graphics libraries.
As first component, Virtual Prototypes (VPs) are leveraged
targeting the need of HW for visual inspection. VPs are
predominantly modeled in SystemC, a standardized C++ li-
brary [6]; for a broader overview on SystemC we refer the
reader to [7]–[9]. VPs enable the development and execution
of SW production code as if the physical HW were present
on the table [10].

The second essential component of our approach to face
the test oracle problem is Metamorphic Testing (MT) [11].
MT circumvents the need of a reference model and found an
impressive amount of bugs in different domains, like search
engines, data engineering, compilers, machine learning pro-
grams, to just name a few [12]. MT is based on the core princi-
ple of using known relationships and properties among inputs
and outputs to design effective test cases. These test cases
enable the detection of potential faults or deviations in SW
behavior through consistent transformations of input data. The
relationships/properties have to be defined to form so-called
Metamorphic Relations (MRs). Let us consider an example for
an MR: Given an implementation of the sine function as the



program impl_sin(x). As MR, we can use the periodicity
of the sine function, i.e. we know sin(x) = sin(180 − x).
Now, instead of checking the expected output value for a
concrete input c, we can check that impl_sin(c) equals
impl_sin(180-c) so without having to know what the
actual value of impl_sin(c) is.

For verification, we introduce multiple MRs tailored for em-
bedded graphics libraries. For example, among the developed
MRs we utilized the popular Eulerian path-finding problem
”Haus vom Nikolaus” (”House of Santa Claus): the objective
is to draw a house by connecting five points with exactly eight
edges without traversing any edge twice. This can be done
in multiple ways by varying the order in which the edges
are drawn, but regardless of the method chosen, the resulting
image of the house remains unchanged.

Based on the developed MRs, we devise an automated MT
framework available on GitHub1. For each MR, we create a
pair of FW (for example two different drawing sequences of
the House of Santa Claus, one in each FW). Then, we leverage
the VP to run each FW which allows determining whether the
MR is satisfied or not utilizing a virtual display which can
take screenshots.

To improve automation and effectiveness, we additionally
implemented a generator that automates the creation of multi-
ple Metamorphic Test Cases (MTCs) by randomizing the test
case parameters. To validate our approach on a real system, we
have chosen the popular GD32V platform from GigaDevice,
including a display controller. As embedded graphics library
we took the widely used TFT eSPI and added appropriate
support for the display controller. Our extensive evaluation
shows the effectiveness of our MT framework. In total, we
were able to unveil 15 bugs in the TFT eSPI embedded
graphics library. All bugs found, showed the exact same faulty
behavior on both, the virtual and real GD32V system.

II. RELATED WORK

MT has been extensively studied by researchers [12], [13]
and successfully applied in various domains, e.g., graph algo-
rithms [13], web services [14], simulation and modeling [15],
machine learning [16], and compilers [17], [18]. Furthermore,
MT has been utilized in industry by companies such as
Facebook [19] and Adobe [20] to test their software. Related
to our work, Donaldson et. al [21] used MT for finding bugs in
compilers for graphics shading languages. Their work resulted
in the tool GraphicsFuzz which has been acquired by Google
and is used within the Android ecosystem for the graphic
shader compiler.

There also have been several contributions to MT in the
embedded domain (e.g., [22]–[26]) and in the graphics domain
(e.g., [27]–[29]). In [30] the authors applied MT to the
processor verification domain and conducted a case study
using a RISC-V instruction set simulator.

For FW verification/testing several approaches have been
presented, e.g. [31], [32] and [33]. The verification results are

1https://github.com/ics-jku/mt-graphlib-framework

gathered either by collecting CPU states as well as transferred
messages on the peripheral bus. However, these approaches do
not cover graphical displays.

Recently, the concept of Instruction-Level Abstraction (ILA)
has been introduced [34]. The idea is to abstract from HW
details as much as possible and by this to further improve
verification effectiveness. Although this approach allows to tar-
get the verification of HW/SW interaction, embedded graphic
libraries producing complex visual output have not been
considered and the challenge of reference models still remains.

III. BASIC FORMALIZATIONS

In general, MT relies on MRs which are used to (1) generate
test cases and (2) to decide whether a test fails or passes.
In this section, we start with some basic formalizations. This
includes the formalization of FW in terms of method calls, the
compilation and execution of FW, and fundamental principles
for FW MRs.

1) FW: Let F be a FW consisting of a series of n ≥ 1
method calls to an embedded graphics library (e.g. TFT eSPI),
denoted as m0,m1, ...,mn−1. Furthermore, for a method call
mi, the tuple of its parameters is denoted as pi. A tuple pi
contains k ≥ 1 elements, where each element is an input
parameter for the corresponding method call. Formally, we
write:

F := ⟨m0(p0),m1(p1), . . . ,mn−1(pn−1)⟩

It is important to note that our FW definition only facil-
itates the definition of MRs and therefore does not provide
executable code. How a runnable FW is generated is discussed
in Section V-B.

2) FW Compilation and Execution: The process of com-
piling a FW F and running it can be viewed as a function:

compileAndRun : F 7→ I

Given an input FW F , this function performs compilation,
execution, and generates the output I , which, in the case of
an embedded graphics library, corresponds to an image.

3) FW MR Principles: MT relies on executing two FW
(or a FW pair) and compares both execution results (here
images) via an MR. Throughout the rest of this paper, such a
FW pair will consist of a source FW and follow-up FW. To
test a particular functionality of an embedded graphics library,
we need to define a relation between source FW and follow-
up FW and their corresponding output images. Although it
is possible to do this by transforming both, the input and
the output, in this paper we focus on transforming the input.
That is, we define MRs by transforming only the FW, not the
resulting images.

A FW F can be transformed using any combination of the
following four modifications:

• Removing method calls
• Adding method calls
• Reordering method calls
• Manipulating the parameters



Transforming a FW F results in a new FW F̂ . We can
formalize this by defining a transformation function:

ψ(F ) = F̂

By applying this transformation function to the source
FW F , we generate the follow-up FW F̂ . ψ may either
preserve or break the semantics of F . Therefore, the resulting
FW F̂ either shows equivalent behavior or non-equivalent
behavior compared to the original FW F .

Depending on this equivalence, we can distinguish between
two general types of MRs for our embedded graphics library
verification problem:

• If ψ is semantics-preserving, calling compileAndRun
with F and F̂ should yield the same image. The resulting
MR is based on the equality relation and can be formal-
ized as follows:

F ≡ F̂ ⇒ compileAndRun(F ) = compileAndRun(F̂ ).

• On the other hand, if ψ breaks the semantics, calling
compileAndRun with F and F̂ should yield different
images. Therefore, the resulting MR is based on the
inequality relation and can be defined as follows:

F ̸≡ F̂ ⇒ compileAndRun(F ) ̸= compileAndRun(F̂ ).

In summary, we can define an MR for an embedded graphics
library by defining a pair of either equivalent or non-equivalent
FW, where a FW is simply a series of method calls.

IV. DEFINITION OF MRS

Embedded graphics libraries such as TFT eSPI offer func-
tionalities to create various visual elements ranging from
basic geometric shapes to more complex objects, fonts, and
sprites. To illustrate the transformations stated in Section III,
we discuss 4 representative MRs out of 21 we developed
in the following. Typically, the creation of MRs is guided
by complexity considerations, where the number of nested
functional calls and the number of involved components within
the SW-to-HW stack incrementally grows. This allows to
use the first and easier-to-develop MRs rapidly in our MT
framework. We introduce each of the 4 MRs by first explaining
which library function it targets from a generic perspective.
Then, we show the function signature as provided by the
Application Programming Interface (API) specification of the
TFT eSPI library. Based on both, we define the MR which
relates two FW using the basic formalizations from Section III
while describing the idea behind.

A. MR: DrawPixel

To draw a single pixel on a display, an embedded graphics
library provides a respective method. In case of TFT eSPI, its
API contains:

1 void drawPixel(int32_t x, int32_t y, uint32_t
color);

Fig. 1: “Haus vom Nikolaus (Haus of Santa Clause)”.

The idea of our DrawPixel MR is to test whether individual
pixels are drawn correctly regardless of the order in which they
are drawn (assuming that no two pixels are drawn on the exact
same positions). A straight forward transformation of a given
source FW into a follow-up FW is to reverse the method calls
of the source FW. As MR we define:

⟨drawPixel(x0, y0, c0), drawPixel(x1, y1, c1), . . . ,

drawPixel(xn−1, yn−1, cn−1)⟩
≡

⟨drawPixel(xn−1, yn−1, cn−1), drawPixel(xn−2, yn−2, cn−2), . . . ,

drawPixel(x0, y0, c0)⟩.

B. MR: WedgeLine

The next MR we define is the WedgeLine. A line is drawn
starting from coordinates a and ending at coordinates b. A
wedge line is a special case where we can also define the
width aw of the line at the start point and the width bw of the
line at the end point.

In case of the TFT eSPI library, the API provides:
1 void drawWedgeLine(float ax, float ay, float bx,

float by, float aw, float bw, uint32_t
fg_color, uint32_t bg_color = 0x00FFFFFF);

The idea of the WedgeLine MR is to change the order of
parameters2. In the case of a line we can do this by switching
start and end points a and b. For the wedge line we additionally
have to switch the parameters aw and bw.

⟨drawWedgeLine(ax, ay, bx, by, aw, bw, cfg , cbg )⟩
≡

⟨drawWedgeLine(bx, by, ax, ay, bw, aw, cfg , cbg )⟩

C. MR: Nikolaus

We now discuss a representative of more complex MRs. The
purpose behind the Nikolaus MR is to check the considerably
intricate behavior exhibited by an embedded graphics library.
Our idea was to create an algorithm that solves the famous
Eulerian path-finding problem ”Haus vom Nikolaus” (”House
of Santa Claus”): as shown in Figure 1, the goal is to draw
a simple house by connecting five points with exactly eight
edges. The challenge is to draw it in one continuous line
without traversing any edge twice. In total, there are 44
solutions, i.e., 44 different ways to draw the house using a
continuous line.

For the MR, we used eight method calls and permuted them
according to the 44 solutions which we computed in advance.

2The careful reader may have noticed that the coordinates are defined as
floats. According to the library specification this is done to support sub-pixel
calculation which is supported for some displays. Sub-pixels allow to address
the color channels of a pixel and so visually make the pixel appear as having an
offset which is smaller than one pixel. The technology used in our evaluation
also supports color channels, meaning we also cover this feature.
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Fig. 2: Automated MT Framework

D. MR: NikolausMove

This MR is a sprite-based variation of the Nikolaus MR.
The eight lines that make up the house are drawn onto
a single sprite (a two-dimensional bitmap), which is then
pushed to the screen. Again, the order in which the lines are
drawn is different for the source FW and the follow-up FW.
Additionally, in the follow-up FW, the sprite is moved along
a rectangular path (e.g., left, down, right, and up), eventually
returning to its original position. This sequence of movements
and the order in which the edges of the house are drawn has no
effect on the final output and forms the NikolausMove MR.

V. AUTOMATED MT FRAMEWORK

In this section, we present our automated MT framework
based on the developed MRs. We start with an overview
in Section V-A. Thereafter, we give details about how we
implemented the functionality to generate MTCs. We conclude
this section by presenting how MTC execution is automated
within our automated MT framework.

A. Overview

Fig. 2 provides an overview of our automated MT frame-
work. The framework consists of several parts. In the upper
left part (gray box), we consult the API specification of
an embedded graphics library, in our case TFT eSPI, and
combine this information with general knowledge from the
graphics domain. The result serves as basis to define the MRs
(cf. blue box). As can be seen in Fig. 2, we list some MRs
already defined in the previous section. In addition, we need to
implement a generator for each MR within our MT framework.
This step is essential due to the fact that the MRs we have
defined thus far are not directly executable. More precisely,
according to a given MR the generator will produce two FW,
i.e. a source FW and a follow-up FW which becomes exe-
cutable by setting concrete values for the (method) parameters.
Thereby, also constraints on parameters (e.g. value ranges)
are taken into account. These two executable FW constitute
a Metamorphic Test Case (MTC). Therefore, the generator
is denoted overall as MTC Generator and will be described
in more detail in the following subsection. Moreover, since
the generation is automated, multiple MTCs per MR can be
generated.

DrawPixel

+ source_testcase(): void
+ followup_testcase(): void
+ random_args(): void

DrawPixel

+ source_testcase(): void
+ followup_testcase(): void
+ random_args(): void

<<abstract>>
MTCGenerator

+ source_FW(): void
+ followup_FW(): void
+ random_args(): void
+ generate_mtc(): void
+ generate_file(): void

DrawPixel

+ source_FW(): void
+ followup_FW(): void
+ random_args(): void

Fig. 3: MTC Generator: Blue colored box shows abstract
MTCGenerator class. Green colored boxes indicate concrete
implementations

The main part of our MT framework (green box in the
center), which is fully automated, begins with selecting and
starting an MTC Generator. The generated source FW and
follow-up FW of an MTC are then compiled and executed
on the VP. In Fig. 2, the VP is depicted within the yellow
box on the right. The VP consists of three pieces, separated
by dashed lines, covering the full SW to HW stack. The
leftmost piece, summarizes the main steps for compiling FW.
The center shows the main components of the VP which are
used to execute FW during VP simulation. On the right side
of the yellow box, the virtual display can be found as part
of the Virtual Environment. Recall, that we have extended the
VP and created the virtual display such that we can capture
an image, i.e. the output produced by the FW.

Once both FW of an MTC have been compiled and ex-
ecuted, the MR is checked by analyzing the outputs, i.e.,
comparing the images (see Analyze Outputs in the middle of
the green box in Fig. 2). If the current MTC has passed, a
new MTC is generated if a given timeout limit has not been
reached. If the current MTC failed, we either continue to
generate additional MTCs for the same MR, or we continue
with another MR. Throughout MTC execution, our framework
keeps track of various metrics and stores them in a JSON file
once all MTCs for an MR are complete. The following sub-
sections provide a detailed description for the MTC generators
and the automatic MTC execution.

B. MTC Generators

To produce MTCs from our MRs we use so-called MTC
generators. Fig. 3 provides an architectural overview of the
MTC generators. The generate_mtc() method is the
main entry point, which gets called by the framework. The



1 #include "TFT_eSPI.h"
2 int main() {
3 TFT_eSPI tft = TFT_eSPI();
4 tft.init();
5 tft.drawPixel(34,66,47586);
6 tft.drawPixel(357,21,60570);
7 tft.drawPixel(203,326,54515);
8 tft.writecommand(0xFF);
9 tft.writedata16(1);

10 return 0;
11 }

Listing 1: Generated source FW for a DrawPixel MTC

1 #include "TFT_eSPI.h"
2 int main() {
3 TFT_eSPI tft = TFT_eSPI();
4 tft.init();
5 tft.drawPixel(203,326,54515);
6 tft.drawPixel(357,21,60570);
7 tft.drawPixel(34,66,47586);
8 tft.writecommand(0xFF);
9 tft.writedata16(2);

10 return 0;
11 }

Listing 2: Generated follow-up FW for a DrawPixel MTC

flow to generate an MTC is the same for all MTC gener-
ators. Thus, this functionality is implemented in the abstract
MTCGenerator class and is inherited by the concrete gener-
ator classes. The second method where the functionality stays
the same across MTC generators is the generate_file()
function, which writes the resulting source FW and follow-up
FW code into an output file.

The random_args() method is implemented within the
concrete classes. This function is responsible to generate ran-
dom parameters for the source FW. These parameter values are
limited by constraints which define ranges of valid values for
each parameter. The source_FW() and followup_FW()
methods contain the template to generate the corresponding
code. The output of our MTC generator are two C/C++ files,
for source FW and follow-up FW, which can be compiled and
run on a VP.

C. Automatic MTC Execution

Based on the generators, we can create multiple MTCs, run
them on the VP and check whether an MTC passes or fails.
The core of the automation builds a so-called MTCRunner.
This runner starts by selecting an MTC generator and call-
ing generate_mtc(). As already said, the output of the
generator are two FW code files. Listing 1 shows the source
FW code and Listing 2 show the follow-up FW code for a
DrawPixel MTC. Both figures show on Lines 3-4 the initial-
ization of the TFT eSPI library. This is common for generated
code. In Lines 5-7 of both figures, we see the method calls
for the DrawPixel MR as defined in Section IV-A. Listing 1
calls three times the drawPixel method with randomized
parameters. Listing 2, the follow-up FW, calls the same method
with the same parameters but in reversed order. Lines 8-9
in both figures are commands we added to the SW-to-HW
stack to instruct the virtual environment to save the output.

(a) Real Environment (b) Virtual Environment

Fig. 4: Real and Virtual Environments

We have selected 0xFF for the built-in writecommand()
method. According to the API specification, this command
has no functionality for real hardware. The parameter given
to the writedata16() method is indicating if the current
execution is done by a source FW (1) or a follow-up FW (2).

Both files are compiled separately into executable FW
binaries ready to be executed on the VP (and unmodified on
real HW). To reduce compile time, the TFT eSPI library is
only compiled once and linked to all compiled FW. After the
execution of an MTC, we get a source image and a follow-
up image. To determine whether the two images are identical,
they are compared pixel by pixel.

VI. EVALUATION

To demonstrate the effectiveness of our developed MT
framework and to assess its performance, we conducted a
comprehensive evaluation in this section. We start by describ-
ing the steps we have taken to set up our environment and
afterwards discuss the results of our evaluation.

A. Experimental Setup

The TFT eSPI library is built upon the Arduino framework
and uses an SPI protocol to communicate with a display. Since
the TFT eSPI library does not natively support the RISC-V
GD32V board, we opted to port the current version 2.5.22 to
the GD32V environment and switch to the faster 16-bit 8080
parallel interface.

To compile and run our MTCs we enhanced the RISC-V
VP from [35], [36] to support the GD32V and added a vir-
tual display performing parallel communication as mentioned
above. The enhancements are available in the open-source
RISC-V VP++ on GitHub3 together with general improve-
ments [37]. Fig. 4a shows a photo of the real system (the
RISC-V GD32 cannot be seen as it is below the circuit
board). Fig. 4b shows the interface of the virtual display which
connects to the RISC-V VP. Additionally, we had to set the
criteria for our framework which indicates if all MTCs for an
MR are executed. To capture multiple bugs for a single MR,
we want to continue even if an MTC failed. We configured
this and also set a timeout limit of 4 hours per MR.

All evaluations were carried out on an Intel Core i7-10700
CPU @ 2.90GHz (8 cores) machine with 64 GB of main
memory running Ubuntu 20.04.5 LTS.

3https://github.com/ics-jku/riscv-vp-plusplus



TABLE I: Evaluation results

MR MTCs Failed Error Rate Bugs Avg. RT
DrawPixel 4,465 0 0.00 - 2.85
FillScreen 3,595 0 0.00 - 3.71
Println 4,016 0 0.00 - 3.29
Rotation 3,502 0 0.00 - 3.80
WedgeLine 817 24 2.94 2 17.36
FrameViewport 4,599 349 7.59 2 2.84
ViewportUnequal 4,549 0 0.00 - 2.87
Nikolaus 4,562 0 0.00 - 2.86
NikolausShapes 4,563 0 0.00 - 2.86
NikolausMove 3,217 111 3.45 1 4.08
NikolausSprite 4,445 0 0.00 - 2.91
DrawRectangle 3,687 3,234 87.71 1 3.24
FillRectangle 4,386 1,874 42.73 1 2.96
DrawEllipse 4,552 31 0.68 1 2.86
FillEllipse 4,417 4,276 96.81 1 2.96
DrawCircle 4,558 4,506 98.86 1 2.86
FillCircle 4,392 4,371 99.52 1 2.98
DrawSmoothCircle 4,372 0 0.00 - 2.96
FillSmoothCircle 4,210 3,559 84.54 1 3.05
DrawArc 3,997 2,065 51.66 3 3.24
DrawArcSegments 4,240 0 0.00 - 2.95

B. Result Summary

Table I summarizes the results obtained with our MT frame-
work for the TFT eSPI embedded graphics library. For every
MR, the table lists the name of the MR (column MR), the total
number of MTCs that were executed in (column MTCs) and
the corresponding number of failed MTCs (column Failed). To
facilitate the comparison of failed tests across different MTCs,
we included a column showing the relative error rate (column
Error Rate). Furthermore, we list the number of distinct bugs
a given MR was able to detect. The last column Avg. RT
provides information about the average runtime per MR in
seconds.

As can be seen, the number of MTCs executed per MR
correlates with the average run times. Typically, around 4,300
MTCs were generated for most MRs. However, due to the
complexity of the drawWedgeLine library implementation,
the WedgeLine MR is an outlier, with only 817 MTCs gener-
ated within the 4h time limit.

Combined with the absolute and relative number of failed
MTCs, the number of distinct bugs found by a MR is an im-
portant metric. It serves as an indicator of how effective an MR
is at detecting bugs in the TFT eSPI library and how easily
bugs can be triggered. However, we have to be careful when
looking at the error rates as they are dependent on the test case
parameter constraints we defined for the MR. For example,
if a particular bug is only triggered when a certain method
parameter is negative, and the allowed range for that parameter
contains more negative values than positive ones, we will get
a high error rate. Also, note that due to the random generation
of the method parameters and the constraints including invalid
values, some MTCs were generated where the shapes were
drawn outside the visible area or not drawn at all. Since this
resulted in two completely empty and identical images, such
MTCs were considered to have passed. Therefore, all MRs
contain at least some successful tests.

(a) Source FW (b) Follow-up FW (c) Difference

Fig. 5: drawWedgeLine Bug

We ran MTCs for 21 different MRs and found that for 10
of them all MTCs passed. In these cases, we have a high
degree of confidence that the library satisfies the particular
property being tested. However, for the remaining 11 MRs
some MTCs failed, revealing bugs in the library with some
of these MTCs exposing even multiple bugs. In total, our
framework discovered 15 unique bugs. We selected a failing
MTC for each bug and ran both FW on the GD32V hardware
board. This allowed us to confirm that all the bugs also
occurred on the real hardware.

C. Discussion of Bugs

In the following we discuss two particularly interesting bugs
found by our MT framework in TFT eSPI library.

WedgeLine: Executing this MR revealed two bugs in the
drawWedgeLine method. One of those bugs is shown in
Fig. 5 and is the most severe bug found by our approach.
When calling the method with a specific combination of valid
arguments, the resulting wedge line is incomplete. We found
this issue to be infrequent, occurring only twice out of 817
MTCs, which suggests that the bug is only triggered by very
specific arguments.

NikolausMove: This complex MR revealed a bug in the
sprite functionality. For the follow-up FW, the house, which
was drawn using the sprite’s drawRect method, was moved
left, down, right, and up, ultimately returning it to its original
position. While moving, the sprite leaves a trail that should
have the same color as the background and thus be invisible.
However, if the color parameter of drawRect exceeds the
16-bit maximum of the display, the colors of the trail and
the background differ slightly. The constraint for the color
parameter was set just slightly above 65535, therefore, most
tests were generated with a valid color parameter value and
the bug was triggered in only 3.45% of all MRs.

VII. DISCUSSION

Our experiments demonstrated the effectiveness of our MT
framework for finding bugs in an embedded graphics library.
The proposed framework focuses on integration testing and
complements unit testing. As such our approach targets in par-
ticular the verification of the interactions of components which
includes deeply nested functions spanning the full HW/SW
stack. Our MT framework leverages VPs and MT which allows
to automate the verification process. For this, our framework
uses multiple MRs. These MRs enable automatic generation of
powerful tests without having to create a reference model (or
logic which decides the correctness of the result). Instead, our
generator produces two FW, i.e. the source FW and a follow-
up FW forming a metamorphic test case, and by comparing



the execution results of both FW with respect to the MR we
determine whether the test passed of failed.

When considering the concrete verification results obtained,
we see that we have found 15 new bugs in TFT eSPI, an
embedded graphics library which is in the field for years. The
automation of our framework which employs randomization
during MTC generation (controlled by constraints) allows (1)
to generate diverse tests in comparison to manually created
function calls and (2) to check the results easily as the oracle
becomes obsolete via the MR comparison. As becomes evident
from the found bugs, MT is very viable here as a manual
inspection of images on a display is too costly, and for non-
trivial API functions, as targeted by the presented MRs, the
creation of a reference model is virtually impossible.

VIII. CONCLUSIONS

In this paper, we have presented a novel approach of
verifying embedded graphics libraries by leveraging VPs and
MT. Our approach complements unit testing and focuses in
particular on integration testing. We came up with a basic
formalization to define MRs and tailored them for embedded
graphic libraries. To generate and execute MTCs based on
our MRs, we developed an automated MT framework. Our
framework leverages an enhanced RISC-V VP modeling the
GD32V platform for execution of the source FW and follow-
up FW. With our approach, we were able to find 15 distinct
bugs in the widely used TFT eSPI library and confirmed all
bugs on real HW.

In future work, we plan to integrate a detailed test analysis
based on dynamic instrumentation techniques as presented
in [38].
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