
Towards a Highly Interactive
Design-Debug-Verification Cycle

Lucas Klemmer Daniel Große
Institute for Complex Systems, Johannes Kepler University Linz, Austria

lucas.klemmer@jku.at, daniel.grosse@jku.at

Abstract—Taking a hardware design from concept to silicon is
a long and complicated process, partly due to very long-running
simulations. After modifying a Register Transfer Level (RTL)
design, it is typically handed off to the simulator, which then
simulates the full design for a given amount of time. If a bug
is discovered, there is no way to adjust the design while still in
the context of the simulation. Instead, all simulation results are
thrown away, and the entire cycle must be restarted from the
beginning.

In this paper, we argue that it is worth breaking up this
strict separation between design languages, analysis languages,
verification languages, and simulators. We present virtual signals,
a methodology to inject new logic into existing waveforms.

Virtual signals are based on WAL, an open-source waveform
analysis language, and can therefore use the capabilities of WAL
for debugging, fixing, analyzing, and verifying a design. All this
enables an interactive and fast response design-debug-verification
cycle. To demonstrate the benefits of our methodology, we present
a case-study in which we show how the technique improves
debugging and design analysis.

I. INTRODUCTION

In today’s rapidly moving industry, design speed and fast
iterations are key to getting and staying competitive. When it
comes to agility and speed, no industry can keep up with the
software industry. But software also relies on fast and efficient
hardware as its foundation, and thus hardware companies
must find ways to fasten their development cycle to keep up
with the demand. In reality, however, hardware development
is inherently more complex than software development due
to a number of reasons [1]: (1) much higher risk compared
to software development, (2) a much more complex process
(compiling a binary vs. synthesis, place and route, floor-
planning, . . .), (3) a far greater dependency on lab time (a
single person can write revolutionary new software), (4) far
slower and fewer iterations during development (simulations
running for multiple days vs. hot-reloading of code in modern
software frameworks).

Some of these points are just inherent to hardware design
and can hardly be improved (high risk), but there are others
that can indeed be improved. In this paper, our focus is
on addressing the long delays between changing an Register
Transfer Level (RTL) design, waiting for the simulation to
stop, and verifying the newly introduced changes. We aim
to achieve this by reducing the frequency of new simulation
runs and providing an integrated environment in which all
steps of the hardware design process can be performed with
fast response times and no clean-cut separations between
development, simulation, and verification.

In particular, we want to limit the number of times redun-
dant work is done by providing a fine-grained method for
updating existing waveforms. We achieve this by injecting new
signals into already existing waveforms that were produced
by hardware simulators or by formal tools. This way, only
the newly injected signal has to be simulated and not the
whole design, dramatically reducing simulation runtime and
increasing the iteration speed.

We call these signals virtual signals, as they are not
included in the original design but are added later, yet they
look and behave exactly like the original signals. With vir-
tual signals, existing waveforms can be enhanced, making
complicated analysis problems significantly easier to express
and enabling developers to iteratively approach their design
either for fixing bugs or adding extra logic. Our virtual
signals are implemented as an extension to the the open-source
Waveform Analysis Language (WAL) [2]. By using WAL as
a basis, virtual signals can be conveniently defined in a fully
fledged programming language. They are therefore even more
powerful than traditional signals, for example, they can hold
complex data structures like hashmaps, or they can call library
functions.

To demonstrate virtual signals, we present two detailed case-
studies in which we show how virtual signals can be used to
try out bug fixes without performing new simulations after
modifying the logic driving an erroneous signal. We leverage
the full potential of WAL, by compiling temporal properties
– specified as System Verilog Assertions (SVA) [3] – to WAL
code, thus using them for bug detection and extremely fast
verification of our bug fixes, all while still having access to
the full simulation data.

II. RELATED WORK

The wish for higher productivity and better development
tools is shared by many in industry and academia [4]. Recently,
a lot of progress has been achieved by taking modern ideas
from software development and transferring them into the
hardware domain.

This has been done, probably most famously, by the Chisel
Hardware Description Language (HDL) [5], a modern hard-
ware generator embedded into Scala. It allows lifting the
abstraction of HDL design without loosing fine-grained control
over every wire and register. Chisel is not the only such new
HDL, many other HDLs emerged in the last few years, each
bringing its own set of ideas to the table. Notable examples

for this are CλaSH [6] which is embedded into Haskell from
which it draws many inspirations, Spade [7] which provides
specialized constructs for pipelining designs and a build tool
inspired by Rust’s cargo, and Migen/Amaranth [8].

In the context of modern HDLs and RTL code generation,
a range of intermediate languages emerged. These include
FIRRTL [9], an RTL intermediate representation that allows,
among other things, performing device-specific optimizations
and RTL generation, and CIRCT [10], another intermediate
representation with related tools.

Previous work into hot-reloading of RTL simulations has
been presented in [11] and [12]. LiveSim is a framework that
allows to update running simulations after changes have been
made to the RTL code. The goal of LiveSim is to reduce the
edit-run-debug delay, which is the time it takes for a change
in the RTL code to become visible in the simulation results.
LiveSim achieves a very high simulation performance and
reacts rapidly on design changes. In contrast to our proposed
virtual signals, however, LiveSim is a very large system on
its own and requires adaptions to the development process to
integrate LiveSim as a new simulator. Further, it is focused on
simulating typical RTL languages. In contrast, virtual signals
are not limited to synthesizable constructs or the restrictions
of RTL languages. Virtual signals can hold arbitrary data
structures, and every virtual signal is in itself a full program.
Additionally, virtual signals are tightly integrated into WAL
allowing them to interact with other WAL programs. For
example, in this paper, we use an SVA-to-WAL compiler to
detect bugs and verify that the suggested fixes are correct.
All this is possible within the same environment, and it can
be easily extended with other WAL programs, for example to
analyze the performance impact of the changes or to generate
visualizations of the changed design. Finally, virtual signals
seamlessly integrate into the development process and existing
toolchains without requiring any modifications. This is because
they solely rely on waveforms, which are already generated at
various stages of the hardware design process.

III. VIRTUAL SIGNALS

This section intoduces the concept of virtual signals. Since,
virtual signals are implemented on top of WAL, we first
provide a short introduction to WAL. Next, we introduce the
general idea of virtual signals, show how virtual signals can
be defined, how they integrate with other WAL functions, and
how they can be used to build higher abstraction layers that
allow a more convenient use.

A. Waveform Analysis Language

WAL [2], [13]–[15] is a programming language for debug-
ging and analyzing waveforms created by hardware simulators
or formal tools. WAL is based on the idea that signals from
waveforms can be used like variables, and that simulation
time and design hierarchy are fundamental parts of the
language. Thus, accessing signals in WAL is similar to ac-
cessing variables, with the difference that the value returned

depends on the loaded waveform and the time at which the
signal is accessed.

WAL’s syntax is based on Symbolic expressions (abbrev. as
S-expressions) which makes the language flexible and easily
extendable via powerful macros. For example, counting how
often a state machine tb.dut.state is in state 1 can be done
using the WAL program (count (= tb.dut.state 1)). Here, the
expression is evaluated at every timestamp of the waveform
and the number of timestamps at which it evaluates to true
is returned. Note, that the value of the signal tb.dut.state is
automatically read from the waveform at the correct time by
WAL. Now, we can extend this program to count how often
the state machine progressed from state 4 to state 1: (count (

&& (= tb.dut.state@-1 4) (= tb.dut.state 1)). To achieve this
we access the previous value of the signal using the @ operator.

This paper focuses on extending WAL with virtual signals
and thus we like to refer to [2] for a more thorough introduc-
tion to WAL.

B. General Idea

The core idea behind virtual signals is, that they are
additional signals which can be injected into the waveform
after simulation time. Compared to “real” signals, the value
of a virtual signal is not defined by the loaded waveform
but by a WAL expression that is evaluated when the signal
is accessed. This means that virtual signals are expressions
with the added context of the simulation time. They can be
used in other WAL expressions using all methods that are
available to regular signals (e.g., relative evaluation, grouping,
scoping) and completely behave like other “real” signals that
are contained within waveforms.

To implement virtual signals we extended the available
open-source implementation of the WAL interpreter1.

C. Defining Virtual Signals

WAL virtual signals can be defined using the defsig func-
tion. This function expects two arguments, first the name of the
signal that is created and secondly at least one WAL expression
that computes the value of the new signal. Please note, that the
expressions can be any valid WAL expressions and that virtual
signals can hold any valid WAL value (e.g., a signal holding
a list of all transactions up until this timestamp). Listing 1
shows how some exemplary virtual signals are created. The
first example on Line 1 defines a virtual signal whose value
is always equal to the value of the “real” signal counter
incremented by one. This virtual signal definition corresponds
to the Verilog concurrent assignment assign cnt_plus_one =

counter + 1;. Next, a virtual signal that inverts the reset signal
to generate an active-low reset is shown on Line 2. Finally,
a signal that always holds the index at which a write-enable
signal (tb.we) was high the last time is shown on Line 3. This
signal is defined recursively, if the write-enable is currently
high, it’s value is the current index, else it’s value is the value
this signal had at the previous index. This recursive chain

1https://github.com/ics-jku/wal

1 (defsig cnt-plus-one (+ counter 1))
2 (defsig resetn (- 1 reset))
3 (defsig last-we (if tb.we INDEX last-we@-1))

Listing 1: Defining virtual signals.

repeats until the write-enable signal is high or the start or end
of the waveform is reached. Virtual signals are evaluated lazily,
and their values are cached, and thus this recursive evaluation
does not add significant runtime cost.

D. Integration of Virtual Signals into WAL

In this section, we describe how virtual signals are inte-
grated into WAL using the example of a simple bus interface
that will be extended for debugging purposes.

Suppose a design contains a simple bus using a ready-valid
handshaking scheme. To give developers a better overview of
the bus activity, we are going to extend each such bus interface
in the design with a new virtual signal holding a list of all
transactions that have been sent so far. For each transaction,
we will store an address and data tuple inside an additional
virtual signal called packets. This signal will hold a growing
list of transactions, that have happened on this bus until the
index at which the signal is evaluated. If the rst signal is high,
the virtual signal will be set to hold an empty list (Line 4). If
the reset is low, it appends the current transaction to its value
if the bus is sending (Lines 5-6), else it keeps its old value
(Line 7).

The number of such interfaces in a design can vary depend-
ing on the design configuration (e.g., a configuration with 2 vs.
a configuration with 3 devices) and this affects the number of
virtual signals we have to inject. Doing this manually quickly
becomes tedious and therefore, virtual signals should be well
integrated with the generic programming features of WAL.
In general, from the perspective of WAL programs virtual
signals should behave like “real” signals that are loaded from
a waveform. The benefit of this is, that they can be directly
used by all other WAL features which are already present
for “real” signals. This means that they should be available
via the SIGNALS special variable, they should compose with the
grouping and scoping features of WAL, and they should follow
the WAL timing semantics (i.e., step, and relative evaluation).

Our virtual signal implementation satisfies these required-
ments, and hence we can utilize WAL’s full generic program-
ming features to automate the virtual signal creation. This
allows us to scan the design for all instances of the bus
using the groups function2 (Listing 2 Line 1) and create new
virtual signals at all discovered locations using the in-groups

function. Inside the body of the in-groups function, signals that
start with # and virtual signals are expanded to an absolute
name, depending on the currently visited group. Therefore,
by creating the virtual signals inside the in-groups function,
they are automatically name-extended and placed at the correct
locations. and thus we can automate the task of creating virtual
signals. After defining the virtual signals, we go over the
complete waveform once for each interface with the whenever

2For a further explanation of the utilized WAL functions, please see [2].

1 (in-groups (groups clk rst rdy vld addr data)
2 (defsig packets
3 (if #rst
4 '()
5 (if (&& (rising #clk) #rdy #vld)
6 (append #packets@-1 (list #addr #data))
7 #packets@-1)))
8 (print CG ":") ;; print Current Group
9 (whenever (&& (rising tb.clk)

10 (! (stable #packets)))
11 (printf "%2d: %s\n" INDEX #packets)))
12

Listing 2: Extending bus interfaces with virtual signals.
1 tb.c1.:
2 12: ((27 232))
3 20: ((27 232) (65 236))
4 tb.c2.:
5 4: ((179 48))
6 12: ((179 48) (185 52))
7 16: ((179 48) (185 52) (194 54))

Listing 3: The transactions on two bus interfaces.

function. At each timestamp, we check if a new transaction is
added (Line 9-11) to the virtual signal and, if this is the case,
print the current index and the packets signal (Listing 3).

E. Reg and Wire Macros

Using WAL’s macro system, users can extend the language
to their needs. In this section, we present two macros that
provide a convenient way to define virtual signals. The first
macro, wire, allows defining new combinational signals using
a (wire name expr) style similar to Verilog. Signals in the
expression of a wire definition always refer to the signal value
at the current index. In Listing 4, a combinational virtual
signal is created to detect if some clearing operation has to
be performed.

The second macro, reg, allows defining new sequential
signals. Similar to sequential logic in e.g. Verilog, signal
names in the expression of a reg definition refer to the signal
value at the previous clock edge. Sequential virtual signals
require three additional arguments: the clock to which they are
sensitive, the reset signal, and the reset value. In Listing 5, a
counter register is defined which wraps around after the value
5 and resets to 0.

IV. DEBUGGING WITH VIRTUAL SIGNALS

In this section, we introduce our design-debug-verification
workflow based on virtual signals using a simplified but
not far-fetched case-study. Suppose one of the components
of a new system contains a counter that, according to the
specification, should wrap around after the value 5. However,
during development, a member of the design team misread
the specification and implemented the wrap around after the
value 4, the nearest power of two. These types of errors
are commonly referred to as off-by-one errors, and they can

1 (wire clear (&& cmd_valid (= cmd[1:0] 3)))

Listing 4: Defining a combinational signal using the wire

macro.
1 (reg counter [clk [rst 0]]
2 (if (= counter 5)
3 0
4 (+ counter 1)))

Listing 5: Defining a sequential signal using the reg macro.

occur with remarkable ease. Since bugs of this kind are very
common, they are one of the classic bugs in both, software
development and hardware design.

In the following case-study, we will present our methodol-
ogy based on virtual signals in three steps: 1) finding the bug
in the waveform using an SVA property, 2) injecting a fix for
the bug into the waveform, and 3) verify the bug fix using the
same SVA property.

To find the bug inside the waveform we compile the SVA
property that uncovered it originally to a WAL function. We
then inject a new virtual signal into the waveform that fixes
the previously uncovered bug. Next, we simulate this, and
only this signal, and check, that it did not invalidate the
waveform data by deviating from the original signal before
the time at which the SVA property first fails. Finally, we
run the same SVA property again to verify that our fix
indeed is correct. Please note that all of this happens in the
same debugging environment and using one unified language,
WAL. The verification engineer does not have to use multiple
tools or even simulate the whole design again multiple times
during debugging. Only after the engineer came up with a fix
that passes the SVA property on the waveform, a new full
simulation or other kind of regression run is needed. This
way, time-consuming and workflow breaking simulation is
reduced to a minimum. The WAL shell session containing
all steps of this case-study is shown in Listing 7.

Step 1: Finding the Bug

We start the bug fixing process with the knowledge that
a bug was uncovered by one of the SVA properties that have
been checked during regression testing. The first step in fixing
a bug using virtual signals is locating the time when the bug
first appears in the waveform. For this, we want to utilize the
same SVA property that already uncovered the bug. Listing 6
shows the SVA property that failed for our design during
simulation. The assertion checks if the counter value correctly
overflows after it reached the value 5. However, this is not the
case at some point in the waveform generated by the simulator.

As WAL is a fully fledged programming language, it is
possible to translate an SVA assertion into WAL a program
that checks if the assertion holds on a given waveform.
We translated the SVA property into a WAL program using
a conversion program. This program generates a WAL file
containing a function definition fp for each property p in the
SVA file. With this generated WAL file, checking if property
p holds on the currently loaded task is as simple as calling the
function fp by evaluating (fp). To use the generated WAL
functions, we first have to import them into the running
WAL session. In WAL this is done by evaluating (require

assertions), assuming the assertion file was translated into
assertions.wal. After loading the waveform (Line 1 in List-
ing 7) and the file containing the assertions (Line 2) we can
call the check overflow function (Line 3; representing the SVA
property check overflow) to get a list of all timestamps at
which the property fails (this list contains tuples containing
the time of the first and last matches of the failing assertion).

Fig. 1: Waveform containing the wrong counter value (red).

1 check_overflow: assert property(
2 @(posedge clk)
3 disable iff (rst)
4 counter == 0 |-> $past(counter) == 5;
5);

Listing 6: The SVA property that detected the bug.

A waveform containing the wrong counter value (highlighted
in red) is shown in Fig. 1.

Step 2: Injecting the Bugfix

Having spotted the first timestamp at which the assertion
fails, we can analyze the bug. In this case, evaluating the
assertion function returns a non-empty list, signaling that the
assertion failed at some point. Every entry in the list is a tuple
describing the failing assertion. The first element of the tuple
is the timestamp at which the assertion first matched, and the
second element is the timestamp at which the assertion last
matched the trace. Since the check overflow assertion checks
only one timestamp, both values of returned tuple are the same.
In this example, the assertion returns a list with one element
pointing to a failure at timestamp 110 (Line 4 in Listing 7).

Next, we print all values of the counter signal to get an
overview of the context in which the bug occurs (Lines 5-13).
Here we can see the wrong counter value on Line 11, which
is 4 due to the bug in the counter, but should be 5. We will
now fix this bug by injecting counter/new, a new signal that
models the counter value with the correct overflow value. For
this, we use the previously created reg macro that creates a
new sequential signal which is sampled on each rising clock
edge (Lines 14-17). By creating a new signal counter/new
with a different name than counter we still have access to
the old counter value from the waveform. At this point, we
can print the values of both the old and new signals side by
side to gain a deeper understanding of the behavior exhibited
by the new signal (Lines 28-27). The new virtual signal is
also shown in Fig. 2 with the correct maximum value of the
counter highlighted in blue.

Step 3: Verifying the Bugfix

At a first glance, the new implementation seems to fix the
bug. However, now we need to make sure that our bugfix
passes the SVA assertion and that it did not corrupt the other
signal values. In general, a corruption can occur if the value

Fig. 2: Waveform containing the wrong counter value (red)
and the corrected value of the virtual signal (blue).

1 >-> (load "counter.vcd")
2 >-> (require assertions)
3 >-> (check_overflow)
4 ((110 110))
5 >-> (whenever (&& (rising clk) (< TS 140))
6 (printf "%3d: %d\n" TS counter))
7 10: 0
8 30: 1
9 50: 2

10 70: 3
11 90: 4
12 110: 0
13 130: 1
14 >-> (reg counter/new [clk (rst 0)]
15 (if (= counter/new 5)
16 0
17 (+ counter/new 1)))
18 >-> (whenever (&& (rising clk) (< TS 140))
19 (printf "%3d: %d %d\n" TS
20 counter
21 counter/new))
22 10: 0 0
23 30: 1 1
24 50: 2 2
25 70: 3 3
26 90: 4 4
27 110: 0 5
28 130: 1 0
29 >-> (check-integrity counter counter/new 110)
30 >-> (alias counter counter/new)
31 >-> (check_overflow)
32 ()

Listing 7: Injecting a new counter signal into the waveform.
“>->” is the WAL shell prompt and TS the current timestamp.

of the virtual signal is different than the value of the original
signal at any time except the place where the bug occurs. This
check is essential, since a mismatch between both signals can
invalidate the values of the other signals. This is the case, since
we only simulate the new virtual signal, therefore signals that
depend on this value are not updated. In cases in which such a
corruption occurs, the simulation data is not valid, and we can
make no statement about the correctness of our bugfix. In our
counter example, this integrity check is not needed since the
counter signal is a top-level output of the counter module and
no other signal depends on it. However, to show the general
principle, we include the check in this example.

Finally, we can check the correctness of the virtual signal
using the SVA assertion. Since the SVA assertion checks the
correctness of the counter signal, we first have to overlay
the counter signal by the new virtual signal counter/new.
This is done by introducing an alias for the virtual signal
(Line 30 in Listing 7). Aliases always have precedence over
real or virtual signals, therefore evaluating counter from now
on returns the value of counter/new. With the old signal
overlaid, we can run the SVA property again to see if the
new signal corrects the behavior of the old signal (Line 31)
on the complete waveform. This time, the assertion returns an
empty list, meaning that it did not fail at any timestamp.

V. CASE STUDY: RISC-V HAZARD UNIT

In this section, we repair faulty forwarding logic inside
the hazard unit of a pipelined RISC-V processor. Due to a
mistake that happened during the wiring of the hazard unit
module the forwardae signal, which is a select signal on a
multiplexer driving one of the ALU inputs, srca, is undefined

1 check_forwarding: assert property(
2 @(posedge clk)
3 disable iff (reset)
4 (rs1e == $past(rde)) && regwritem && (rs1e != 0)
5 |-> (srca == aluresultm)
6);

Listing 8: The SVA property that detects the wrong forwarding
signal value.
1 >-> (load "bug.vcd" t)
2 >-> (require assertions)
3 >-> (check_forwarding)
4 ((90000000 90000000))
5 >-> (step-to-ts 90000000)
6 >-> forwardae
7 0
8 >-> (wire forwardae/new
9 (cond

10 [(&& (= rs1e rdm) regwritem rs1e) 2]
11 [(&& (= rs1e rdm) regwritew rs1e) 1]
12 [else 0]))
13 >-> (alias forwardae forwardae/new)
14 >-> forwardae
15 2
16 >-> (check_forwarding)
17 ((90000000 90000000))
18 >-> (wire srca/new
19 (case forwardae
20 [0 rd1e]
21 [1 resultw]
22 [2 aluresultm]))
23 >-> (alias srca srca/new)
24 >-> (check_forwarding)
25 ()

Listing 9: WAL shell session documenting the analysis and
repair of the forwarding logic.

in one specific case. If the bug is triggered, the ALU operates
on an outdated value and thus can produce the wrong result.

During the verification of the processor, the bug was
detected using the SVA property shown in Listing 8. This
property checks that the srca ALU input is the same as
the previous ALU result if the register number rs1 of ALU
operand a of the instruction currently in the execute stage is
the same as the result register rd of the previous instruction
and the previous instruction produces a result that is written
to a register other than x0. Like in Section IV, we translated
the SVA property to WAL using a compiler.

Listing 9 documents a shell session in which the faulty for-
warding logic is debugged and fixed. First, the waveform with
the bug (Line 1) and the compiled SVA properties are loaded
into WAL (Line 2). Next, the SVA property check forwarding
is checked against the waveform (Line 3) and a list of the
locations at which the property fails is returned (Line 4). Using
the step-to-ts function we step forward to the time at which
the property fails (Line 5). Here, we check the value of the
forwardae control signal and see that it is 0 (Line 7). However,
since the instructions that are currently in the pipeline produce
a hazard, this control signal should be set to 2.

On Lines 8-12 the new logic for the forwardae/new signal is
defined using the wire macro. This logic can detect two kinds
of hazards (i.e., possible conflicts with the two previous in-
structions) and sets the forwarde signal accordingly. Now, the
original forwardae signal is overlaid with the forwardae/new
signal (Line 13). We can now observe the correct value of
forwardae (Line 15), however, the SVA property still fails

at the same timestamp (Line 17). This is because the SVA
property checks not the forwardae but the srca signal. The
srca signal is driven by a simple 3-Mux that uses forwardae
as the select signal. Hence we can easily inject a new virtual
signal to propagate the bugfix to srca (Line 18-23). Finally,
the SVA property is checked again, this time without failing
(Line 25).

VI. DISCUSSION

In this paper, we try to take the first step in breaking up the
strict separation between design time, simulation time, and
verification time. For this, we presented virtual signals which
allow injecting new logic into simulation waveforms after the
simulation is finished. By utilizing virtual signals, a novel
and highly interactive debugging approach emerges, enabling
new possibilities for investigation and analysis. Instead of the
need to exit the development environment for every minor
code change, virtual signals enable the immediate observation
and verification of the changes’ impact. Likewise, the reverse
scenario holds true: in the event of a bug discovered within a
waveform, virtual signals facilitate the analysis and resolution
of the bug within the same environment.

However, presently, our virtual signal workflow only works
under some assumptions. For example, if a signal is overlaid
with a virtual signal, in most cases the virtual signal must be-
have exactly the same as the original signal for all timestamps
up to where the SVA property fails. Additionally, after the
values of the two signals diverge, the other values of signals
that depend on the changed signal become invalid, as they too
have to be now simulated again. We plan to address this in the
future by analyzing the cone of influence of a signal. Then,
signals that are affected by a virtual signal can be converted
into additional virtual signals. Ideally, these steps would have
to be performed automatically, for example by a synthesis step
that compiles signals of the original design into virtual signals.

Another direction of future work concerns how virtual
signals are defined. WAL is specifically designed to make
expressing hardware problems as easy as possible. However,
the S-expression and prefix notation make it hard for people
not familiar with Lisp languages to pick up WAL. On the
other hand, the same S-expression notation also significantly
simplifies transpiling other languages to WAL. Alternative
frontends for WAL are already available: Including WAWK,
which is a waveform analysis language inspired by AWK,
and WSVA, the SystemVerilog Assertions frontend we used
in Section IV and Section V. Both, AWK and SVA are
already widely used by hardware engineers, providing them
an easy entry into the WAL system. Adding a new frontend
that translates Verilog or VHDL to WAL would make virtual
signals available to hardware engineers without any knowledge
about the underlying technology. This also highlights a major
strength of using WAL as the backend for virtual signals: all
projects that utilize WAL are automatically compatible with
each other. Further, as WAL is centered around waveforms,
which are produced in large quantities during simulation and
formal verification, it is completely supplementary to existing
toolchains and workflows. In future work, we will investigate

how virtual signals can be made permanent by propagating
them back up into the original design.

We believe that improvements in productivity are necessary
to effectively meet the ever-increasing demands placed on
domain-specific hardware [16]. One approache to achieve this
objective is by minimizing simulation overhead and stream-
lining the development process. Even though virtual signals
still limitated in their current form, we are confident that they
are a promising new direction towards a modern and more
interactive hardware development flow.

VII. CONCLUSION

In this paper, we presented virtual signals, a novel method-
ology that allows injecting new logic into existing waveforms.
Virtual signals allow an interactive development flow similar
to what is known as hot-reloading in the software domain. By
showcasing a simple but compelling example, we presented
how virtual signals can be used to try out bugfixes and see
their effect immediately without running a full simulation.
Since virtual signals are based on WAL, they have the power
of a full-fledged programming language and can benefit from
other, for example, verification related, WAL projects.

ACKNOWLEDGMENTS

This work has partially been supported by the LIT Secure
and Correct Systems Lab funded by the State of Upper Austria.

REFERENCES

[1] N. Weste and D. Harris, CMOS VLSI Design: A Circuits and Systems
Perspective. Addison-Wesley Publishing Company, 2010.

[2] L. Klemmer and D. Große, “WAL: a novel waveform analysis language
for advanced design understanding and debugging,” in ASP-DAC, 2022,
pp. 358–364.

[3] IEEE Std 1800-2017: IEEE Standard for SystemVerilog–Unified Hard-
ware Design, Specification, and Verification Language. IEEE.

[4] A. Rautakoura and T. Hämäläinen, “Does soc hardware development
become agile by saying so: A literature review and mapping study,”
ACM Transactions on Embedded Computing Systems, 2023.

[5] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. Avižienis,
J. Wawrzynek, and K. Asanović, “Chisel: Constructing hardware in a
scala embedded language,” in DAC, 2012, p. 1216–1225.

[6] C. Baaij, M. Kooijman, J. Kuper, W. Boeijink, and M. Gerards, “Cλash:
Structural descriptions of synchronous hardware using haskell,” in DSD.
IEEE, 2010, pp. 714–721.

[7] F. Skarman and O. Gustafsson, “Spade: an expression-based HDL with
pipelines,” in Proc. Workshop Open-Source Des. Automat., 2023.

[8] “Amaranth HDL,” https://github.com/amaranth-lang/amaranth, 2023.
[9] A. Izraelevitz, J. Koenig, P. Li, R. Lin, A. Wang, A. Magyar, D. Kim,

C. Schmidt, C. Markley, J. Lawson, and J. Bachrach, “Reusability is
firrtl ground: Hardware construction languages, compiler frameworks,
and transformations,” in ICCAD, 2017, pp. 209–216.

[10] CIRCT contributors, “CIRCT / Circuit IR Compilers and Tools,” https:
//github.com/llvm/circt/tree/main/, 2023.

[11] H. Skinner, R. Trapani Possignolo, S.-H. Wang, and J. Renau, “Livesim:
A fast hot reload simulator for hdls,” in ISPASS, 2020, pp. 126–135.

[12] S.-H. Wang, R. T. Possignolo, H. B. Skinner, and J. Renau, “Livehd: A
productive live hardware development flow,” IEEE Micro, vol. 40, no. 4,
pp. 67–75, 2020.

[13] L. Klemmer and D. Große, “Waveform-based performance analysis of
RISC-V processors: late breaking results,” in DAC, 2022, pp. 1404–
1405.

[14] L. Klemmer, E. Jentzsch, and D. Große, “Programmable analysis of
RISC-V processor simulations using WAL,” in DVCon Europe, 2022.

[15] F. Skarman, L. Klemmer, O. Gustafsson, and D. Große, “Enhancing
compiler-driven HDL design with automatic waveform analysis,” in
FDL, 2023.

[16] J. L. Hennessy and D. A. Patterson, “A new golden age for computer
architecture,” Commun. ACM, vol. 62, no. 2, p. 48–60, 2019.

