
Using Formal Verification Methods for
Optimization of Circuits under External Constraints

Daniel Große Lucas Klemmer Dominik Bonora
Institute for Complex Systems, Johannes Kepler University Linz, Austria

daniel.grosse@jku.at, lucas.klemmer@jku.at, dominik.bonora@jku.at

Abstract—This paper targets the optimization of circuit netlists
by eliminating redundant gates under given external constraints.
Typical examples for external constraints – which can be viewed
as external don’t cares – are restrictions on input operands,
instruction subsets used by a processor for specific applications,
or limited operation modes of an integrated IP block. Targeting
external don’t cares presents a challenge because the optimization
problem changes from a completely specified Boolean function
to a Boolean relation. We propose an optimization approach that
utilizes formal verification methods. We demonstrate how to for-
mulate Property Checking (PC) and Equivalence Checking (EC)
problems to determine if a gate is redundant under given external
constraints. Essentially, the validity of up to four rules must
be checked per gate. We show that these checks can be solved
concurrently, resulting in faster overall optimization. We have
implemented our approach as the tool Formal SYNthesis (FSYN).
FSYN utilizes open-source tools to scale the solving of formal
instances with available hardware resources. We demonstrate
that our approach can achieve substantial reductions in the
number of gates for combinational circuits under given external
constraints.

I. INTRODUCTION

In the realm of Very Large Scale Integration (VLSI) design,
synthesis is the process of converting a high-level hardware
description, usually provided in the form of a behavioral
Register Transfer Level (RTL) design, into a gate-level rep-
resentation. In the early days, synthesis referred only to the
direct transformation into circuitry. Therefore, the term logic
synthesis was coined [1] to emphasize both, compilation and
logic optimization of a design description during conversion
into a netlist. The focus of this work is in particular on the
second part, i.e. logic minimization of circuit netlists.

The 1980s saw a significant evolution in logic synthesis
algorithms, where the treatment of Don’t Cares (DCs) became
more advanced and integral to the optimization process (see
e.g. [2], [3]). The computation of Internal Don’t Cares, which
arise from the structure of the netlist itself, and their use for
minimization has been integrated in all logic synthesis tools.
However, this is not the case for External Don’t Cares [4].
At its core external DCs are constraints on inputs that will
not appear (more details in the next section). In contrast to
internal DCs, external DCs are given by the environment
or explicitly by the user. Typical examples for external DCs
include restrictions on the values of input operands, instruction
subsets used by a processor for specific applications, or limited
operation modes of an integrated IP block.

Although there have been attempts to unify the characteriza-
tion of different DC types [5], targeting external DCs presents
a challenge because the optimization problem changes from
considering a completely specified Boolean function to opti-
mizing a Boolean relation. Additionally, it has been reported
in [4] that there are currently no open-source synthesis tools
available that accept external DCs.

From the practical side, [6] introduced the Property-Driven
Automatic Transformation (PDAT) framework which targets
the very specific application of eliminating the logic of
unneeded instructions in a processor realizing an Instruc-
tion Set Architecture (ISA). PDAT employs Property Check-
ing (PC) [7]–[9] to detect gates that are guaranteed not to
toggle for the reduced ISA. These gates can be removed from
the netlist. However, [6] has several shortcomings: relevant
information such as formalization, used properties and veri-
fication directives are not or only partially given, run-time is
not reported and only commercial tools are used. Recently,
in [10] these problems have been partially solved. The paper
introduces PSYN which also employs PC but uses open-source
tools for each step, i.e. from synthesis to formal.
Contribution: In this paper, we propose an optimization
approach that utilizes formal verification methods to reduce the
number of gates in a netlist. Our approach extends the previous
work by showing how to formulate PC and Equivalence
Checking (EC) [11], [12] problems to determine if a gate is
redundant under given external constraints. For this, we for-
malize the respective formal problems and introduce the rules
which have to be checked/applied per gate. We show that these
checks can be solved concurrently, resulting in faster overall
optimization. Thereafter, we present our implementation called
Formal SYNthesis (FSYN). FSYN uses only open-source tools,
in particular Yosys [13], ABC [14], WAL [15], and Z3 [16].
Of course, FSYN is available on GitHub1. In the experiments,
we demonstrate that our approach can achieve substantial
reductions in the number of gates for different circuits under
given external constraints.

The paper is structured as follows: Section II presents the
formalization based on PC and EC of our approach as well
as illustrative examples. In Section III, our tool FSYN is
introduced. This includes the flow of FSYN, the description
of the different phases as well as improvements for scalability.

1FSYN is available at: https://github.com/ics-jku/fsyn.

https://github.com/ics-jku/fsyn


Section IV presents the experiments. Finally, the paper is
concluded in Section V.

II. CIRCUIT OPTIMIZATION UNDER EXTERNAL
CONSTRAINTS

In this section, we first give some background on logic
synthesis and don’t cares (Section II-A). Thereafter, we present
a generic formalization of the proposed optimization approach
in terms of PC and EC problems. This is supported through
the use of simple examples (Section II-B).

A. Logic Synthesis, Don’t Cares and External Constraints

Towards the end of the 1980s, techniques for optimiz-
ing multi-level logic became increasingly prominent. Ex-
amples include algebraic manipulation, factoring, common
sub-expression elimination, and functional decomposition to
minimize logic complexity [17]. As these methods advanced,
the use of Don’t Cares (DCs) became pivotal in the process
of logic optimization. DCs offer considerable flexibility for
optimization algorithms [2], [3]. Typically, Internal Don’t
Cares and External Don’t Cares (XDCs) are distinguished.
Internal DCs result from the netlist structure in the presence
of reconvergent paths. They are divided into Satisfiability
Don’t Cares (SDCs) and Observability Don’t Cares (ODCs).
In essence, SDCs occur when certain input combinations are
not generated for a node, while ODCs arise when the output
value of a node is not important under specific conditions. The
computation of both has been formulated using incompletely
specified functions also called permissible functions [18],
[19]. Significant improvements in terms of scalability became
possible by using simulation and Boolean Satisfiability (SAT),
see e.g., [20].

As already mentioned in the introduction, XDCs are given
by the environment or explicitly by the user. [4] divides XDCs
further in two classes by extending the definitions of SDCs
and ODCs to the input and output boundaries, respectively.
A value assignment to the primary inputs that will never
appear (which extends the definition of an SDC to the inputs)
is an XSDC. Similarly, external ODCs, termed XODCs, are
conditions under which some primary output values are not
of interest. In this paper, we focus on XSDCs. XSDCs can
be easily expressed as formal constraints on input signals.
From the practical perspective, users can leverage well known
property languages to specify these external constraints in
form of assumptions. In the simplest case these assumptions
include or exclude values on the primary inputs, but our
proposed approach is not limited to this. In the following,
we present the formalization of the proposed optimization
approach together with simple examples demonstrating the
optimization potential.

B. Formalization

Given a netlist of a circuit, we are interested in optimizing
the netlist under given external constraints. More precisely, our
cost function is the number of gates, i.e. we aim to remove
gates from the netlist and thus we are optimizing for area.

TABLE I: Gate Redundancy Rules

Gate Rules

A

B
Y

R_AND_Y0: Y = 0
R_AND_Y1: Y = 1
R_AND_YA: A =⇒ B
R_AND_YB: B =⇒ A

A

B
Y

R_OR_Y0: Y = 0
R_OR_Y1: Y = 1
R_OR_YA: B =⇒ A
R_OR_YB: A =⇒ B

A

B
Y

R_XOR_Y0: Y = 0
R_XOR_Y1: Y = 1
R_XOR_YA: B
R_XOR_YB: A

A Y
R_NOT_Y0: Y = 0
R_NOT_Y1: Y = 1

First, we introduce some general notations which we use in
the remainder of this paper:

• N denotes a netlist,
• gi denotes a gate from N , and
• E denotes the user-specified external constraints.
The proposed optimization approach aims to determine if

a gate is redundant under specific external constraints. We
follow the idea from [6], [10] and capture this gate-redundancy
formally with rules2 to be checked and applied to the current
gate gi. Table I lists the rules for the 2-input gates AND, OR,
XOR and the 1-input NOT gate. In general, a rule in Table I is
defined as R_<gate>_Y<s>: condition where (i) the symbols
before the colon constitute the name of the rule, and (ii) if
the condition holds for the gate <gate> (we also say the rule
holds), then the output Y is replaced by <s>. Let us consider
the AND gate with the output Y and the inputs A and B as
an example: for this gate there are four different rules. For
instance, rule R_AND_Y0 describes if Y = 0 holds, then the
AND gate can be removed and its output Y is replaced by
the constant 0. Another example is the rule R_AND_YA which
describes if A =⇒ B holds for the AND gate, then Y is
replaced by the input A, in other words the AND gate can be
removed and the output Y is directly connected to input A.

Based on these rules, we formulate the core step of
the optimization problem under external constraints, the
gate-redundancy check for gate gi utilizing PC as

GPC(gi) = {Ek ∧
k−1∧
j=0

T (sj , sj+1) ∧ P k(gi)

| P k(gi) ∈ Rules(type(gi)) }

(1)

where k is the number of time frames (k = 1 in the com-
binational case), Ek are the external constraints, T (sj , sj+1)
is the transition relation, and P k(gi) is a concrete rule from
all possible rules of the gate gi of type(gi) in form of a
property; please note that exponent k in Ek and P k(gi) is
used to make clear that the properties have to be considered
from 0 to k. Let us look at this formalization: if gi is for

2We use the term rules as we look at the problem in a more general way
than [6], [10].



TABLE II: Truth Table of 2-bit Ripple-Carry Adder

a1a0 b1b0 s2 s1 s0
00 00 000
00 01 001
00 10 010
00 11 011
01 00 001
01 01 010
01 10 011
01 11 100
10 00 010
10 01 011
10 10 100
10 11 101
11 00 011
11 01 100
11 10 101
11 11 110

g1 g2

g5 g6

g3 g4

g7

a1 b1 a0 b0

s2 s1 s0

Fig. 1: 2-bit Ripple-Carry Adder

instance an AND gate, GPC(gi) consists of four PC problems.
To perform optimization for the complete netlist N , GPC(gi)
must be checked for all gates of N .

We now present a concrete example to demonstrate the
concepts.

Example 1. We consider a 2-bit Ripple-Carry Adder (RCA)
which adds up the binary numbers a1a0 and b1b0 and produces
the result s2s1s0 and has no carry in. The truth table for a
2-bit RCA is shown in Table II. Fig. 1 depicts a classical netlist
implementation using a full adder (consisting of the two half
adders g1, g2 and g5, g6 and OR gate g7) and another half
adder (gates g3, g4) for the lower bits.

If we now consider an external constraint that operand
b is restricted to only even numbers, formally b0 = 0, the
circuit can be deeply optimized. The result is shown in Fig. 2.
Note that in the truth table (Table II), only the light blue
lines remain under this external constraint. Let us consider
the AND gate g3 in Fig. 1 as an example. For this gate the
rule R_AND_Y0 holds, hence g3 is redundant and can be
removed; as a result the output is connected to the 0 constant.

g1 g2

a1 b1 a0

s2 s1 s0

Fig. 2: Optimized 2-bit Ripple-Carry Adder under external
constraint b0 = 0

g1 g2

g5 g6

g4

g7

a1 b1 a0 1

s2 s1 s0

Fig. 3: Optimized 2-bit Ripple-Carry Adder under external
constraint b0 = 1

Another example is the XOR gate g4 with inputs B = a0 and
A = b0. Due to the external constraint b0 = 0, which means
A = b0 = 0 = 1, rule R_XOR_YB holds and therefore a0 is
directly connected to s0. The same argumentation holds for
gate g6 and thus the output of g2 goes directly to s1. Finally,
for the OR gate g7 the rule R_OR_YB holds and therefore the
output of g1 is connected to s2. Please note as we use PC,
so formal reasoning, the order in which we check the rules is
not relevant for correctness.

Example 2. Again, we consider a 2-bit RCA. However, we
now have the external constraint that operand b is restricted
to only odd numbers (b0 = 1). In this case only a single gate
(gate g3) can be replaced by one of it’s inputs (a0) since rule
R_AND_YB holds for g3. The result is shown in Fig. 3.

Both examples show that the RCA can be optimized under
external constraints. As expected, the number of redundant
gates depends on the circuit and the concrete external con-
straints.

We introduce an alternative formulation for the optimization
problem at hand. The concept of the presented rules remains
the same. However, instead of utilizing PC and describing the
rules as properties, we now apply each rule for the gate gi
and create an EC problem. We can formulate the core step
of the optimization problem under external constraints, the



Fig. 4: The high-level flow of FSYN

gate-redundancy check for gate gi utilizing EC as follows:
GEC(gi) ={E ∧Miter(N, N̂(gi)) |

N̂(gi) ∈ Rules(type(gi))}
(2)

where E are the external constraints and Miter(N, N̂(gi))
forms a miter. This miter is built for each rule of gate gi of
type(gi) by applying the rule on the netlist (for instance by
replacing the output of gi by a constant or connect the output
of gi to the input A). Recall, if gi is an AND gate, then four
different miters are created. For the other gates, see Table I.
Also in this formalization, for optimizing the complete netlist
N all EC problems for each gate have to be solved.

The PC and EC formalizations presented so far allow
to optimize a given netlist under external constraints. It is
evident that the underlying formal instances can be solved
concurrently. In the following section we introduce our im-
plementation FSYN and discuss several improvements for
scalability.

III. FSYN

In this section, we first present the overall flow of FSYN
Thereafter, we describe the major phases of FSYN in the
respective subsections.

A. FSYN Flow

A high-level flow of FSYN is depicted in Fig. 4. To perform
optimizations on a design using FSYN two inputs are required,

the design that should be optimized and a file containing
the input assumptions (XSDCs) that form the basis for the
optimization.

In general, FSYN is split into four distinct phases. In the
first Initial Synthesis Phase (blue), the design is synthesized
into a netlist. This phase serves two main purposes: First, it
brings the design to the gate level at which FSYN operates
and second, it unifies the netlist into a known and fixed format,
which makes sure that all netlist components are supported by
FSYN. The resulting netlist is used by all following steps of
the FSYN flow.

In the second Rule Filtering Phase (orange), FSYN filters
the list of all possible optimization rules. As a rule of
thumb, there are 4 possible optimizations for every gate in
the netlist. Since formal approaches can run into capacity
problems with increasing design size, we employ a simulation-
based approach to eliminate as many rules as possible by
disproving their validity through random simulation. The rule
filtering is performed in three steps: First, random input
stimuli, which fulfill assumptions, are generated. Then, the
stimuli are simulated on the netlist for a certain period of
time. Finally, all gates in the resulting waveform are analyzed
to find optimization rules that have been refuted. The result of
the second phase is a list of filtered optimization rules which
have to be formally checked by the formal Rule Checker.

The next phase is the Rule Checking Phase (red). The
previous filtering phase could only disqualify rules based on
counterexamples, not prove that a rule is a valid optimization.
For this, the rule checking phase employs the formal checks
which are the core of FSYN. The rule checker supports two
alternative rule checking backends,. Broadly speaking, the PC
flow attaches properties to all gates which are then checked
and the EC flow directly performs the optimization and checks
if the resulting netlist is still equivalent to the original netlist
under the assumptions. The result of the third phase is a list
of proven optimizations.

Finally, in the Rewriting Phase (teal), the netlist is rewritten
by applying the proven rules to it. After the netlist is rewritten,
it is synthesized again to perform some clean-up work (e.g.,
unnecessary assignment chains, which can be generated by
FSYN, are shortened). As a last step, a final equivalence check
is performed between the optimized netlist and the synthesized
netlist.

B. Rule Filtering Phase

Applying an optimization rule to a netlist requires proving
that the corresponding condition of the rule (cf. Table I) always
holds under the external constraints. As explained in Sec-
tion II-B, FSYN uses formal methods to perform this check.
However, proving can be much more costly than refuting. For
the latter, only a counter-example is needed, which in the best
case can be easily found by simulation. In the context of this
work, there is just one challenge, namely that the stimuli we
use for simulation must fulfill the external constraints (given
as assumptions). We formulate the problem of finding valid
stimuli as an SMT problem over the inputs of the design.



This SMT problem consists of the external constraints and an
always failing assertion. When solving the problem, we get
a counter-example with a set of valid inputs that fulfill the
external constraints. To generate multiple inputs we update
the problem to exclude already seen input combinations using
the technique described in [21].

We then use the generated stimuli to simulate the netlist
to produce waveforms with the behavior of every gate in the
design during the simulations. Now, for every gate and every
rule we try to find a timestamp inside the waveform using the
Waveform Analysis Language (WAL) [15], [22], [23] at which
the rule is refuted.

An exemplary WAL expression that checks if the constant
0 rule is refuted is shown in the following listing:

(> 0 (count (! (= top.s[2] 0))))

WAL uses a Lisp style prefix notation. In the concrete
WAL expression, we count3 how often the signal top.s[2] is
not 0 on the waveform, in other words if we see at least a
single 1, the rule is refuted. For other rules, the subexpression
(= top.s[2] 0) would be replaced accordingly, and the outer
expression remains unchanged.

In FSYN, the rule filtering phase is optional and can be
used to reduce the number of required formal proofs. The
gate filtering also employs an SMT solver, however, compared
to the PC and EC problems in the third phase, the stimuli
generation scales only with the number of inputs, not with
the number of gates. Analyzing the simulation waveform,
the second step of the rule filtering phase, scales in theory
quadratically with the number of gates in the design and the
number of stimuli generated. However, even generating only a
small number of stimuli is often sufficient to eliminate a large
portion of the gates and to significantly reduce the checking
time In Section IV-A, we will demonstrate the effectiveness
of the rule filtering approach.

C. Rule Checking Phase

In this section, we describe the two rule checking implemen-
tations of FSYN. FSYN’s architecture allows having multiple
backends for the rule checking phase. Currently, two backends
are implemented: PC and EC. The PC backend utilizes sby, a
frontend for the formal verification capabilities of Yosys [13],
for solving the properties. The checking of properties is split
into many smaller tasks. Each task is a subset of rules for
which properties will be checked in a single call to sby of
Yosys.

The standard configuration is a task size of 80 gates (see
analysis in [10]) with at most 4 properties/rules to be checked
per gate, i.e. a single PC instance contains up to 320 properties.
These tasks can be parallelized by leveraging the available
threads of the local machine as well as to other computers.
For the details on the PC backend we refer the reader to [10].

The EC backend is currently in an experimental stage. As
presented in Section II-B, the EC backend rewrites the netlist

3(count expr) counts and returns at how many timestamps the expression
expr evaluates to true.

TABLE III: Rule Filtering Results

Benchmark arbiter mem_ctrl 32x32 Mul

Rules 47,356 161,844 27,216
Runtime PC 0 [s] 102 1,017 85

After filtering 40 1,339 49,859 12,038
Filtering time 40 [s] 21 97 22
Runtime PC 40 [s] 14 346 41
Runtime Sum 40 [s] 35 443 63

eagerly and then checks if the rewritten netlist is equivalent to
the original netlist using Yosys equivalence checking. The EC
backend allows local parallelisation, however, it has yet to be
integrated into the distributed system presented in [10].

D. Rewriting Phase

The rewriting phase is the final phase of FSYN. In this
phase, the proven rules are applied to the netlist. The rewritten
netlist is then optimized again using Yosys to clean up rem-
nants of the rewriting phase. For example, FSYN’s rewriting
can leave chains of assignments (a = b = c) which can be
removed by Yosys. Finally, an equivalence check between the
cleaned rewritten netlist and the original synthesized netlist is
performed.

IV. EXPERIMENTS

In this section, we present two experiments. First, we
report results in combination with our novel rule filtering
(Section IV-A). Second, we present first results with the EC
backend (Section IV-B).

A. Rule Filtering

In this section, we evaluate the new rule filtering phase of
FSYN in the PC flow. All experiments were conducted using
an AMD EPYC 7713 64-Core Processor with 128 threads and
256 GB RAM.

Table III shows experimental results for runs of FSYN
with and without the new rule filtering. The first row shows
the benchmark on which we applied FSYN. The first two
columns are the arbiter and mem_ctrl benchmarks from the
EPFL benchmark suite [24]. We randomly generated external
constraints for them. The last column is an unsigned 32× 32
bit multiplier (stages: simple partial product generator, array,
Carry look-ahead adder) generated with GenMul4 [25]. As
external constraint for the multiplier we set the lower 4 bit
of the first input to 0.

The second row shows the number of all rules that have to
be checked without the rule filtering. The third row shows the
time it takes to check all rules without the rule filtering.

Next, in the fourth row, the number of rules which remained
after the filtering (with 40 generated stimuli) is shown. The
time the rule filtering took is shown in the fifth row and the
runtime to check the remaining rules is shown in the sixth
row. Finally, the combined runtime of the rule filtering and
the checking of remaining rules is reported in the last row.

4http://www.sca-verification.org/genmul

http://www.sca-verification.org/genmul


TABLE IV: EC Analysis for 32× 32 Multiplier

Gate Result PC Runtime [s] EC Runtime [s]

N13330 abort >10,800 8
N13063 holds 871 7
N13125 holds 1,805 7
N13228 abort >10,800 7

Enabling rule filtering significantly reduces the number of
rules that need to be formally proven, resulting in moderate
(multiplier) or major (arbiter, mem_ctrl) runtime improve-
ments.

B. FSYN with EC

In this section, we describe first experiments when utilizing
the EC backend of FSYN. As a benchmark we consider the
same 32×32 bit multiplier as in the previous section with the
identical external constraints (set lower 4 bit of the first input
to 0). We analyzed the runtimes of the different PC problems in
a configuration where we considered single PC problems and
configured the time-out for solving a PC instance to 10 minutes
(i.e. after that time the respective rule will be considered as
failing, so we assume no optimization of the gate in terms of
the rule can be performed). This timeout occurred for 12 out of
27,216 PC instances. Table IV shows runtime data for some of
these instances. The first column gives the line number of the
gate inside the netlist. The second column reports the checking
results for the rule. The third column shows the runtime of
the PC problem while the last column lists the runtime when
employing EC. As can be seen, there are PC instances which
still can be solved by increasing the time-out. However, there
is even an instance which did not finish in more than 3 hours.
Please note that all of these problems can be solved using EC
within 7− 8 seconds. Here, a deeper analysis is necessary.

V. CONCLUSIONS

In this paper, we proposed an optimization approach to
reduce the number of gates under given external constraints
(which can be viewed as external satisfiability don’t cares)
using formal verification methods. We have formalized the
optimization problem in terms of PC and EC to check rules per
gate. Depending on the validity of a gate’s rule, it may either
be removed as redundant, with its output connected directly
to an input or a constant, or it may remain unchanged. Our
implementation FSYN provides both PC and EC backends and
leverages open-source tools for all steps, i.e. from synthesis to
formal verification. Furthermore, we have demonstrated meth-
ods to accelerate the optimization process. This is achieved
through parallelization of theoretically independent formal in-
stances and a random-simulation based approach that analyzes
waveforms to disprove rules.

Our experiments have shown that additional research is
necessary for formal gate-level optimization. This involves
conducting a more comprehensive analysis of the relationship
between task size and rule filtering. Furthermore, different EC

strategies as well as the interplay of EC and PC needs to be in-
vestigated. Finally, also other cost metrics and the potential in
HW/SW optimization [26] is an interesting research direction.

ACKNOWLEDGMENTS

This work has partially been supported by the Ger-
man Research Foundation (DFG) within the project VerA
(GR 3104/6-1) and by the LIT Secure and Correct Systems
Lab funded by the State of Upper Austria.

REFERENCES
[1] R. K. Brayton, G. D. Hachtel, C. McMullen, and A. Sangiovanni-Vincentelli,

Logic minimization algorithms for VLSI synthesis. Kluwer Academic
Publishers, 1984.

[2] D. Brand, “Redundancy and don’t cares in logic synthesis,” TC, vol. C-32,
no. 10, pp. 947–952, 1983.

[3] H. Savoj and R. Brayton, “The use of observability and external don’t cares
for the simplification of multi-level networks,” in DAC, 1990, pp. 297–301.

[4] S. Lee, H. Riener, and G. D. Micheli, “External don’t cares in logic synthesis,”
in Int’l Workshop on Boolean Problems, 2022.

[5] A. Mishchenko and R. Brayton, “Simplification of non-deterministic multi-
valued networks,” in ICCAD, 2002, p. 557–562.

[6] N. Bleier, J. Sartori, and R. Kumar, “Property-driven automatic generation of
reduced-isa hardware,” in DAC, 2021, pp. 349–354.

[7] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu, “Symbolic model checking
without BDDs,” in TACAS, 1999, pp. 193–207.

[8] M. D. Nguyen, M. Thalmaier, M. Wedler, J. Bormann, D. Stoffel, and
W. Kunz, “Unbounded protocol compliance verification using interval prop-
erty checking with invariants,” TCAD, vol. 27, no. 11, pp. 2068–2082, 2008.

[9] M. Sheeran, S. Singh, and G. Stålmarck, “Checking safety properties using
induction and a SAT-solver,” in FMCAD, 2000, pp. 108–125.

[10] L. Klemmer, D. Bonora, and D. Große, “Large-scale gatelevel optimization
leveraging property checking,” in DVCon Europe, 2023.

[11] J. P. Marques-Silva and T. Glass, “Combinational equivalence checking using
boolean satisfiability and recursive learning,” in DATE, 1999, pp. 145–149.

[12] P. Molitor and J. Mohnke, Equivalence checking of digital circuits: funda-
mentals, principles, methods. Springer Science & Business Media, 2007.

[13] C. Wolf, “Yosys open synthesis suite,” https://yosyshq.net/yosys/.
[14] R. K. Brayton and A. Mishchenko, “ABC: an academic industrial-strength

verification tool,” in CAV, 2010, pp. 24–40.
[15] L. Klemmer and D. Große, “WAL: a novel waveform analysis language for

advanced design understanding and debugging,” in ASP-DAC, 2022, pp. 358–
364.

[16] L. De Moura and N. Bjørner, “Z3: An efficient SMT solver,” in TACAS, 2008,
pp. 337–340, available at https://github.com/Z3Prover/z3.

[17] J.-H. R. Jiang and S. Devadas, “Chapter 6 - logic synthesis in a nutshell,” in
Electronic Design Automation, L.-T. Wang, Y.-W. Chang, and K.-T. T. Cheng,
Eds. Boston: Morgan Kaufmann, 2009, pp. 299–404.

[18] K. Bartlett, R. Brayton, G. Hachtel, R. Jacoby, C. Morrison, R. Rudell,
A. Sangiovanni-Vincentelli, and A. Wang, “Multi-level logic minimization
using implicit don’t cares,” TCAD, vol. 7, no. 6, pp. 723–740, 1988.

[19] S. Muroga, Y. Kambayashi, H. Lai, and J. Culliney, “The transduction
method-design of logic networks based on permissible functions,” TC,
vol. 38, no. 10, pp. 1404–1424, 1989.

[20] A. Mishchenko and R. Brayton, “SAT-based complete don’t-care computa-
tion for network optimization,” in DATE, 2005, pp. 412–417.

[21] S. Chakraborty, K. S. Meel, and M. Y. Vardi, “A scalable and nearly uniform
generator of SAT witnesses,” in CAV, 2013, pp. 608–623.

[22] L. Klemmer and D. Große, “Waveform-based performance analysis of RISC-
V processors: late breaking results,” in DAC, 2022, pp. 1404–1405.

[23] F. Skarman, L. Klemmer, O. Gustafsson, and D. Große, “Enhancing compiler-
driven HDL design with automatic waveform analysis,” in FDL, 2023, pp.
1–8.

[24] L. Amarú, P.-E. Gaillardon, and G. De Micheli, “The EPFL combinational
benchmark suite,” in IWLS, 2015.

[25] A. Mahzoon, D. Große, and R. Drechsler, “GenMul: Generating architec-
turally complex multipliers to challenge formal verification tools,” in Recent
Findings in Boolean Techniques, R. Drechsler and D. Große, Eds. Springer,
2021, pp. 177–191.

[26] S. G. Sørensen, C. Bartsch, D. Stoffel, and W. Kunz, “Generation of formal
CPU profiles for embedded systems,” in VLSI-SoC, 2022, pp. 1–6.

https://yosyshq.net/yosys/
https://github.com/Z3Prover/z3

	Introduction
	Circuit Optimization under External Constraints
	Logic Synthesis, Don't Cares and External Constraints
	Formalization

	FSYN
	FSYN Flow
	Rule Filtering Phase
	Rule Checking Phase
	Rewriting Phase

	Experiments
	Rule Filtering
	FSYN with EC

	Conclusions
	References-0.1cm

