
A RISC-V "V" VP: Unlocking Vector Processing
for Evaluation at the System Level

Manfred Schlägl Moritz Stockinger Daniel Große
Institute for Complex Systems, Johannes Kepler University Linz, Austria

manfred.schlaegl@jku.at moritz.stockinger@outlook.com daniel.grosse@jku.at

Abstract—In this paper we introduce the first free- and open-
source SystemC TLM based RISC-V Virtual Prototype (VP) with
support for the RISC-V "V" Vector Extension (RVV) Version 1.0.

After an introduction to RVV, we present the integration of
RVV and its 600+ instructions into an existing VP leveraging
code generation for over 20k Lines of Code (LoC). Moreover,
we describe the verification of the resulting VP using the
Instruction Sequence Generator (ISG) FORCE-RISCV and the
Instruction Set Simulator (ISS) riscvOVPsim.

Our case studies demonstrate the benefits of the RVV en-
hanced VP for system-level evaluation. We present non-vectorized
and vectorized variants of two common algorithms which are
executed on the VP with varying parameters. We show that
by comparing the number of simulated execution cycles, we
can derive valuable assessments for the design of RVV micro-
architectures.

I. INTRODUCTION

The open-standard Instruction Set Architecture (ISA)
RISC-V [1], [2] has the potential to democratize processor
design, making it a disruptive force in the semiconductor
industry. A key feature of RISC-V is its modularity which
allows for a wide range of customization and specialization
as well as to balance performance and power efficiency.
Modularity is achieved by a variety of standard extensions
that can be added to the base ISAs (RV32I for 32-bit Integer
and RV64I for 64-bit Integer) to enhance its capabilities for
specific tasks.

To significantly improve the performance for tasks
such as image and video processing, audio process-
ing, scientific simulations, and nowadays many AI algo-
rithms, their Data-Level Parallelism (DLP) is exploited and
Single Instruction, Multiple Data (SIMD) instruction set ex-
tensions have been developed. SIMD achieves this by per-
forming the same operation on multiple data elements, which
is called a Vector, in parallel. The concept of SIMD was
initially explored in the 1970s [3], gaining popularity in super-
computers developed by Cray, and these early endeavors are
now recognized as vector architectures [4]. For approximately
25 years now, processors have included SIMD instructions
categorized as multimedia extensions [5], which we refer
to here as classical SIMD. Most of these classical SIMD
extensions (e.g. Intel MMX, SSE, AVX, or ARM Neon) are
designed to operate with fixed-size registers (vector length) as
the underlying Hardware (HW) implementation is simplified.
However, there are two main challenges of classical SIMD: (i)
determining the ideal vector length is hard as it depends on
the specific workload being targeted, and (ii) changing of the
vector lengths means that the ISA extension has to be modified
and thereby rendering previously compiled code obsolete.

We use a simple example to demonstrate the conceptual
difference between classical SIMD (fixed vector length) and

Fig. 1: Classic SIMD (ARM Neon) vs. Vector Architecture (RISC-V RVV)

vector architectures (variable-length vectors). Fig. 1 shows the
processing of large vectors in stripmining loops. In classical
SIMD, the length of a vector is defined statically by the
used vector register defined in the ISA. For example, the
ARM Advanced SIMD (Neon) q registers can hold up to 16
elements with 8 bit. So in each iteration a fixed number of
elements is processed. In contrast, in vector architectures the
Software (SW) requests the needed vector length (reqlen)
and the HW tells the available length (vl). In the RISC-V
"V" Vector Extension (RVV) this is done with the vsetvli
instruction. So in each iteration automatically the maximum
available vector length (vl) is used. In summary, the advantage
of vector architectures is that the capabilities of different HW
can be fully exploited by the same SW binary.

Virtual Prototypes (VPs) are industry-proven and allow to
parallelize HW and SW development as well as enable early
architectural exploration. In essence, a VP is a high-level,
executable model of the entire HW platform which runs
unmodified production SW [6], [7] targeting the system level.
In the current landscape, SystemC, a standardized class library
for C++ (IEEE 1666, [8]), is the primary choice for developing
VPs [9]. Based on the abstraction of communication details by
leveraging Transaction Level Modeling (TLM) [10] orders of
magnitude faster simulation in comparison to Register Transfer
Level (RTL) is achieved [6].
Contribution: We consider the open-source SystemC TLM
based RISC-V VP introduced in [11], more specifically the
derived GUI-enabled GUI-VP presented in [12]. The VP al-
ready comes with Instruction Set Simulators (ISSs) for RV32
and RV64 and supports the RISC-V IMAFDC extensions.
However, it lacks support for RVV, which was ratified 2021
in Version 1.0 [13]. In this paper, we extend the GUI-VP
with RVV Version 1.0 resulting in RISC-V VP++ which
is available on GitHub1. The integration of RVV is a con-
sequence of careful analysis of the RVV specification and
the operation of the GUI-VP, which has to be understood to
provide (i) efficient support for RVV in the RV32 and RV64
ISSs of the VP and, (ii) a solid functional verification of RVV

1https://github.com/ics-jku/riscv-vp-plusplus

https://github.com/ics-jku/riscv-vp-plusplus


in the VP. Leveraging code generation for over 20k of the total
23k+ Lines of Code (LoC) required to integrate the 600+
RVV instructions, the potential for implementation errors and
maintenance overhead is greatly reduced.

The added benefit of the novel RVV enhanced VP for
system-level evaluation is demonstrated in our case studies. We
show that by integrating a simple, parametrizable instruction-
accurate execution cycle model, and comparing the execution
of non-vectorized with vectorized implementations, valuable
assessments can be derived for the design of RVV micro-
architectures.
Related Work: There are a number of open-source RISC-V
simulators, such as Spike [14], QEMU [15], RV8 [16] or
DBT-RISE [17]. However, RV8 and DBT-RISE do not provide
support for RVV. Spike and QEMU are supporting RVV
in Version 1.0, but their ISSs and platform parts are not
implemented in SystemC, hence accuracy and granularity
cannot be modeled following the SystemC standard.

Commercial VPs, like Synopsys Virtualizer or Mentor Vista,
might also support RVV as well as fast and accurate timing
models but their implementation is proprietary.

To the best of our knowledge, the VP presented in this paper
is the only open-source, SystemC based VP that supports RVV
and an instruction-accurate execution cycle model.

II. THE RISC-V "V" Vector Extension (RVV)
The ratified Version 1.0 of RVV is specified in [13]. Essen-

tial parts added to the RISC-V programming model by RVV
are: (i) 32 Vector registers, (ii) 7 Control and Status Registers
(CSRs), and (iii) 624 instructions.

The 32 vector registers are used by RVV instructions
for parallel computation. All registers can hold vectors with
configurable element sizes and overall lengths up to VLEN bits.
The concrete value of VLEN is not specified in the ISA, but can
be chosen by the designer in powers of 2. For example, vector
registers with a typical length of VLEN = 128 bit can hold
vectors with up to 16 elements of 8 bit size, up to 8 elements
of 16 bit size, or up to 4 elements of 32 bit size. The element
size can be selected with special instruction (e.g. vsetvli).

A particularly noteworthy feature of RVV is register group-
ing, which allows 2, 4 or 8 vector registers to be combined to
increase parallelism. For example, if a grouping of 8 is used,
the 32 registers (v0-v31) with VLEN = 128 bits are combined
to 4 registers (v0,v8,v16,v24) with VLEN ∗ 8 = 1024 bits.

RVV adds 624 instructions, which can be categorized in
configuration-, load/store- and processing operations.

Configuration instructions, such as vsetvli define the pro-
cessing of follow-up instructions. They configure the element
and vector lengths (vtype and vl CSRs).

With load/store instructions data is moved between memory
and vector registers. Especially noteworthy is the support for
strided and indexed load/stores that provide efficient handling
of data structures in memory (e.g. loading matrix columns).

RVV offers a comprehensive set of instructions for integer,
fixed point and floating point vector processing. Moreover, it
comes with instruction for vector reductions (e.g. sum, min,
max, . . . ) and permutations (e.g. move, slide, . . . ).

For operations that provide results wider than their operands
there exist widening instruction variants which save the results

in vectors with double the element length (e.g. multiplication
of 16 bit elements to 32 bit elements). Correspondingly, there
are narrowing variants for opposite cases.

Finally, masked variants exist for many RVV instructions.
These variants additionally consider the vector register v0,
which is interpreted as a bit mask. This mask can be used
to specify the element indices on which the operation is to
have an effect. With this it is for example possible to add
only some elements of two vectors.

III. INTEGRATING RVV IN GUI-VP
In this section, we present the integration of RVV in the

ISSs of GUI-VP. We first give an overview of the essential
components for processing instructions in the ISSs. After that,
we discuss each newly introduced component in detail.

Fig. 2 presents the concept of the RVV integration in the
ISS instruction processing. Already existing components for
processing IMAFDC instructions are shown in gray. Compo-
nents added for RVV in this integration process are highlighted
in blue and purple. The components marked as blue are
automatically generated, each for the RV32 and the RV64
ISS. The components marked as purple are implemented
generically for both ISSs manually.

On the left of Fig. 2, a new instruction is entering the
Instruction Decoding (InsDec) stage. InsDec extracts the var-
ious Field Values (e.g. register addresses, immediate val-
ues, shift amounts, . . . ) of the instruction according to the
Instruction Encoding. In addition, InsDec determines a unique
Opcode from the Opcode Table that assigns the instruc-
tion to a specific operation to be executed. Finally, the
Opcode and Field Values are passed on to the next stage, the
Operation Selection (OpSel).

In the middle of Fig. 2, the OpSel stage can be seen. In this
stage, the operation to be executed is selected on the basis
of the Opcode. The Opcode further determines the required
Field Values for an operation. The selected operation with its
parameters is then passed on to Execution (Exec).

On the right of Fig. 2, we see the Exec stage with all
additional parts necessary for the execution (Registers, CSRs).
Exec receives the parametrized operation from OpSel and
performs all the steps necessary to execute the operation,
e.g. permission checks, register and memory read/writes, com-
putations, compares, branches, jumps, . . .

With this, we have introduced the essential components
of the ISS instruction processing. Next, in Section III-A,
Section III-B and Section III-C, we present the main stages
and the newly introduced blue and purple RVV components
of Fig. 2 in more detail. Finally, in Section III-D, we focus on
the automated code generation used for the blue components.

A. Instruction Decoding (Fig. 2, left)
In this stage, we introduce the two new components: (i)

RVV Encoding which extends the Instruction Encoding and
(ii) RVV Opcodes that extend the Opcode Table.

Instruction Encoding is realized with C++ functions that
extract all Field Values defined in the instructions formats of
RISC-V. To support RVV we generate new functions to extract
9 new Field Values introduced by RVV, e.g. the masking bit
vm, or zimm[10:0] for vsetvli.



Fig. 2: Conceptual Overview: RVV Integration in the GUI-VP ISSs

Regarding Instruction Encoding and Opcode Table, there is
the decoding of instructions and their mapping to an Opcode.
Decoding and mapping is implemented as a decision tree (C++
multi-nested switch case) in which individual bits and bit fields
of the instruction are examined successively until an operation
is identified. The decision tree finally provides a corresponding
Opcode from the Opcode Table.

To add support for RVV, we extend (i) the Opcode Table
with the RVV Opcodes and (ii) the decision tree for the new
instructions (RVV Encoding) and Opcodes (RVV Opcodes).

B. Operation Selection (Fig. 2, middle)

As described before, this stage gets the Opcode and all
Field Values. The selection is realised as a case distinction on
the Opcode (C++ switch case). For each case, the necessary
Field Values are extracted. The execution of the operation is
then performed in the Exec stage.

To support RVV, the case distinction is extended with the
RVV Opcodes. Also, for RVV, the extraction of Field Values is
done in the Exec stage. The advantage of this is that automated
code generation can also be applied to this stage.

C. Execution (Fig. 2, right)

The Exec stage, is where the actual execution of instruction
takes place. It receives the parameterized operation from the
OpSel step and performs all the steps necessary to execute the
operation. The Exec stage also implements all registers and
CSRs the instructions interact with.

To integrate RVV we add 7 new RVV CSRs, 32
RVV Registers and 624 instructions, as presented in Section II.

The RVV CSRs are added to the existing list of CSRs of
the ISS. All CSR instructions can automatically access them.
RVV also adds bits to the existing CSRs misa and mstatus. A
constant set bit is added to misa to indicate support for RVV.
In mstatus, the enable and dirty bits for RVV are added.

The RVV Registers are accessible from RVV instructions
only and are efficiently implemented as C++ arrays of VLEN
bits. VLEN is configurable and by default set to 512 bits.

The major part of the integration is the implementation of
the 624 RVV instructions. Many of the instructions are variants
of the same operations but with slightly different behavior
(e.g. widening). This high level of regularity is exploited to
produce an efficient implementation with high reuse.

The examples in Listing 1 demonstrate the basic idea. The
listing shows the pseudocode implementation of three arith-
metic RVV instructions. All implementations follow the same

1 vadd.vi:
2 vLoop(vAdd(), elem_sel_t::xxxsss, param_sel_t::vi)
3 vsub.vx:
4 vLoop(vSub(), elem_sel_t::xxxsss, param_sel_t::vx)
5 vwaddu.wv:
6 vLoop(vAdd(), elem_sel_t::wwxuuu, param_sel_t::vv)

Listing 1: Implementation Examples of Arithmetic Instructions (Pseudocode)

basic scheme: They use a generic vLoop function that imple-
ments the iteration over the vl elements. The parameters of
vLoop are (i) the actual operation to execute, (ii) elem_sel_t,
and (iii) param_sel_t. The elem_sel_t parameter indicates
the widening (x/w) and signedness (u/s) of the three involved
vectors. The param_sel_t parameter defines whether one
source operand is a vector, immediate or scalar.
vadd.vi, in Line 1 of Listing 1, adds an immediate to a

vector. It uses vLoop to execute vAdd on non-widened vectors
(xxx), with signed values (sss) and an immediate as operand
(vi). vsub.vx, in Line 3, subtracts a scalar from a vector. It
uses vLoop to execute vSub on non-widened vectors (xxx),
with signed values (sss) and a scalar as operand (vx). Finally,
vwaddu.wv, in Line 5, performs an unsigned add of a vector
to a widened vector. It uses vLoop to execute vAdd on two
widened and one non-widened vector (wwx), with unsigned
values (uuu) and a vector as operand (wv).

These simple examples show that although the instructions
are different in detail, they can be realised using the same basic
scheme. The same also applies to other RVV instructions.

However, there are also many aspects of RVV that are
significantly more complex. Our implementation includes mul-
tiple variants of vLoop and many more operations like vAdd.
In total, the manual RVV implementation for the Exec stage
contains over 2, 500 LoC.

D. Automated Code Generation (Fig. 2, blue)

In this section, we present the automated code generator
which is used to generate the blue components shown in Fig. 2.
Code generation includes, RVV Encoding and RVV Opcodes
of the InsDec stage (Section III-A), and RVV in the OpSel
stage (Section III-B).

Manually creating code for RVV Encoding, RVV Opcodes
and operation selection for 624 RVV instructions would be
very tedious and error-prone. This is compounded by the fact
that the code would have to be written twice, equivalently
each for the RV32 and RV64 ISS. Since the generated com-
ponents also contain many repetitive code patterns, the use of
automated code generation pays off several times over.



1 Command("OPIVV", [
2 "f6", "f6", "f6", "f6", "f6", "f6", "vm", "vs2",
3 "vs2", "vs2", "vs2", "vs2", "vs1", "vs1", "vs1", "vs1",
4 "vs1", 0, 0, 0, "vd", "vd", "vd", "vd",
5 "vd", 1, 0, 1, 0, 1, 1, 1],
6 "[6:0],[14:12],[31:26]"),

Listing 2: Command Table Entry for Vector Instruction Format OPIVV

1 PreLimOp(
2 "vadd.vv", "OPIVV",
3 "vLoop(vAdd(), elem_sel_t::xxxsss, param_sel_t::vv);")

Listing 3: Operation Table Entry for vadd.vv

The code generator is implemented in Python and takes two
inputs: (i) a Command Table, that describes the Vector Instruc-
tion Formats as defined in RVV spec Section 5 [13], and (ii)
a Operation Table, that describes the 624 RVV instructions,
where each entry refers to an entry in the Command Table.

An example of an entry in Command Table is shown in List-
ing 2. The entry describes the OPIVV instruction format, that
is used for example for vadd.vv. The first subentry, OPIVV,
defines the instruction format name. The second subentry is
a list of 32 elements, which describe the meaning of the
individual bits of the instruction format. f6 describes the 6 bit
wide function field, vm the mask bit, vs2 the second vector
source register, etc. Constant values like 0 and 1 describe fixed
bit values to identify the instruction format. The third subentry
describes, which bit ranges of a concrete instruction are used
to determine the actual operation (Opcode). In this example,
it contains the constant bit values and the f6 field.

An example of an entry in Operation Table that describes
the vadd.vv instruction is shown in Listing 3. The first
subentry denotes the instruction name. The second subentry,
OPIVV, is the reference to the instruction format entry in the
Command Table (Listing 2). The third subentry already con-
tains a fragment of the code to be generated. More details on
this we already introduced in Section III-C above (Listing 1).

The code generator iterates over all 624 instructions de-
scribed in the Operation Table. For each entry the reference to
Command Table is resolved. Having now all needed informa-
tion for each instruction, the generator creates corresponding
code fragments for all blue components shown in Fig. 2. This
includes RVV Encoding and RVV Opcodes in the InsDec stage,
and the RVV handling in the OpSel stage.

For the RV32 and RV64 ISS, over 10, 400 lines of code are
generated each. This totals to over 20, 800 lines of generated
code. Compared to the about 2, 500 lines of hand-written code
for the Exec stage, this is a significant saving in terms of effort.

IV. VERIFYING RVV
This section presents the verification of the RVV enabled

RISC-V VP++ presented in Section III. We first give a concep-
tual overview of the verification chain. After that, we discuss
each step of the chain in detail. Finally, we discuss the achived
verification coverage.

The conceptual overview of the verification
chain is shown in Fig. 3, with RISC-V VP++ as
Simulator under Test (SuT) highlighted in purple. We
use an Instruction Sequence Generator (ISG) to generate
RVV test cases as executable (ELF) files. Each test case
is fed into the Reference Simulator, the SuT and in the

Coverage Analysis simulator. The Reference Simulator and
SuT create traces of memory and register accesses. The
Coverage Analysis simulator computes and accumulates the
achieved coverage.

The generated traces are then stripped from irrelevant infor-
mation and compared in the Post-processing & Comparison
step. The final results of the comparisons and the coverage
achieved are then compiled in a Verification Report.

We will now discuss each step of the chain in detail.

A. The Instruction Sequence Generator: FORCE-RISCV

As ISG we use FORCE-RISCV provided by the OpenHW
Group [18]. At time of writing, it was the only available free-
and open-source ISG with support for RVV Version 1.0.

FORCE-RISCV provides a comprehensive and highly con-
figurable framework for RISC-V test generation. It employs
randomization to autonomously select instructions, registers,
addresses, and data for generating tests. The provided API
grant significant control over the generation process. It can be
used in test templates to specify the instructions to be tested
and to define associated constraints.

For our verification, we use the pre-defined RVV test
template contained in FORCE-RISCV . However, two modifi-
cations are necessary: First, the RVV test template contains the
vector Atomic Memory Operations (AMO) instructions, which
are not part of RVV Version 1.0. The RVV test template is
modified to exclude these instructions.

Second, the test case generator assumes a 48 bit address
space. Since the address range of RV32 is limited to 32 bits,
the generator is modified accordingly.

The test set that FORCE-RISCV generates contains 6, 300
test cases with over 250, 000 vector instruction invocations.

B. Reference Simulator: Handcar

As a Reference Simulator, we use the tracing simulator
Handcar that comes with FORCE-RISCV .

Handcar is based on the widespread Spike [14] simulator
and has been extended to generate trace output. For each
instruction executed, all memory and register accesses (reads
and writes) are logged as a separate line of the trace.

FORCE-RISCV is configured to automatically call Handcar
for each test case during generation. As consequence, the
creation of the test set, presented in Section IV-A, provides
Reference Traces for all 6, 300 test cases.

C. Simulator under Test: RISC-V VP++

Our RVV enabled RISC-V VP++ forms the SuT. How-
ever, to allow a later comparison, RISC-V VP++ is extended
to provide trace output similar to the Reference Simulator
Handcar. For each instruction executed, all memory and
register accesses are logged as a separate line of the trace.

A top-level script automates the execution of the 6, 300 test
cases on the SuT after generation. The resulting intermediate
outputs are thus 6, 300 Ref- and SuT Traces.

D. Post-processing & Comparison

The Post-processing & Comparison step is implemented in
Python and takes the 6, 300 Ref- and SuT Traces as input.



Fig. 3: Conceptual Overview: RVV Verification Chain

The traces produced by Handcar cannot be used for com-
parison without Post-processing: First, Handcar traces contain
superfluous register reads that do not correspond to the func-
tion of actual instruction. The reason is most likely a bug
in Handcar that inadvertently outputs some implementation
details of the underlying Spike simulator. Since reads in our
case do not affect the HW execution state, they are completely
removed by the Post-processing.

Second, in Handcar traces, memory and register accesses
to the same destination can occur multiple times with different
values and in different order. This holds also true for the
individual elements of the RVV registers. Also here, we
suspect that Handcar outputs too much detail of the underlying
Spike simulator in the trace. Since only the last write to
a destination determines the value of the destination after
the instruction, the Post-processing removes all writes to a
particular destination except the last one.

After Post-processing the 6, 300 Ref- and SuT Traces are
compared. All deviations are included in the Verification Re-
port in a human readable form (html) to facilitate debugging.

E. Coverage Analysis

Finally, to evaluate our verification, we determine the test
coverage. For this, we use the free, but closed-source RISC-V
ISS riscvOVPsim from Imperas [19].

riscvOVPsim supports RISC-V IMAFDCSUE and RVV, and
computes comprehensive functional coverage metrics.

Each of our 6, 300 test cases is fed into riscvOVPsim by
the top-level automation script. The simulator determines the
coverage of each test case and accumulates the results. The
overall result is then included in the Verification Report.

In total, we get 26, 936 out of 33, 076 basic coverage
points for RVV, which corresponds to a coverage of 81.44%.
Although this value is already promising, there is still potential
for improvement. However, they are left for future work and
could for example include: (i) increasing the number of gener-
ated test cases, (ii) defining more sophisticated FORCE-RISCV
test templates for RVV, (iii) integrating fuzzing techniques
in FORCE-RISCV , or (iv) investigating the application of
metamorphic testing methods [20].

V. CASE STUDIES

In this section, we demonstrate the benefits of the RVV
enhanced RISC-V VP++ for system-level evaluation. First,
we add a simple, parametrizable execution cycle model for
RVV in the VP (Section V-A). We then vary two parameters
of this model corresponding to different micro-architectural
implementations of RVV. For each parameter combination, we

run two common algorithms in non-vectorized and vectorized
variants (Section V-B and Section V-C). Finally, we show that
by comparing the number of simulated execution cycles, we
can derive valuable assessments for the design of RVV micro-
architectures (Section V-D).

A. RVV Execution Cycle Model

The GUI-VP from [12] already provides a simple instruction
accurate timing model that just assigns each instruction a fixed
number of execution cycles. In this work, we extend this model
since the number of cycles per RVV instruction is not always
fixed. In fact, the number of execution cycles depends on the
RVV register length VLEN and the number of lanes for parallel
processing and hence both become parameters.
VLEN, as already described, is the length of the 32 RVV

registers in number of bits. The number of Lanes, models the
number of hidden functional elements that can be used for
parallel operations by the HW. Each Lane can process one
bit. For example, if we add two 32 bit wide vector registers,
RVV with 16 Lanes will take twice as many execution cycles
as RVV with 32 Lanes.

B. Algorithm 1: PNG Average

The first algorithm considered in our case study is one
of five filter types used in the decompression of the com-
mon image format Portable Network Graphic (PNG), namely
PNG Average [21]. PNG Average is applied to pixel rows of
an image. For each pixel in a row, the algorithm calculates the
mean of the left (previous pixel) and upper neighbor (pixel
in previous row) and subtracts this mean from the current
pixel. The motivation behind this is to reduce the actual
values of pixels by estimated values and thus to improve the
compression rate.

The non-vectorized and vectorized implementation variants
are adaptations from RVVRADAR. RVVRADAR is a open-
source framework available on GitHub to help programmers
in vectorizing algorithms for RVV and was introduced in [22].
It already contains several algorithms and implementations
for RISC-V and RVV. However, the vectorized variant of
PNG Average provided by RVVRADAR contains an additional
optimization compared to the non-vectorized variant, which
eliminates an additional read in the processing loop. Since this
would distort our experimental results in favor of the vector-
ized variant, the optimization is removed for our experiments.

C. Algorithm 2: MAC_32_16_16

The second algorithm considered in our case study is
a Multiply-Accumulate (MAC) operation. MAC operations



Fig. 4: Acceleration of vectorized compared to non-vectorized Implementations under varying RVV Execution Cycle Model Parameters

combine multiplication and addition and are often found in
signal processing algorithms.

The concrete variant MAC_32_16_16 considered in our
experiments multiplies two vectors with 16 bit elements and
adds the result in-place to another vector with 32 bit elements.

Similar to PNG Average presented in Section V-B, the
non-vectorized and vectorized implementation variants for
MAC_32_16_16 are adaptations from RVVRADAR.

D. Results
The results of our experiments are summarized in Fig. 4.

The X-axis shows the number of Lanes the RVV is configured
with. The Y-axis shows the acceleration factor, which is the
ratio of the execution cycles consumed by the non-vectorized
to the vectorized variants. The exact values of the acceler-
ation factor can be found at the data points of the curves.
The four curves show the two algorithms PNG Average and
MAC_32_16_16, and the two RVV configurations for VLEN.

Please note that for experiments in which the number
of Lanes is greater than VLEN, register grouping has to be
considered. Grouped vectors can contain up to VLEN× 8 bits.
Consequently, we also use up to VLEN×8 Lanes which results
in 1024 for VLEN = 128 and 4096 for VLEN = 512.

For PNG Average we see that the maximum acceleration
of 3.996 is reached with 32 Lanes. Further acceleration with
a larger VLEN or more Lanes is not possible. The explanation
for this behavior is that in PNG Average parallel processing
can only be applied to the color channels within a pixel.
This is because the result of one pixel is dependent on the
result of the previous pixel. For four channel RGBW color
the paralellization is therefore limited to a factor of four.

For MAC_32_16_16, we see a maximum acceleration of
3.566 with VLEN 512 and 2048 Lanes. The acceleration does
not increase linearly with VLEN or the number of Lanes. This
can be explained by the fact that memory accesses dominate
over computations in MAC_32_16_16 and that memory ac-
cesses cannot be arbitrarily parallelized. For example, in our
model, memory accesses are limited to 64 bits. Therefore, the
total cost in execution cycles of loading more than 64 bits with
a single instruction (vectorized) or with multiple instructions
(non-vectorized) is the same.

It is evident that RVV yields a substantial speedup. For RVV
micro-architectures, we can state (i) that larger registers (VLEN)
or more computational units (Lanes) do not automatically
lead to a linear increase in performance, and (ii) that special

attention should be paid to the memory interface. Overall,
both case studies clearly demonstrate the benefits of the RVV
enabled RISC-V VP++ for system-level evaluation.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we presented RISC-V VP++, the first free-
and open-source SystemC TLM based VP with support for
RVV. We described how RVV, with its 624 instructions was
integrated into an existing VP. We also presented our verifi-
cation chain for the enhanced VP and achieved a functional
coverage of 81.44% according to riscvOVPsim. Finally, in
our case studies, we demonstrated that (i) RVV can be used
to significantly speed up parallizable algorithms and (ii) that
our RVV enhanced VP can provide valuable assessments for
evaluations at the system level.

ACKNOWLEDGMENTS
This work has partially been supported by the LIT Secure and Correct Systems Lab

funded by the State of Upper Austria.

REFERENCES
[1] A. Waterman and K. Asanović, The RISC-V Instruction Set Manual; Volume I: Unpriv-

ileged ISA, SiFive Inc. and CS Division, EECS Department, University of California,
Berkeley, 2019.

[2] ——, The RISC-V Instruction Set Manual; Volume II: Privileged Architecture, SiFive Inc.
and CS Division, EECS Department, University of California, Berkeley, 2019.

[3] M. Flynn, “Very high-speed computing systems,” IEEE, vol. 54, no. 12, pp. 1901–1909,
1966.

[4] R. Espasa, M. Valero, and J. E. Smith, “Vector architectures: Past, present and future,” in
ICS, 1998, p. 425–432.

[5] R. Lee, “Multimedia extensions for general-purpose processors,” in SiPS, 1997, pp. 9–23.
[6] T. De Schutter, Better Software. Faster!: Best Practices in Virtual Prototyping. Synopsys

Press, March 2014.
[7] R. Leupers, G. Martin, R. Plyaskin, A. Herkersdorf, F. Schirrmeister, T. Kogel, and

M. Vaupel, “Virtual platforms: Breaking new grounds,” in DATE, 2012, pp. 685–690.
[8] “IEEE standard for standard SystemC language reference manual.” [Online]. Available:

https://doi.org/10.1109/ieeestd.2012.6134619
[9] V. Herdt, D. Große, and R. Drechsler, Enhanced Virtual Prototyping: Featuring RISC-V

Case Studies. Springer, 2020.
[10] OSCI TLM-2.0 Language Reference Manual, OSCI, 2009. [Online]. Available:

https://www.accellera.org/images/downloads/standards/systemc/TLM_2_0_LRM.pdf
[11] V. Herdt, D. Große, H. M. Le, and R. Drechsler, “Extensible and configurable RISC-V

based virtual prototype,” in FDL, 2018, pp. 5–16.
[12] M. Schlägl and D. Große, “GUI-VP Kit: A RISC-V VP meets Linux graphics - enabling

interactive graphical application development,” in GLSVLSI, 2023, pp. 599–605.
[13] “RISC-V V vector extension,” https://github.com/riscv/riscv-v-spec, 2022.
[14] “Spike RISC-V ISA simulator,” https://github.com/riscv/riscv-isa-sim.
[15] “QEMU a generic and open source machine emulator and virtualizer,” https://www.qemu.

org.
[16] “RV8,” https://rv8.io.
[17] “DBT-RISE,” https://github.com/Minres/DBT-RISE-Core.
[18] “FORCE-RISCV RISC-V instruction sequence generator (isg),” https://github.com/

openhwgroup/force-riscv.
[19] “riscvOVPsim Imperas RISC-V instruction set simulator (iss),” https://www.imperas.com/

riscvovpsim-free-imperas-risc-v-instruction-set-simulator.
[20] C. Hazott, F. Stögmüller, and D. Große, “Verifying embedded graphics libraries leveraging

virtual prototypes and metamorphic testing,” in ASP-DAC, 2024.
[21] “Portable network graphics (png) specification (second edition),” https://www.w3.org/TR/

PNG.
[22] L. Klemmer, M. Schlägl, and D. Große, “RVVRadar: a framework for supporting the

programmer in vectorization for RISC-V,” in GLSVLSI, 2022, pp. 183–187.

https://doi.org/10.1109/ieeestd.2012.6134619
https://www.accellera.org/images/downloads/standards/systemc/TLM_2_0_LRM.pdf
https://github.com/riscv/riscv-v-spec
https://github.com/riscv/riscv-isa-sim
https://www.qemu.org
https://www.qemu.org
https://rv8.io
https://github.com/Minres/DBT-RISE-Core
https://github.com/openhwgroup/force-riscv
https://github.com/openhwgroup/force-riscv
https://www.imperas.com/riscvovpsim-free-imperas-risc-v-instruction-set-simulator
https://www.imperas.com/riscvovpsim-free-imperas-risc-v-instruction-set-simulator
https://www.w3.org/TR/PNG
https://www.w3.org/TR/PNG

	Introduction
	The RISC-V "V" Vector Extension (RVV)
	Integrating RVV in GUI-VP
	Instruction Decoding (Fig. 2, left)
	Operation Selection (Fig. 2, middle)
	Execution (Fig. 2, right)
	Automated Code Generation (Fig. 2, blue)

	Verifying RVV
	The Instruction Sequence Generator: FORCE-RISCV
	Reference Simulator: Handcar
	Simulator under Test: RISC-V VP++
	Post-processing & Comparison
	Coverage Analysis

	Case Studies
	RVV Execution Cycle Model
	Algorithm 1: PNG Average
	Algorithm 2: MAC_32_16_16
	Results

	Conclusions and Future Work
	References-0.2cm

