
Relation Coverage: A New Paradigm for
Hardware/Software Testing

Christoph Hazott Daniel Große
Institute for Complex Systems, Johannes Kepler University Linz, Austria

christoph.hazott@jku.at daniel.grosse@jku.at

Abstract—While the Hardware (HW) domain and the Soft-
ware (SW) domain use the concept of coverage to measure
the thoroughness of tests, there isn’t an established common
metric that applies to both worlds. In this paper we make two
major contributions: First, leveraging the abstraction of Virtual
Prototypes (VPs), we unify HW/SW coverage by viewing the
HW/SW system as a single model. This enables the measurement
of structural HW/SW metrics like line, function, and branch
coverage via a novel non-intrusive approach, where neither the
VP (representing the HW) nor the SW requires any modification.
Second, based on the unified HW/SW coverage, we introduce
relation coverage. The innovation is that the user can define a
relation between the frequency of executing lines in the SW
and the execution count of corresponding lines of the HW
model. This relation expresses expected behavior to be covered
during testing. As a case study, we consider HW/SW testing of
a Gyroscope sensor controlled by SW running on a RISC-V VP.

I. INTRODUCTION

HW/SW systems are crucial because they form the backbone
of modern computing and technological infrastructure. Designing
HW/SW systems presents significant challenges, especially due to
the non-trivial interaction between HW and SW needed to balance
real-time requirements, power consumption, as well as to ensure
robust performance in a range of applications. An industrial-
proven approach to handle this challenge is the use of Virtual
Prototypes (VPs) in the design process. In essence, a VP is a
high-level, executable model of the entire HW platform, includ-
ing processors, accelerators, sensors, actuators, buses, displays,
etc., capable of running unmodified production SW [1]. VPs are
created in SystemC, a standardized C++ class library (IEEE 1666,
[2]), and they enable to parallelize SW and HW development [3].
VPs achieve significantly faster simulation performance compared
to Register Transfer Level (RTL) through the use of Transaction
Level Modeling (TLM) [4]. The key principle of TLM is to
abstract the detailed implementation of signal-level interactions
and timing specifics within the HW while the SW is run by an
Instruction Set Simulator (ISS) that models the processor.

Clearly, HW/SW testing plays a critical role during system
design because it ensures that the complex and interacting HW
and SW components work correctly and reliably together. To
measure the thoroughness of HW/SW tests, coverage metrics
are employed [5]. However, the coverage metrics are typically
only considered in isolation, i.e. there is no common established
HW/SW metric (see related work below), which overall reduces
the time advantage of VP-based HW/SW co-design.

Contribution: In this paper, we make two major contributions:
The first is to view the VP code (representing the HW) and the SW
(running on the ISS of the VP) as a single model which allows us
to define unified HW/SW coverage metrics. More precisely, this
includes the structural HW/SW metrics: line coverage, function

coverage, and branch coverage. To measure these metrics during
SystemC simulation, we devise a novel non-intrusive approach
leveraging dynamic binary instrumentation such that neither the
SW nor the VP have to be modified by the user. The second con-
tribution builds on top of the proposed unified HW/SW coverage
metrics and is denoted as relation coverage: The idea originates
from the fact that we know the number of executions for a specific
source code line (e.g. in SW) with our metrics, and can relate
this number to a corresponding number at another source code
location, e.g. HW. Very intuitive and valuable relations, motivated
by complex HW/SW interactions, can be defined and checked.

Related Work: Coverage metrics are typically measured in
isolation, some examples include [6]–[8] for SW and [9]–[12] for
HW. Recently, in [13] an approach was presented which aims to
integrate HW coverage and SW coverage to provide this informa-
tion to a coverage-guided fuzzer closing the test generation loop.
The approach is intrusive and tied to the test strategy, whereas
our approach is non-intrusive and independent of the used test
strategy. Finally, to the best of our knowledge, the proposed
relation coverage is novel and provides a new way to describe
valuable functional intend of complex HW/SW interactions.

Our experiments are based on the open-source RISC-V VP++
[14] where we integrate a SW-controlled Gyroscope sensor. We
develop a test suite and show how the coverage evolves when
adding more HW/SW tests. Moreover, we demonstrate that the
innovative relation coverage is effective in revealing non-trivial
bugs caused by HW/SW interactions.

II. UNIFIED HW/SW COVERAGE

In this section, we define unified HW/SW coverage metrics.
Viewing the SystemC VP, representing the HW, and the SW as
a single model, we formalize the three structural metrics line
coverage, function coverage, and branch coverage.

A. Running Example and Preliminary Considerations
We support the formalization by using a running example, a

timer peripheral connected to a RISC-V VP. The timer peripheral
is implemented in SystemC TLM-2.0 and contains the register
interval_reg storing the time interval to trigger the next interrupt
(e.g. every 5 milliseconds). The registers can be configured from
SW which also handles the incoming interrupts.

Structural coverage is a metric that evaluates how often the
code is executed by the test suite. As source code is stored in
files, the most obvious way to split the source code is line by
line. In general, a source code line can either be executable or
non-executable. Examples for the latter case include comments,
pre-processor statements, curly braces, declarations etc. In case
of our timer example this holds for the complete code shown
in Listing 1. Note that such code cannot be covered. For the
metrics, which we formalize in the following, we are of course

1 // HW timer peripheral
2 #include <systemc>
3 #include <tlm_utils/simple_target_socket.h>
4 struct Timer : public sc_module {
5 uint interval_reg; // time interval register
6 uint irq_number; // interrupt index
7 socket<Timer> tsock;
8 interrupt_gateway *plic;
9 SC_HAS_PROCESS(Timer);

10 }

Listing 1: Not-executable declarative code excerpt of HW timer peripheral

12 // Constructur of HW timer peripheral
13 Timer(sc_module_name name, uint irq_number){
14 irq_number = irq_number;
15 tsock.register_b_transport(this, &transport);
16 SC_THREAD(run);
17 }
18

19 // Generating periodic interrupts
20 void run() {
21 while (true) {
22 wait(sc_time(interval_reg , SC_MS));
23 plic->gateway_trigger_interrupt(irq_number);
24 }
25 }

Listing 2: Executable code excerpt of HW timer per.; relevant for line
coverage

interested in all executable source code lines, i.e. the ones which
can be covered during simulation. We look again at the timer
peripheral, but other code fragments. Again code of the HW side
is shown in Listing 2: Line 13–17 will be executed when the timer
is instantiated, sets the interrupt number, sets the TLM transport
function called from the bus, and defines the SystemC thread run
(). This run() thread models the behavior of the timer peripheral,
i.e. triggering an interrupt after (Line 23) the specified amount
of time (Line 22). The SW side is given in Listing 3. It depicts
the main function of the SW. This example is simplified, i.e. after
registering the interrupt handler function (Line 3) and configuring
a time interval of 5 (Line 4), there is a loop which waits for
10 interrupts (Line 5, does nothing else), and then again the
time interval is configured. To summarize, the last two exemplary
listings illustrated executable source code lines from HW and SW.
For such code, we define our HW/SW coverage metrics in the
following.

B. Line Coverage

To formally capture the number of times a line has been
executed or not during simulation, we assign an execution counter
E to each line L. This means from now on when we talk about a
line, we talk about a tuple consisting of the source code line and
the counter. Formally, we have

(E,L)

Since non-executable code (comments, declarations etc. as de-
scribed in the previous section) is excluded, we have

LAll = {(Ei, Li)|i ∈ I}
where I contains only the indices of executable lines.

Finally, we can formalize HW/SW line coverage. Assume we
have simulated a test suite, the execution counters of our HW/SW
system given as LAll will be either zero or greater than zero. Using
this information, we can create two subsets: LU for uncovered (not
executed) lines and LC for covered (executed) lines. This can be
expressed as:

LU = {(Ei, Li)|i ∈ I ∧ Ei = 0}
LC = {(Ei, Li)|i ∈ I ∧ Ei > 0}

1 // Simple SW configuring HW timer peripheral
2 int main() {
3 register_interrupt_handler(ID, timer_irqhandler);
4 set_interval_reg(5);
5 while(counter < 10) { asm volatile ("wfi"); }
6 set_interval_reg(UINT_MAX);
7 return 0;
8 }

Listing 3: Executable code excerpt of SW for timer per.; rel. for line coverage

27 // TLM transport called from TLM bus with
transaction object

28 void transport(tlm::tlm_generic_payload &trans,
sc_core::sc_time &delay) {

29 ...
30 if (trans.get_address() == 0x10){
31 interval_reg = *(trans.get_data_ptr());
32 } else {
33 ...
34 }
35 ...
36 }

Listing 4: Executable code excerpt of HW timer per.; rel. for branch coverage

Dividing now the cardinality of the set LC by the cardinality of
the union LU ∪ LC , we get the HW/SW line coverage metric as:

LineCov =
|LC |

|LU ∪ LC | × 100

C. Function and Branch Coverage

For function coverage, we look again at our running example in
Listing 2. In Line 16 the SystemC thread run() has been defined
which is realized in SystemC as a function. Its implementation
starts at Line 20. The function includes an infinite loop that acti-
vates the interrupt at regular intervals configured by the interval
register. To check if a function is executed or not, it is sufficient
to determine if the first line of the function was executed. This
means by shrinking our index set I to just include the first lines of
the functions instead of all lines, we can reuse the formalization
we have introduced for line coverage.

For branch coverage, we use Listing 4 to illustrate the concept.
The example contains the HW functionality to write the value into
the interval register. Thereby the data is initially send from SW
using memory-mapped I/O and hence finally routed into the HW
timer peripheral via the TLM bus which passes it as transaction
object to the transport function (Line 28). We now look at the
branch in Line 30 of Listing 4 which checks if the interval register
is addressed. When executing the branch, there are two possible
paths. The first one is taken, if the branch condition is true. In
this case Line 31 is executed. If the condition is false, Line 33 is
executed. An appropriate index set I containing all lines for the
true and false cases defines the branch coverage. Again, we can
reuse the formalization we have introduced for line coverage to
compute the final percentage.

III. RELATION COVERAGE

As shown so far, for structural coverage it is common to use
counters to determine whether code has been covered or not. This
differentiation is binary, even though the counters can assume
values beyond just 0 or 1. Consequently, the question emerges
whether the extra information regarding the frequency of code
execution can be utilized to enhance system robustness. The idea
is to put the counters for different source code lines into relation.
Since we have unified HW/SW metrics as introduced in the
previous section, we can define these relations comprehensively.

10 void set_interval_reg(uint interval_ms) {
11 *INTERVAL_REG_ADDR = interval_ms;
12 }
13 // SW interrupt handler
14 void timer_irqhandler() {
15 counter++;
16 }

Listing 5: Executable code excerpt of SW for timer peripheral

A. Equal Relation
We start with a natural relation which requires the equality of

the involved source code lines. Let us motivate this relation type
using two examples, both reflect complex HW/SW interaction.

If we look at the SW code in Listing 5 and there at Line 11
as well as in Listing 4 of the HW side and there at Line 31, we
can see that the purpose of these two lines is to write a value into
a register. Assuming that no other line in SW is writing into the
register, the number of executed memory-mapped I/O SW write
(Line 11@Listing 5) has to be equal to the number of assignments
to the register in HW (Line 31@Listing 4), in other words the
respective executions counters match. If the counters are different,
we have found a bug.

As second example for an equal relation we consider interrupts.
The HW side triggers an interrupt (Line 23@Listing 2) which is
then finally leads to the execution of the SW interrupt handler
(Line 15@Listing 5) which increments a counter. If the number of
triggered interrupts by the peripheral and the number of executed
interrupt handlers for the peripheral don’t match, there is a bug.

To summarize, an equal relation ∼= captures that the equality
of the executions counters of both user-defined lines Li and Lj is
required:

(Ei, Li) ∼= (Ej , Lj) :⇔ Ei = Ej

Before we discuss the computation of the coverage metric, we ex-
pand this idea of relation coverage further by utilizing alternative
relations.

B. Greater or Equal Relation
An alternative to the equal relation is the greater or equal

relation. The motivation for such relations can be shown on the
example of Listing 3 Line 5, where the SW waits for the interrupt
and Listing 2 Line 23 where the HW is triggering the interrupt. In
this case it is required that the interrupt is triggered within the HW
at least as often as the SW is waiting for it. If this is not the case,
the SW does not further execute (is stuck).

These type of relations can be formulated as:
(Ei, Li) ∼≥ (Ej , Lj) :⇔ Ei ≥ Ej

C. Sum Relation
The third relation is the sum relation as it sums up execution

counters from more than two source code lines. For the equal
relation we have assumed that Line 11 from Listing 5 is the only
position where the interval register is written. Looking at Listing 3
on Line 4 and Line 6 we can see that the main function is executing
two times the function which writes into the register. We can now
state that the counter in the set_interval_reg function is required to
be sum of the counters on the two lines within the main function.
Additionally, the sum of these counters has to match the read
interval register execution counter within the HW from Line 31
in Listing 4. In general, such a relation can be expressed as:

(Ei, Li) ∼Σ

∑
j∈J

(Ej , Lj) :⇔ Ei =
∑
j∈J

Ej

Static
Analysis

Dynamic
Analysis

Coverage
Generation

HW/SW
Source
Codes

Set I Set E

HW/SW
Binaries

Fig. 1: Non-intrusive coverage measurement flow

where J contains the line indices where the respective counters
are added up.

D. Relation Coverage Metrics

Similar to the introduced structural coverage formalization, it
is now possible to create two sets: ∼C for covered relations and
∼U for uncovered relations. This makes it possible to calculate
the ratio between the cardinalities of the covered and uncovered
relation sets:

RelationCov =
| ∼C |

| ∼U ∪ ∼C | × 100

where ∼ is replaced by ∼=, ∼≥, or ∼Σ, respectively.

IV. NON-INTRUSIVE COVERAGE MEASUREMENT

In this section, we focus on the implementation of the pro-
posed HW/SW coverage metrics. To non-intrusively measure the
coverage during SystemC simulation, we extend the approach
from [15]. The main idea of [15] is to utilize the Host-to-SW
memory hierarchy for dynamic runtime instrumentation based on
Program Counter (PC) addresses from (a) the host (denoted as
PChost) which runs the VP simulation binary, and (b) the ISS
which contains the PCHW representing the PC of the ISS point-
ing to the running SW of the simulated HW/SW system. These
PC addresses of interest are directly translated when compiling the
VP source code and cross-compiling the SW source code using the
debug information. As shown in Fig. 1, we kept the overall flow of
[15] but modified the inner workings. The first part changed was
the static analysis to identify all lines Li where we need to add the
execution counters Ei. These lines are translated into the Set I file
containing the addresses of all executable lines Li. This address
set is then used in the dynamic analysis. The dynamic analysis
is based on dynamic runtime instrumentation which allows that
both, the HW (the VP) and the SW to remain unmodified. This
step generates the Set E file containing all execution counters Ei

for the corresponding addresses. This set is then processed by the
coverage generation to output the coverage metrics as defined in
Section II and Section III, respectively.

V. MEMS GYROSCOPE EXPERIMENT

We applied our approach to assist the development of a test
suite for a Micro Electromechanical System (MEMS) Gyroscope
HW peripheral and SW library to use the peripheral. The HW
of our experiment is based on the open-source RISC-V VP++
[14]1. This VP was extended with a MEMS Gyroscope peripheral
generating data for the x-, y-, and z-axes. The peripheral is
additionally connected to the PLIC interrupt controller of the VP.
The SW contains the library which should be tested. This library
consists of functions designed to interact with the Gyroscope.

To develop the test suite for our experiment we took a coverage-
guided approach, meaning we executed an empty test suite and

1https://github.com/ics.jku/riscv-vp-plusplus

TABLE I: Coverage for test suites in %, where light blue represents structural
coverage and green represents relation coverage

A.0 B.0 C.0 C.1 C.2
Function 16 100 100 100 100
Line 18 88 100 100 100
Branch 12 70 100 100 100
∼= 0 40 40 80 100
∼≥ 0 0 100 100 100

∼Σ 0 0 100 100 100

TABLE II: Coverage of relations are named according to the schema
<LHS>@<HW/SW><∼type><RHS>@<HW/SW> where "x" means not
covered and "✓" means covered.

A.0 B.0 C.0 C.1 C.2
RegXR@SW∼=RegXR@HW x ✓ ✓ ✓ ✓

RegYR@SW∼=RegYR@HW x x x ✓ ✓

RegZR@SW∼=RegZR@HW x x x ✓ ✓

Constr@HW∼=Init@SW x ✓ ✓ ✓ ✓
IRQT@HW∼=IRQH@SW x x x x ✓
SampleX@HW∼≥RegX@SW x x ✓ ✓ ✓

SampleY@HW∼≥RegY@SW x x ✓ ✓ ✓

SampleZ@HW∼≥RegZ@SW x x ✓ ✓ ✓

RegCR@HW∼ΣRegCR@SW x x ✓ ✓ ✓

RegCW@HW∼ΣRegCW@SW x x ✓ ✓ ✓

TLMRW@HW∼ΣRegRW@SW x x ✓ ✓ ✓

TLMR@HW∼ΣRegR@SW x x ✓ ✓ ✓

TLMW@HW∼ΣRegW@SW x x ✓ ✓ ✓

then added tests until full coverage was reached. For comprehensi-
bility, each development step of the test suite has a version number
containing a major (alphabet) and a minor (number) version. The
major version was increased when the test suite was extended. The
minor version was increased when a bug fix was applied, e.g. B.2

means major version B and minor version 2.
The coverage results for each iteration are shown in Table I. The

columns contain the aforementioned versions of the test suite. The
lines within the table are the collected coverages, where Function,
Line, Branch are the proposed structural HW/SW coverage met-
rics and =, ≥ and Σ are the relation metrics. Table II shows the
results for the single relations which were derived for the MEMS
Gyroscope HW/SW. In the following, we describe each major and
minor step in development.

a) A.0 to B.0: As already said, the initial test suite A.0 was
empty. This means that nothing from the MEMS Gyroscope SW
library is executed. On the HW side, the sensor is already included
in this step which means the constructor and the sample thread
are already executed. This explains the low but existing structural
coverage of 12 − 18% for the initial package. The next step was
to reach full function coverage. This was done by enabling the
interrupt and calling each SW function from the test suite.

b) B.0 to C.0: Table I shows that for test suite B.0 the
line coverage is 88% and the branch coverage is 70%. The next
step was to introduce additional tests to reach 100% for these two
coverage metrics. These tests included different combinations of
the function calls and different amounts of how often the data was
read from the peripheral. This resulted in 100% for line and branch
coverage.

c) C.0 to C.1: For test suite C.0 we can see that for the
equal relation only 40% have been achieved, meaning, although
we have reached full structural coverage, we have uncovered
relations. Looking at Table II, we can see that the relations,
concerning the y− and z−axis register reads, are not covered.
As we have designed the tests to ensure that each axis undergoes

98 if(int_enabled) {
87 plic->gateway_trigger_interrupt(irq_number);

}

Listing 6: Interrupt HW trigger for C.2; numbers give execution counts

68 void mems_gyro_irq_hanlder() {
68 has_data = 1;

}

Listing 7: Interrupt SW handler for C.2; numbers give execution counts

a different number of read operations, we have found that the
address of the register y and the register z have been swapped.
Fixing this lead to 80% coverage for the equal relations.

d) C.1 to C.2: The last not covered relation for our test
suite checks if the interrupt triggered in HW and the calls to the in-
terrupt handler in SW match. If this is not the case, we are loosing
interrupts. When looking into the HW coverage (Listing 6) we see
the interrupt being triggered 87 times. The interrupt handler from
the SW Listing 7 shows only 68 executions. A possible reason is
that the sampling rate is too high. Setting the proper sampling rate
lead to full coverage, completing the development.

VI. CONCLUSIONS

In this paper, we first unified HW/SW coverage and defined
structural HW/SW coverage metrics leveraging the abstraction of
virtual prototypes. On top of the structural metrics, we devised
the novel relation coverage metric. Essentially, relations between
different source code locations can be captured which allow in
particular to reflect complex HW/SW interactions. We have addi-
tionally developed a framework to measure the proposed coverage
in a non-intrusive way, i.e. neither the VP nor the SW has to be
modified. We demonstrated the value of our metrics for a MEMS
Gyroscope sensor. In particular, the innovative relation coverage
helped to easily find non-trivial HW/SW interaction bugs.

ACKNOWLEDGMENTS
This work has partially been supported by the LIT Secure and

Correct Systems Lab funded by the State of Upper Austria.

REFERENCES
[1] T. De Schutter, Better Software. Faster!: Best Practices in Virtual Prototyping.

Synopsys Press, March 2014.
[2] IEEE Standard for Standard SystemC Language Reference Manual, IEEE Std.

1666 (Revision of IEEE Std 1666-2011), 2023.
[3] V. Herdt, D. Große, and R. Drechsler, Enhanced Virtual Prototyping: Featuring

RISC-V Case Studies. Springer, 2020.
[4] OSCI TLM-2.0 Language Reference Manual, OSCI, 2009.
[5] A. Piziali, Functional verification coverage measurement and analysis. Springer

Science & Business Media, 2007.
[6] D. Lettnin et al., “Coverage driven verification applied to embedded software,”

in ISVLSI, 2007, pp. 159–164.
[7] J. C. Costa and J. C. Monteiro, “Coverage-directed observability-based valida-

tion for embedded software,” TODAES, vol. 18, no. 2, Apr 2013.
[8] Kruse et al., “A highly configurable test system for evolutionary black-box

testing of embedded systems,” in GECCO, 2009, p. 1545–1552.
[9] S. Tasiran and K. Keutzer, “Coverage metrics for functional validation of

hardware designs,” D&T, vol. 18, no. 4, pp. 36–45, 2001.
[10] A. Habibi and S. Tahar, “Design and verification of SystemC transaction-level

models,” TVLSI, vol. 14, no. 1, pp. 57–68, 2006.
[11] D. Große, H. Peraza, W. Klingauf, and R. Drechsler, “Measuring the quality of a

SystemC testbench by using code coverage techniques,” in FDL, 2007, pp. 146–
151.

[12] D. Große, U. Kühne, and R. Drechsler, “Estimating functional coverage in
bounded model checking,” in DATE, 2007, pp. 1176–1181.

[13] N. Bruns, V. Herdt, and R. Drechsler, “Unified hw/sw coverage: A novel
metric to boost coverage-guided fuzzing for virtual prototype based hw/sw co-
verification,” in FDL, 2022, pp. 1–8.

[14] M. Schlägl, C. Hazott, and D. Große, “RISC-V VP++: Next generation open-
source virtual prototype,” in Workshop on Open-Source Design Automation,
2024.

[15] C. Hazott and D. Große, “DSA monitoring framework for HW/SW partitioning
of application kernels leveraging VPs,” in DVCon Europe, 2023, pp. 34–41.

	Introduction
	Unified HW/SW Coverage
	Running Example and Preliminary Considerations
	Line Coverage
	Function and Branch Coverage

	Relation Coverage
	Equal Relation
	Greater or Equal Relation
	Sum Relation
	Relation Coverage Metrics

	Non-Intrusive Coverage Measurement
	MEMS Gyroscope Experiment
	Conclusions
	References-0.1cm

