
An Extensible and Flexible Methodology for
Analyzing the Cache Performance of Hardware

Designs
Lucas Klemmer Daniel Große

Institute for Complex Systems, Johannes Kepler University Linz, Austria
lucas.klemmer@jku.at, daniel.grosse@jku.at

Abstract—Caches are essential to achieve high performance in
modern hardware designs as they bridge the performance gap
between digital logic and memories. However, prior research for
analyzing the cache performance does not support the designer
during the cache implementation.

In this paper, we present an extensible, automated, and
flexible methodology for analyzing cache performance during
HDL design. Our approach works by monitoring cache interfaces
based on waveforms from simulators, formal tools, or logic
analyzers. Both, the generic cache analysis algorithm and the
analysis metrics are design agnostic and can be reused across
designs and design configurations. We demonstrate that our
methodology is applicable throughout all stages of the hardware
development cycle from the first test, to debugging, all the way
to multi-million cycle simulations.

I. INTRODUCTION

With growing demands on computing performance, industry
and academia are shifting to application-specific designs [1].
This shift is complemented by the emergence of a range of
sophisticated new Hardware Description Languages (HDLs)
and hardware generators. Both facilitate the customization of
a hardware design to meet application-specific requirements
by allowing to easily generate thousands of combinations of
Intellectual Property (IP) and their parameters. For example,
in many System-on-Chip (SoC) designs, that are leveraging
new HDLs and hardware generators [2], [3], the modifica-
tion of a single HDL line is sufficient to switch the bus
implementation, such as transitioning from AXI to Wishbone.
Likewise, changing complete components and behaviors (e.g.,
peripherals, branch prediction, or caches) can be as simple as
adding or removing a few lines in a configuration file.

As the disparity in speed between processors and main
memory widened, caches became very crucial hardware com-
ponents [4], [5]. Caches provide faster access to frequently
used data and instructions, reducing the time processors spend
waiting for information from slower main memory. They
exploit the principles of temporal and spatial locality to store
relevant data, optimizing data retrieval efficiency. Evaluating
cache performance is paramount for system design due to its
direct influence on memory hierarchy efficiency [6]. A meticu-
lous analysis of cache behavior enables architects to fine-tune
memory access patterns and enhance overall computational
performance. Thus, many approaches have been developed,
including for instance static cache analysis, cache simula-

tion, analytical cache models, and utilization of performance
counters (more details in Section II) to provide guidance in
high-level architecture decisions. Important cache parameters
strongly connected to the cache architecture include in partic-
ular cache size, type (e.g., direct mapped, set associative and
fully associative), replacement policy, and writing strategies.
However, when it comes to implementing a cache in an HDL,
the cache performance has to be analyzed also at this level.
Indeed, all the above-mentioned approaches do not target the
HDL design process. In fact, evaluating performance metrics
(such as cache hits, cache misses, conflict misses, . . .) as well
as relating the results to software is left to the HDL designer.
This means, that they have to set up complex testbenches or
extend the cache design with performance counters and “ex-
port” this information as the basis for the metric computation.
This, however, is clearly not efficient and requires significant
effort, in particular HDL code extensions as well as running
simulations over and over again.

Contribution: In this paper, we present an extensible,
automated, and flexible methodology for analyzing cache
performance of hardware designs1. Our methodology elim-
inates the need for creating cache models and requires no
in-depth knowledge about cache internals, as it derives all
information by monitoring the cache’s interfaces. It is based
on the open-source Waveform Analysis Language (WAL)2 [7],
which is a Domain-Specific Language (DSL) for analyzing
waveforms created by simulators, formal tools, and logic
analyzers. WAL is a fully fledged programming language
with first class support for hardware concepts (e.g., simulation
time or design hierarchy) that allows writing generic analysis
programs. These generic programs then require only very little
“glue code” to bind them to concrete hardware designs, which
makes them very flexible and widely reusable. The proposed
cache analysis methodology consists of three components that
leverage WAL to be as flexible as possible: The main com-
ponent is the generic cache analysis algorithm that detects
requests to the cache, responses, and request drops. This
algorithm does not analyze any metric and is only detecting
and forwarding events to the concrete analysis metrics.

Those analysis metrics are the next component of our

1Code available at https://github.com/ics-jku/wal-cache-analysis
2WAL is available open-source at https://github.com/ics-jku/wal

methodology. Analysis metrics describe either a single value
(e.g., hit-rate, average delay) or a data aggregation function
(e.g., collect the moving average during simulation to generate
a chart). Each metric can define fully encapsulated local
variables and can implement a few callback functions that
are invoked by the main algorithm. All metrics are executed
separately, don’t interfere with others, and are defined using
convenient macros. Our methodology contains a set of prede-
fined metrics but adding new ones is also straightforward and
requires no changes to the main algorithm.

The final component of the proposed methodology is the
glue code that is used by the generic algorithm to detect
events such as requests or responses. With much of the analysis
abstracted away, this glue code usually consists of only a few
lines of code per design, which specifies the involved signals
or simple conditions on those signals.

We demonstrate that our methodology is applicable through-
out all stages of the hardware development cycle from the first
test, over debugging, all the way to analyzing multi-million
cycle simulations. However, since our methodology does not
depend on where the waveforms come from, it can also be
applied in a post-silicon setting, for example with waveforms
produced by logic analyzers. Regardless of the analysis’ scope,
the generic algorithm of our methodology typically remains
the same, i.e., in rare cases, only minimal adjustments are
necessary. Our approach allows analyzing more than just the
most basic metrics such as hit/miss rates. For example, it
makes it is possible to visualize cache behavior, or to combine
the cache performance analysis with the software that is
exercising the caches.

The rest of the paper is structured as follows. First, we
discuss related work in Section II. Then, we provide a brief in-
troduction into the WAL programming language in Section III.
Next, Section IV introduces our cache analysis methodology
and presents the individual components in detail. This includes
the generic cache analysis algorithm (Section IV-A), the cache
metrics (Section IV-B), the small amount of required design-
specific code (Section IV-C), and an example of how all
components can be combined to analyze a waveform (Sec-
tion IV-D). Next, we evaluate our methodology in Section V
and finally conclude this paper in Section VI.

II. RELATED WORK

Numerous approaches have been developed to evaluate
cache analysis problems from various perspectives. In essence,
several directions can be distinguished.

Static cache analysis refers to a method of evaluating
cache behavior without executing the actual program [8]. It
involves inspecting the program’s source code, intermediate
representations, or binaries to make predictions about cache
performance, leveraging abstract interpretation to derive the
worst-case execution time and safe approximations [9]. As
designers are interested in the average case execution behavior,
combinations with symbolic execution have been developed,
e.g., [10].

To evaluate new designs and to address the increasing design
complexity, cache simulators have been proposed (e.g., [11]).
A survey describing 28 cache simulators can be found in [12].
Cache simulators come in various types tailored for differ-
ent analysis needs. Trace-driven simulators use pre-recorded
memory access traces for evaluating cache behavior in specific
program executions [13]. Execution-driven simulators simulate
cache interactions in real-time during the execution of actual
programs on the host platform, providing insights into dynamic
scenarios. Full-system simulators simulate entire computer
systems, including processors and peripherals, providing a
comprehensive environment for evaluating cache behavior in
a holistic system context (e.g., [14]). Since simulating caches
can be time consuming hardware accelerated cache simula-
tors have been proposed [15], [16] Further, cache simulators
adapted to analyzing out-of-order processors [17], [18], [19].

Analytical simulators employ mathematical models to pre-
dict cache behavior theoretically, offering valuable insights
without the need for program execution (see e.g., [20], [21]).

Finally, there are approaches leveraging performance coun-
ters (or more general performance monitoring units) [22] as
well as respective APIs to access these hardware units [23].
In the same line of research, approaches using vendor-specific
interfaces can be utilized to perform live cache inspection on
hardware [24].

In contrast to the reviewed approaches, which mostly focus
on design space exploration, our proposed methodology is
complementary as it focuses on supporting the HDL design
process. Our goal is to provide a generic and reusable so-
lution which allows computing cache performance metrics on
waveforms without the need to extend the HDL (e.g., with per-
formance counters etc.) or complex testbench infrastructure.
Further, since our methodology works directly on waveforms,
and thus, so to say, on the ground truth, no cache model
has to be created and kept up-to-date. This allows our model
to be additionally employed in Continuous Integration (CI)
scenarios for example to catch regressions.

III. WAVEFORM ANALYSIS LANGUAGE

WAL [7], [25], [26], [27], [28], [29] is a programming
language for debugging and analyzing waveforms created by
hardware simulators or formal tools. In WAL, signals from
waveforms can be used like variables, and simulation time and
design hierarchy are fundamental parts of the language. Thus,
accessing signals in WAL is similar to accessing variables,
with the difference that the value returned depends on the
loaded waveform and the time at which the signal is accessed.

As an example for WAL, we consider the problem of
finding all time points at which a cache is requested. We
assume that the cache has a simple handshaking interface
with a req and an ack signal. This problem can be solved
using the WAL expression: (find (= req ack 1)). WAL has
a Lisp-inspired syntax in which expressions follow the form
(op a b c ...), where op is the name of a function and
a b c ... are the whitespace-separated arguments to op. The
find function evaluates the inner equivalence check expression

at every timestamp of the waveform and returns a list of all
time points at which the expression evaluates to true. The value
of the signals are automatically read from the waveform at the
correct time by WAL.

Now, we can extend this problem to find all time points at
which a cache hit occurs, i.e., at which a request is immedi-
ately acknowledged. A cache hit thus occurs when both req

and ack are high, but req was low at the previous time point.
This condition can be expressed in WAL with the following
expression: (find (&& (= req@-1 0) (= req ack 1))). The
value of a signal at a previous time can be accessed using
the @ operator (e.g., x@-1 evaluates to the value of x at the
previous time point). For more information on WAL we refer
to the WAL documentation at https://wal-lang.org.

IV. CACHE ANALYSIS METHODOLOGY

In this section, we present an overview of the components of
our cache analysis methodology. The goal of our methodology
is to provide an extensible and flexible way to perform cache
analyses. In order to achieve this, our methodology is split in
three components: (1) the generic analysis algorithm, (2) the
analysis metric implementations, and (3) the design-specific
glue code.

The first two components achieve the first goal of extensi-
bility, since the analysis algorithm is generic and works across
designs, and since new metrics can be easily added in a plug-
and-play fashion without changes to the generic algorithm.
Metrics can range form basic hit/miss rates to the generation
of visualizations of the cache behavior over the simulation
time. Of these parts all but the glue code can be completely
reused across widely different designs.

An overview of all components of our methodology is
shown in Fig. 1. All components left of the dotted line are
reusable across designs and all design-specific components are
shown on the right side of the dotted line. In the rest of this
section, we present all of the three components in detail. The
generic algorithm is introduced in Section IV-A. Section IV-B
describes how performance metrics can be implemented, Sec-
tion IV-C presents how the analysis is bound to a specific
design using small amounts of glue code, and Section IV-D
concludes this section by showcasing how the analysis is
applied to a waveform.

A. Generic Cache Analysis Algorithm

The most abstract layer of our methodology is the generic
cache analysis algorithm (top center in Fig. 1). From a high-
level, the abstract idea of our methodology can be summarized
as follows: The cache analysis runs over the waveform, trying
to detect certain events (marked blue in Fig. 1). If an event is
detected, a callback function is called for every selected metric
(marked dark yellow in Fig. 1). These Callback functions then
perform the computation of the metric (e.g., calculate the time
between now and the last time the callback was called). They
can store their (temporary) results in metric-specific variables
(marked light orange in Fig. 1).

In more detail, this means that the first step of our cache
analysis is performed by the user by selecting at which points
of the waveform data is sampled. This defines the unit of a step
forward or backward. For example, if no sampling condition is
specified, the time point index is incremented whenever any
signal in the waveform changes. However, if the waveform
is sampled, for example only on rising clock edges, we can
calculate the delay in clock cycles by subtracting the index at
which the request was detected from the index at which the
response occurred.

Next, the algorithm iterates over all sampled timestamps and
checks if the cache is requested using the design-specific glue
code. If this is the case, the algorithm stores the current time
and moves forward until one of three conditions is satisfied.
The first condition is a successful response by the cache (can
be either a cache hit or a miss). In this case of a successful
response, the algorithm calls the on-response callback func-
tions of all registered analysis metrics. The second condition
is satisfied when the request is dropped, for example due to
a cache flush. In this case, the algorithm calls the on-drop
callback functions of all registered analysis metrics. Finally,
the last condition is satisfied if the end of the trace is reached.
In this case, no callback functions are invoked, and the request
is ignored. Now, the algorithm advances to the next sampled
timestamp to repeat the same process.

After the end of the waveform is reached, the finalization
callback functions of all registered analysis metrics are called
and their results are collected in a list which is then returned
as the result of the analysis algorithm.

B. Cache Metrics

The second most abstract layer of our methodology is the
metrics. With the algorithm presented in Section IV-A, our
methodology can traverse waveforms and detect events that
are important for performing cache analyses. However, it does
not compute any metric on its own. This task is exclusively
handled by the metric implementations. By splitting the com-
putation of metrics from the generic algorithm, it becomes
easy to add or remove new metrics to the analysis without
touching the main algorithm. This also allows distributing the
cache analysis as a library, enabling users to easily add new
(generic or design-specific) metrics. In Fig. 1, the generic
metric is shown in the top-left corner.

New metrics can be defined using the define-cache-metric
macro. Metrics can either be reusable across designs (cf.
cache/hit-rate in Fig. 1) or design-specific. The general usage
pattern of this macro is shown in Listing 1. Each metric can
define local variables (Line 3) and local functions (Line 5).
These variables and functions live in their own namespace and
are only accessible to other functions and callbacks within the
same metric. This means that all metrics are separated from
another and can be evaluated independently.

Next, each metric can, but does not have to, define the
special callbacks shown in the middle section of the Metric
component in Fig. 1 (dark yellow). This is shown in Listing 1
on Lines 7-10. These callbacks form the core functionality

Fig. 1: Cache analysis methodology overview.

1 (define-cache-metric name
2 ;; Local Variables
3 (define var 0)
4 ;; Local Functions
5 (defun f-internal [] ...)
6 ;; Special Callbacks
7 (define-callback on-request [])
8 (define-callback on-response [req resp end])
9 (define-callback on-drop [req drop end])

10 (define-callback final [])
11 ;; Extra Callbacks
12 (define-callback cb1 [] ...))

Listing 1: Usage pattern for defining new analysis metrics.

required by most cache analyses. The on-response and on-drop
callbacks receive as arguments the time at which the current
request started, the time at which the response arrived or the
drop occurred, and the upper-bound timestamp of the current
analysis. This upper bound is useful for writing metrics that
allow a parallel trace analysis. Finally, metrics can define extra
callbacks (Line 12). These callbacks receive no arguments and
get called on every sampled timestamp before the conditions
for the special callbacks are evaluated.

Exemplary Metric Definition: Listing 2 shows the defini-
tion of the metric cache/average-delay which analyzes the
average delay of cache responses. To perform the analysis,
the metric implementation has to keep track of two values.
First, the number of responses and second, the accumulated
delay. Two variables are defined for this purpose on Line 2
and on Line 3. Next, the on-response callback function is
defined on Lines 5-8. Whenever it is called, the number of
responses is incremented (Line 6) and the observed delay
for the current request is added to the accumulated delay
counter variable (Line 8). The final callback function is defined

1 (define-cache-metric cache/average-delay
2 (define responses 0)
3 (define acc-delay 0)
4
5 (define-callback on-response [req-t resp-t end]
6 (inc responses)
7 (set! acc-delay (+ acc-delay
8 (- resp-t req-t))))
9

10 (define-callback final []
11 (if responses
12 (/ acc-delay responses)
13 "no responses")))

Listing 2: Implementation of the average delay metric.

on Lines 10-13. If the variable responses is not 0, the result
is the accumulated delay divided by the number of responses,
else an error message is returned.

C. Design-Specific Code

The final and lowest layer of our methodology is the
glue code that implements the events required by the generic
algorithm (c.f., Fig. 1) and the metrics. Since the two previous
layers work on abstract events and callbacks, they can be
reused across all designs. Most often, this leaves only the
lowest layer with design-specific code, which often consists
of only a few lines. All parts related to the glue code are
highlighted in blue in Fig. 1.

In this section, we present the code required to apply our
methodology to the VexRiscv processor [30]. VexRiscv is
an open-source, pipelined, and highly parametrizable RISC-V
processor. The glue code for VexRiscv’s data cache is shown
in Listing 3. To improve readability, we first define some
aliases for the long signal names on Lines 1-11. Next, we

1 (alias clk dut.dataCache_1.clk)
2 (alias rst dut.dataCache_1.reset)
3 (alias valid
4 dut.dataCache_1.io_cpu_execute_isValid)
5 (alias stuck
6 dut.dataCache_1.io_cpu_execute_haltIt)
7 (alias miss
8 dut.dataCache_1.io_cpu_execute_refilling)
9 (alias flush_rdy

10 dut.dataCache_1.io_cpu_flush_ready)
11 (alias flush_vld
12 dut.dataCache_1.io_cpu_flush_valid)
13
14 (defmacro cache-sampling []
15 '(&& (rising clk)
16 (low rst)))
17
18 (defmacro cache-request []
19 '(&& (high valid)
20 (|| (! stuck) miss)
21 (! (high valid miss))@-1))
22
23 (defmacro cache-drop []
24 '(high flush_rdy flush_vld))
25
26 (defmacro cache-response []
27 '(&& (high valid) (low stuck miss)))

Listing 3: Glue code for the VexRiscv data cache.

implement the required events. As previously stated, the cache-
sampling event specifies which time points are considered by
the analysis. In combination with WAL’s sample-at function,
this event can be used to practically set the unit of the delay
we are analyzing. In the case of VexRiscv, we sample at every
timestamp at which the clock is rising and at which the reset
signal is low. Requests are dropped if the flush ready and
flush valid, signals are both high (Line 23-24)

Next, the cache-request is implemented on Lines 18-21. In
the case of VexRiscv, a new request starts when the valid
signal is high and the core is not stuck due to a cache miss
(Line 20). Additionally, we have to check if we are currently
in an ongoing request which has seen no response until now
(Line 21). Finally, the cache-response event is implemented
on Lines 26-27.

D. Running the Analysis on a Waveform

With the processor-specific glue code defined, the analysis
can be run on a waveform as shown in Listing 4. First,
on Line 1 the cache analysis library is imported. This makes
the generic algorithm and a number of predefined metrics
available. Next, the waveform is loaded into WAL on Line 2
and the timestamps at which signals should be sampled are
set using WAL’s sample-at function. A list of all metrics
that should be analyzed is created on Line 7. Please note that
cache/hit-rate and cache/average-delay metrics are included
with the cache analysis library. Finally, the analysis is started
by a call to the analyze-cache function, together with the list of
callbacks and the time range that should be analyzed on Line 9.
In Listing 4, the analysis is applied on the whole waveform
from the first timestamp 0 to the last timestamp, which can

1 (use cache-analysis)
2 (load "waveform.fst")
3
4 (sample-at (find (cache-sampling)))
5
6 (define callbacks
7 (list cache/hit-rate cache/average-delay))
8
9 (define results (analyze-cache callbacks 0

MAX-INDEX))

Listing 4: Running the analysis on a waveform.

be determined using the MAX-INDEX special variable available
in WAL.

V. EXPERIMENTS

In this section, we present experiments that show how our
cache analysis methodology is applicable without changes to
the automated analysis of various processor configurations
(Section V-A), debug scenarios using visualizations (Sec-
tion V-B), and large-scale (Section V-C) simulation analysis
using parallelization.

A. Automated Configuration Analysis

Now we automatically analyze various configurations of
the VexRiscv processor. We analyze both, data caches and
instruction caches, for cache sizes ranging from 1024 bytes to
32768 bytes and with cache line sizes of 32 and 64 bytes. In
the case of the data cache analysis, the instruction cache size
is fixed to 8192 bytes with a line size of 32. For the instruction
cache analysis, the data cache size is fixed to 8192 bytes with
a line size of 32.

Both caches are connected to the same memory via a Wish-
bone interface. To get realistic delay results in our simulation
testbench, we configured the memory to have a read and write
delay of 20 cycles. To exercise the caches, we ran the nettle-
aes benchmark of the Embench suit [31].

Data Cache: The results of four performance metrics of
the data cache are shown in Table I. The first two columns
list the cache size and cache line size, respectively. The next
column lists the Instructions per Cycle (IPC) value for this
simulation run. To compute the IPC value, we defined a new
metric that utilizes an extra callback to count the number of
executed instructions and the number of all clock cycles over
the complete simulation time. The code of this IPC metric is
shown in Listing 5. This IPC metric uses an extra callback
named ipc that is invoked on every sampled timestamp. This
callback counts the number of cycles and the number of
executed instructions, which allows the IPC value computation
in the final callback. We use the IPC value as a proxy to
analyze how the cache impacts the overall performance of the
processor.

The last three columns list the average read delay over
all requests in clock cycles, the average read delay of cache
misses in clock cycles, and the read hit rate as a percentage.

1 (define-cache-metric ipc
2 (define instructions 0)
3 (define valid-cycles 0)
4
5 (define-callback ipc []
6 (when (instr-done)
7 (inc instructions))
8 (inc valid-cycles))
9

10 (define-callback final []
11 (when valid-cycles
12 (/ instructions valid-cycles))))

Listing 5: IPC Analysis Metric.

TABLE I: Data Cache Results.

Size L. Size IPC Delay∗ Miss Delay∗ H. Rate (%)

1024 32 0.052 43.297 175.418 75.317
1024 64 0.028 85.178 351.457 75.764
8192 32 0.256 6.751 174.996 96.141
8192 64 0.216 9.908 351.325 97.179

32768 32 0.380 2.011 173.346 98.840
32768 64 0.377 2.290 349.592 99.345

∗ In clock cycles

Based on the hit rate shown in the last column, we can see
that the nettle AES benchmark makes heavy use of the data
caches. The two configurations with a cache size of 1024 each
achieve a hit rate of 74%. Such a low hit rate combined with
the high penalty of cache misses of 175 or 351 cycles leads
to a very high average delay and, as a result, a low IPC value
for those two configurations. With increasing cache and line
sizes, the hit rate improves continuously until it is above 99%.
The average delay of cache misses is coupled to the line size
only, with higher line sizes resulting in a higher delay.

Instruction Cache: Table II lists the performance metrics
of some configurations of VexRiscv’s instruction cache. Since
the IPC, delay, miss delay, and hit rate metrics are generic,
they can be used without change for the instruction cache
as well. Only the signal names in the glue code and some
of the required event conditions had to be changed due to a
slight difference in the cache’s interface. In the case of the
instruction cache, we varied the instruction cache size and
instruction cache line size and fixed the data cache size to
8192 bytes and a line size of 32. Compared to the data cache,
even smaller instruction cache sizes achieve a much higher hit
rate than the data cache. Further, we see that the IPC stops
increasing (and actually is the same for data cache size 8192 as
in Table I) with instruction cache sizes larger than 8192. This
indicates that, in this configuration, the nettle-aes benchmark
is limited by the data cache.

Many components of the design influence the results
from Table I and Table II. For example, the bus interface
between the cache and the memory has an effect on the time it
takes to fetch data from the memory into the cache. VexRiscv
allows thousands of possible configurations. Analyzing all of

TABLE II: Instruction Cache Results.

Size L. Size IPC Delay∗ Miss Delay∗ H. Rate (%)

1024 32 0.194 1.524 201.618 0.992
1024 64 0.187 1.624 372.136 0.996
8192 32 0.256 0.196 198.179 0.999
8192 64 0.256 0.190 372.551 0.999

32768 32 0.256 0.196 198.179 0.999
32768 64 0.256 0.190 372.551 0.999

∗ In clock cycles

Fig. 2: Functions with the most instruction cache misses.

them would be out of scope for this paper. However, evaluating
them is only a matter of generating and simulating the config-
urations and running the same analysis on the resulting traces.
Since the analysis is run on the waveform of the real hardware
design, cycle accurate results are obtainable without access to
an up-to-date cache model. This means that the analysis results
would still be accurate even when the VexRiscv core itself is
updated or extended.

B. Visualization

Our cache analysis methodology is not only useful to
analyze metrics that result in one “hard” answer, such as the
hit/miss rate. Analysis metrics can also aggregate data for
further processing, such as visualizations.

One example of this is shown in Fig. 2 where the ten func-
tions with the most instruction cache misses of the Embench
tarfind benchmark are shown in a bar chart. For this metric, we
read the symbol table of the ELF file and created a WAL list of
all functions with their names and their start and end addresses.
The idea behind this metric is to check if the current response
was a miss, and, if this is the case, to read the address that
was requested. This address is then compared against the list
of functions extracted from the ELF file, and a corresponding
entry in a hash map is incremented. Finally, a Python function
is called that draws the bar chart using the Python plotting
library Matplotlib.

Another example of a visualization metric is shown
in Fig. 3, which plots the average instruction cache delay

Fig. 3: Sliding window delay (in clock cycles) of IBEX’s data
cache during the simulation of the Coremark benchmark.

(in clock cycles) over the course of the simulation for the
IBEX [32] (formerly known as Zero-riscy) processor. The
data is plotted using Matplotlib and aggregated by a metric
that moves a sliding window (of configurable width) over the
waveform.

C. Large Scale Analysis

The results of simulating large designs with complex
firmware are often simulation runs over millions of clock
cycles. Analyzing waveforms of this size can become challeng-
ing when done in a purely sequential fashion. However, many
analysis tasks can be computed on the same trace in parallel by
dividing the trace into multiple slices. This is also supported by
our methodology through a parameter which specifies the end
index until which cache requests are handled. By combining
this with the step function to set the index to some time
point, we can analyze a slice of the overall waveform. Please
note, that the waveform is not cut at the end index and that
requests, that start within the slice but whose response occurs
after the end index, are correctly handled. In many cases, this
system allows a very natural way to parallelize metrics that
often requires little to no changes to the normal metrics.

To show that our methodology scales to multi-million cycle
simulations, we ran benchmarks for millions of cycles on
two processors. We then analyzed the instruction cache of
IBEX and the data cache of VexRiscv. The results are shown
in Table III. To improve the runtimes of the analysis, we
parallelized it using the Cuneiform language for large-scale
data analysis [33]. Using Cuneiform, we created 64 tasks,
each of which processes one slice of the waveform. After the
tasks are started, Cuneiform handles synchronization and the
passing of all slice results to the final combination function.
This function takes and combines the partial results of all
slices, for example by taking the average or the sum of all
sub results.

All results in Table III were computed on a 64-Core AMD
EPYC 7713 Processor with 128 threads and 256 GB RAM.

TABLE III: Parallel Analysis Results.

Core Benchmark Cycles Hit Rate (%) Runtime (s)

IBEX coremark 6,380,921 97.3 180
VexRiscv picojpeg 4,948,761 99.6 242
VexRiscv qrduino 5,082,492 99.9 155
VexRiscv huffbench 7,395,706 99.8 381
VexRiscv tarfind 16,972,672 99.9 620
VexRiscv wikisort 18,415,326 99.9 335

The VexRiscv configuration uses instruction and data caches of
8192 bytes, while the IBEX configuration uses an instruction
cache of 1024 bytes size (IBEX has no data cache). For
both, IBEX and VexRiscv, we used the same hit rate metric
implementation as in Section V-A Additionally, we added a
small WAL function that creates the start and end time points
of the slices.

VI. CONCLUSIONS

In this paper, we presented an extensible and flexible cache
analysis methodology leveraging the open-source Waveform
Analysis Language (WAL). Our methodology is reusable and
easily extendable to new designs. We have shown that our
methodology works across all stages of the hardware develop-
ment cycle in experiments ranging from automated analysis of
processors using various cache configurations, over generating
visual debug information to the analysis of multi-million cycle
simulations. For this, the HDL designer only has to provide
minimal glue code to connect their cache interface for the
cache performance analysis. In future, work we plan to extend
our analysis to more complex setups including processors with
cache hierarchies.

ACKNOWLEDGMENTS

This work has partially been supported by the LIT Secure
and Correct Systems Lab funded by the State of Upper Austria.

REFERENCES

[1] J. L. Hennessy and D. A. Patterson, “A new golden age for computer
architecture,” Commun. ACM, vol. 62, no. 2, p. 48–60, Jan 2019.

[2] L. Truong and P. Hanrahan, “A golden age of hardware description lan-
guages: Applying programming language techniques to improve design
productivity,” in Summit on Advances in Programming Languages, 2019.

[3] M. Käyrä and T. D. Hämäläinen, “A survey on system-on-a-chip design
using chisel hw construction language,” in IECON 2021, 2021, pp. 1–6.

[4] A. J. Smith, “Cache memories,” ACM Comput. Surv., vol. 14, no. 3, p.
473–530, sep 1982.

[5] J. Handy, The cache memory book. Morgan Kaufmann, 1998.
[6] J. L. Hennessy and D. A. Patterson, Computer architecture: a quantita-

tive approach. Elsevier, 2017.
[7] L. Klemmer and D. Große, “WAL: a novel waveform analysis language

for advanced design understanding and debugging,” in ASP Design
Automation Conf., 2022, pp. 358–364.

[8] M. Alt, C. Ferdinand, F. Martin, and R. Wilhelm, “Cache behavior
prediction by abstract interpretation,” in International Static Analysis
Symposium, 1996, p. 52–66.

[9] R. Wilhelm et al., “The worst-case execution-time problem—overview
of methods and survey of tools,” ACM Trans. Embed. Comput. Syst.,
vol. 7, no. 3, may 2008.

[10] D.-H. Chu, J. Jaffar, and R. Maghareh, “Precise cache timing analysis
via symbolic execution,” in Real-Time and Embedded Technology and
Applications Symposium, 2016, pp. 1–12.

[11] M. Shihabul Haque, J. Peddersen, A. Janapsatya, and S. Parameswaran,
“Dew: A fast level 1 cache simulation approach for embedded processors
with FIFO replacement policy,” in Design, Automation and Test in
Europe, 2010, pp. 496–501.

[12] H. Brais, R. Kalayappan, and P. R. Panda, “A survey of cache simula-
tors,” ACM Comput. Surv., vol. 53, no. 1, Feb 2020.

[13] R. A. Uhlig and T. N. Mudge, “Trace-driven memory simulation: A
survey,” ACM Comput. Surv., vol. 29, no. 2, p. 128–170, Jun 1997.

[14] N. Binkert et al., “The gem5 simulator,” SIGARCH Comput. Archit.
News, vol. 39, no. 2, p. 1–7, Aug 2011.

[15] J. Schneider, J. Peddersen, and S. Parameswaran, “Mashfifo: A
hardware-based multiple cache simulator for rapid FIFO cache analysis,”
in Design Automation Conf., 2014, p. 1–6.

[16] ——, “A scorchingly fast FPGA-based precise L1 LRU cache simula-
tor,” in ASP Design Automation Conf., 2014, pp. 412–417.

[17] R. J. Douma, S. Altmeyer, and A. D. Pimentel, “Fast and precise
cache performance estimation for out-of-order execution,” in Design,
Automation and Test in Europe, 2015, pp. 1132–1137.

[18] K. Ji, M. Ling, Q. Wang, L. Shi, and J. Pan, “AFEC: an analytical
framework for evaluating cache performance in out-of-order processors,”
in Design, Automation and Test in Europe, 2017, pp. 55–60.

[19] K. Ji, M. Ling, Y. Zhang, and L. Shi, “An artificial neural network model
of lru-cache misses on out-of-order embedded processors,” Microproces-
sors and Microsystems, vol. 50, pp. 66–79, 2017.

[20] A. Ghosh and T. Givargis, “Cache optimization for embedded pro-
cessor cores: an analytical approach,” in International Conference on
Computer-Aided Design, 2003, pp. 342–347.

[21] S. Eyerman, L. Eeckhout, T. Karkhanis, and J. E. Smith, “A mechanistic
performance model for superscalar out-of-order processors,” ACM Trans.
Comput. Syst., vol. 27, May 2009.

[22] J. Treibig, G. Hager, and G. Wellein, “Performance patterns and
hardware metrics on modern multicore processors: Best practices for
performance engineering,” in Euro-Par 2012, 2012, pp. 451–460.

[23] P. J. Mucci, S. Browne, C. Deane, and G. Ho, “Papi: A portable interface
to hardware performance counters,” in Proceedings of the department
of defense HPCMP users group conference, 1999.

[24] D. Tarapore, S. Roozkhosh, S. Brzozowski, and R. Mancuso, “Observing
the invisible: Live cache inspection for high-performance embedded
systems,” IEEE Trans. on Comp., vol. 71, no. 03, pp. 559–572, mar
2022.

[25] L. Klemmer and D. Große, “WAVING goodbye to manual waveform
analysis in HDL design with WAL,” IEEE Transactions on Computer
Aided Design of Circuits and Systems, 2024, (accepted).

[26] ——, “Waveform-based performance analysis of RISC-V processors:
late breaking results,” in Design Automation Conf., 2022, pp. 1404–
1405.

[27] L. Klemmer, E. Jentzsch, and D. Große, “Programmable analysis of
RISC-V processor simulations using WAL,” in Design and Verification
Conference and Exhibition Europe, 2022.

[28] F. Skarman, L. Klemmer, O. Gustafsson, and D. Große, “Enhancing
compiler-driven HDL design with automatic waveform analysis,” in
Forum on Specification and Design Languages, 2023, pp. 1–8.

[29] L. Klemmer and D. Große, “Towards a highly interactive design-debug-
verification cycle,” in ASP Design Automation Conf., 2024, pp. 692–697.

[30] “GitHub - VexRiscv: A FPGA friendly 32 bit RISC-V CPU implemen-
tation,” https://github.com/SpinalHDL/VexRiscv.

[31] “Embench: A modern embedded benchmark suite,” https://www.
embench.org/, 2024.

[32] P. Davide Schiavone, F. Conti, D. Rossi, M. Gautschi, A. Pullini, E. Fla-
mand, and L. Benini, “Slow and steady wins the race? a comparison of
ultra-low-power RISC-V cores for internet-of-things applications,” in
International Symposium on Power and Timing Modeling, Optimization
and Simulation, 2017, pp. 1–8.

[33] J. Brandt, W. Reisig, and U. Leser, “Computation semantics of the func-
tional scientific workflow language Cuneiform,” Journal of Functional
Programming, vol. 27, p. e22, 2017.

