Single Instruction Isolation for RISC-V Vector Test Failures

Manfred Schlégl
Institute for Complex Systems
Johannes Kepler University
Linz, Austria
manfred.schlaegl@jku.at

ABSTRACT

Testing complex RISC-V extensions such as RISC-V Vector (RVV)
with its 600+ highly configurable instructions is crucial. For this
reason, test suites have been developed over the last years, including
both hand-written and automatically generated tests. Although
the process of running these tests is often highly automated, a
significant portion of the work, namely the result analysis, has to
be conducted manually after the run.

This paper introduces the modular, open-source framework
RVVTS for positive and negative testing of RVV implementations,
featuring a novel technique called Single Instruction Isolation with
Code Minimization, which significantly reduces manual result anal-
ysis of failing tests. We demonstrate the effectiveness of RVVTS by
automatically generating and applying test sets to the RISC-V VP++
Virtual Prototype and the QEMU emulator, achieving a functional
coverage of >94%. For RISC-V VP++, our framework detects and
minimizes ~1, 849 failures and associate them with 10 isolated, fail-
ing instructions. Similarly, for QEMU, it detects ~19k failures and
relates them to 168 instructions for debugging. Overall, we con-
firmed 3 new bugs in the RISC-V VP++ and 2 in QEMU (and 7 more
are to be analyzed).

1 INTRODUCTION

RISC-V [39, 40], an open standard Instruction Set Architecture (ISA),
embodies flexibility and scalability, enabling the precise tailoring of
processor capabilities to meet diverse application needs without the
constraints of unnecessary features inherent in proprietary ISAs.
RISC-V supports a range of optional extensions, such as those for
floating-point operations, atomic instructions and vector process-
ing, enabling further customization and optimization. Each of these
extensions adds a layer of functionality that must be thoroughly
tested. The verification process typically involves creating specific
test sets that can handle the complexities introduced by these ex-
tensions. Although still challenging, testing of simple instruction
sets, for example RISC-V base integer, is a well understood problem.
For example, the behavior of a simple integer add instruction may
only depend on the parameters directly passed to the instruction.
The parameter space is manageable and it may be even feasible to
hand-craft tests for such instruction sets. The RISC-V compliance
test suite also exemplified this, being crafted by hand when it came
out [1].

® This work is licensed under a Creative Commons Attribution
o International 4.0 License.

ICCAD °24, October 27-31, 2024, New York, NY, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1077-3/24/10
https://doi.org/10.1145/3676536.3676755

Daniel Grofie
Institute for Complex Systems
Johannes Kepler University
Linz, Austria
daniel.grosse@jku.at

However, this approach is not feasible any more for two reasons:
(i) more comprehensive tests are needed, and (ii) the complexity of
the instruction sets increases. Consequently, there has been a push
towards the development of automated test generation techniques,
also referred as Instruction Sequence Generators (ISGs), to facilitate
exhaustive verification processes. Notable methods include the use
of constraint solving techniques, guided random generation, quick
error detection and equivalent program execution. More details are
given in our discussion of related work in Section 2.

Let us now specially look on the complexity challenge introduced
by the RISC-V "V" Vector Extension (RVV) with its 600+ instructions.
RVV allows to efficiently handle data-heavy and parallel processing
tasks, making it highly adaptable for advanced applications in ma-
chine learning, multimedia, and scientific computing. In contrast to
the simple integer add example from above, the behavior of an RVV
instruction depends not only on directly passed parameters, but
also upon the dynamic configuration and, thus, the architectural
state. For example, a RVV add instruction may behave differently
not only wrt. the directly passed parameters, but also wrt. the
previously set vector length, dynamic type (8, 16, 32, 64 bit), etc.
Thus, the parameter space becomes high dimensional, which makes
manual test creation no longer efficient. For this reason, dedicated
ISGs and pre-generated test sets have been developed over the last
years. One example is RISCV-DV, which was originally developed
by Google [9]. However, this ISG does not support the ratified ver-
sion 1.0 of RVV. Another example, which overcomes this problem,
is FORCE-RISCV, maintained by the OpenHW Group [5]. It provides
an ISG for generating extensive tests and the reference simulator
Handcar which generates execution traces for these tests. The ob-
tained execution traces can then be compared with traces generated
by a comparative run on a Device Under Test (DUT). However, a sig-
nificant portion of work, the analysis of the trace differences, is
left to the user. This analysis is largely manual work and involves
finding differences, eliminating irrelevant details and isolating in-
structions, errors and states in a vast amount of traces.

Thus far, we focused on testing with the emphasis on checking
that instructions work as expected, called positive testing. However,
we must also consider possibly unexpected/undesired behavior
when the DUT is exposed to invalid instructions. This kind of
testing is referred to as negative testing [22]. Let us now examine
the Instruction Register (IR) of a processor which stores the current
instruction word to be executed. Then, for negative testing, it is
necessary to distinguish between the following cases:

o Invalid instruction word: The instruction word is not defined
by any (custom) RISC-V extension.

o Invalid instruction because of unsupported extension: The
instruction is specified but not supported by the RISC-V core
at hand.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3676536.3676755

ICCAD ’24, October 27-31, 2024, New York, NY, USA

e Invalid instruction because of temporarily disabled exten-
sion: For example, the instruction considers floating-point,
but floating-point is temporarily disabled (done via the
Control and Status Register (CSR) mstatus).

o Invalid instruction because of dynamic configuration: A good
example is the RVV element type set to 8 bit and the current
instruction performs a RVV floating-point operation (there
is no support for 8 bit floating-point elements).

e Invalid because of parameter(-values): Consider for instance
a RISC-V load instruction that is issued with a invalid load
address.

As we can see, the number of dimensions in the parameter space
increases further, which makes the process of testing even more
complex. This has two major implications: (i) the ISGs must be able
to generate also invalid state, instruction and parameter combina-
tions in a systematic way, and (ii) the already challenging analysis
of the test results becomes much harder due to increased number
of parameters and combinations to be considered. We address both
challenges in this work.

Contribution: In this paper, we present the modular, open-source
framework RVVTS for positive and negative testing of RVV, where
at the heart is our novel Single Instruction Isolation with Code Mini-
mization technique. Besides efficient test generation, RVVTS allows
to reduce manual result analysis of failing tests significantly. The
framework supports automation of the full verification chain:

(1) grammar-based, coverage-guided ISG,

(2) instrumentation and build,

(3) measurement of functional coverage,

(4) execution on reference simulator and DUT,

(5) detection of differences in architectural states (fails),

(6) isolation of the failing instruction (Single Instr. Isolation) and,
(7) creation of minimized failing test case (Code Minimization).

In addition, the framework can be used interactively in Jupyter
notebooks to support the user in tracing causes of detected fails.

In our case studies, we demonstrate the effectiveness of RVVTS.
We use use the framework to generate ready-to-use test sets for
positive and negative testing of RVV implementations for RV32
and RV64, respectively. Each test set achieves a functional coverage
of over 94%.

The tests sets are applied on two DUTs implementing RVV in
its ratified version 1.0, namely the open-source SystemC [4, 23]
TLM based RISC-V VP++ [33, 35, 36] Virtual Prototype (VP) and the
open-source QEMU emulator [6]. Based on the obtained results,
we discuss the differences of positive and negative testing, and
demonstrate the Single Instruction Isolation with Code Minimiza-
tion technique. We show, for example, that we can automatically
minimize about 152k detected fails in the initial version of the VP
and associate them with 542 isolated, failing instructions. For both
DUTs, we perform a result analysis and discuss several previously
undetected bugs. All newly found bugs are reported to the respec-
tive open-source projects. RVVTS, as well as the pre-generated test
sets are available as open-source on GitHub!.

The paper is structured as follows: First, in Section 2 we discuss
related work. Thereafter, in Section 3, we briefly review RVV. In
Section 4, we introduce the RVVTS framework with a particular

Uhttps://github.com/ics-jku/RVVTS

Manfred Schlagl and Daniel Grofie

focus on the novel technique, namely Single Instruction Isolation
with Code Minimization. The case studies are described in Section 5.
Finally, the paper is concluded in Section 6.

2 RELATED WORK

Generating tests for processors is an intensively studied research
field. For automation and efficiency, a major step was made by
separating the description of the processor architecture from test
generation. The approaches in [14, 16] achieved this by employing
constraint solving techniques on constraints that capture the archi-
tectural description and testing-knowledge. Test generation was fur-
ther improved in [30] by sharing information between constraints
solutions among multiple instructions. To increase coverage, the ap-
proach introduced in [17] formed a coverage model via constraints
describing execution paths of individual instructions. Also Bayesian
networks have been used with the same goal [20]. Furthermore,
machine learning approaches emerged, for instance [15, 28] and
also fuzzing, e.g. [27, 32]. However, all these approaches do not
support RVV, focus only on positive testing, and for failing tests
the manual analysis effort to trace down the root cause would be
far too high.

Besides this, also RISC-V specific approaches have been devel-
oped. One of the first RISC-V ISGs was the Torture Test frame-
work [2] based on Scala. RISC-V International hosts the Architec-
ture Test Special Interest Group which provides the architectural
tests [7]. These tests constitute a basic suite that evaluates critical
components of the specification without an in-depth focus on finer
details and has been generated using constraints. Another approach
was Google’s RISCV-DV [9], mentioned in Section 1. It utilizes Sys-
temVerilog alongside the Universal Verification Methodology (UVM)
to continuously generate RISC-V instruction sequences solving
constrained-random specifications. However, it does not support
RVV 1.0; the basic applicability was nevertheless shown in [29], but
the effort for result analysis has already been recognized for positive
testing. Recall, that the aforementioned argument is also one major
problem for FORCE-RISCV. As we will show in the experiments,
there is an enormous amount of failed RVV tests if we consider
both, positive and negative testing where a manual inspection is
practical infeasible (150k+ deviations in our case study, Section 5.2).

Test generation for Instruction Set Simulators (ISSs) leveraging
coverage-guided fuzzing has been targeted in [22, 26]. A formal
constraint-based specification approach has been presented in [24].
The paper [25] introduced an efficient cross-level testing approach
for ISS vs. RTL models which generates an endless instruction
stream on-the-fly during simulation. However, all these approaches
neither target RVV nor provide solutions for large number of failing
test cases.

An entirely different approach is formal verification, as func-
tional behavior is proven. Prominent examples employing model
checking techniques are riscv-formal [8] and Siemens EDA’s One-
Spin tools [12]. riscv-formal does not support RVV, and the OneSpin
tools are only commercially available. Originally designed exclu-
sively for post-silicon verification, Quick Error Detection (QED) has
been further extended and used for pre-silicon verification [37]: it
is referred to as Symbolic Quick Error Detection (SQED), leverages
Bounded Model Checking (BMC) techniques and has been applied
to RISC-V processors [18] and hardware accelerators [38]. The core

https://github.com/ics-jku/RVVTS

Single Instruction Isolation for RISC-V Vector Test Failures

idea of SQED is to symbolically check whether the outputs from
executing a specific instruction sequence are consistent when the
sequence is run twice, provided that the inputs for both executions
are identical. The work in [31] introduced EPEX where for a given
test program an equivalent test program is generated using SMT.
Then, both programs are executed on two instances of the same pro-
cessor design and the programs have to produce equal architectural
states. Although formal methods offer guarantees of correctness,
they may suffer from scalability issues. In case of RVV, this problem
is even harder as (i) very wide datapath operations typically have
to be performed and (ii) due to the dynamic configuration of the
RVV instructions.

Finally, there is the formal specification of the RISC-V ISA writ-
ten in Sail [10]. While the model provides the ultimate truth, cur-
rently the RVV part is still under development. If it becomes avail-
able, we can easily integrate a reference simulator generated from
the Sail model.

3 THE RISC-V "V" Vector Extension (RVV)

Performance of algorithms used in image and video processing, au-
dio manipulation, scientific simulations, and modern Al algorithms
can be significantly increased by exploiting Data-Level Parallelism
(DLP). One way to achieve this are Single Instruction, Multiple Data
(SIMD) instruction set extensions. SIMD operates by executing iden-
tical operations on multiple data elements simultaneously, known
as a Vector. Initially conceived in the 1970s [21], SIMD gained
traction in supercomputing systems pioneered by Cray, evolving
into what we now recognize as vector architectures [19].

Processors have included SIMD instructions for about 25 years,
categorized as multimedia extensions like Intel MMX, SSE, AVX,
or ARM Neon. To simplify Hardware (HW) implementation, these
classical SIMD extensions operate with fixed-size registers (vector
length). The vector length and element types are specified in the
ISA and encoded directly in instructions. This has implications on
scalability, since every change of the vector length means changes
in the ISA and previously compiled code cannot take advantage of
the larger vectors. In contrast, vector architectures such as RVV are
a more general. Instead of having a fixed vector length and types
encoded in instructions, such architectures have have dynamic
vectors and generic instructions. The vector length and the type
of the elements are set dynamically with dedicated instructions
at runtime. Software (SW) can detect and utilize the maximum
available vector length provided by the HW at runtime.

The ratified version 1.0 of RVV, specified in [3], adds the follow-
ing parts to the RISC-V programming model: (i) 32 Vector registers,
(if) 7 CSRs, and (iii) 624 instructions. The length of the RVV regis-
ters, VLEN, is not fixed in the ISA, but can be chosen by the designer.
In addition, registers can be grouped at runtime to increase the max-
imum available vector size at the expense of a smaller number of
usable registers. The 624 instructions can be categorized in configu-
ration, load/store and processing. Configuration instructions, such
as vsetvli set the dynamic type and vector length. The extensive
set of load/store instructions can efficiently handle even complex
data structures (gather/scatter). The processing instructions cover
operations on integer, fixed point and floating point data types. In
addition, RVV specifies vector reduction (e.g. sum, min, max, ...)
and permutation (e.g. move, shift, ...) instructions.

ICCAD ’24, October 27-31, 2024, New York, NY, USA

4 THE RVVTS FRAMEWORK

The modular RVVTS framework is developed in Python and supports
integration with Jupyter notebooks. This gives the framework the
flexibility to support automated processes, such as running long
series of tests, as well as semi-automated, interactive use cases,
such as tracing specific issues.

4.1 Fundamental Data Structures

A central data structure of RVVTS is the Machine State, which
holds the architectural state relevant to all supported extensions.
The Machine State holds values of all involved registers (integer,
floating-point, vector, and CSR), a trap counter, the last executed
Program Counter (PC) address and hashes for memory areas. The
data structure supports extraction from a RISC-V machine, modifi-
cation and comparison, and includes a generator for code to bring
a RISC-V machine to that state. For example, the framework can
execute a program A on a RISC-V machine and extract the Machine
State. It then can modify parts (e.g. register value) of the Machine
State, generate the initialization code, integrate this code in an-
other program 8 and execute this program on a RISC-V machine.
Program 8B would then behave as if it had run immediately after
program A, but with the introduced change in the Machine State.

Other key data structures are the Code Block and the Code Frag-
ment, which are used by RVVTS to organize and handle assembler
code. A Code Fragment is a indivisible sequence of at least one
assembler instruction implementing an operation. For example a
Code Fragment for a RVV add operation contains a single vector
add assembler instruction. A Code Fragment for a RVV bounded
load/store operation [34] contains multiple assembler instructions
to realize the bounding and a vector load/store instruction.

A Code Block contains a sequence of Code Fragments and forms
an entity that can be executed on a RISC-V machine by RVVTS.
The data structure provides various methods to modify the con-
tained code, retrieve sub-blocks, save/load to/from files, etc. Code
Blocks can either be created manually, loaded from files, or cre-
ated automatically by the ISG or through Code Minimization by
the framework. The latter two will be discussed in the upcoming
Section 4.2 and Section 4.4.

4.2 The Grammar-based ISG

RVVTS comes with a grammar-based ISG for 32 bit (RV32) and 64
bit (RV64) RISC-V configurations. The ISG provides support for the
base integer (I) and the RVV extensions, which is the focus in this
work. Furthermore the generator partially supports floating-point
(F/D) as far as necessary to handle RVV floating-point.

The ISG uses a context-free grammar to create syntactically valid
instruction sequences. The grammar consists of non-terminal and
terminal symbols. When invoked, the generator randomly selects
expansion candidates for non-terminal symbols until only terminal
symbols remain. The result is returned as Code Fragment.

Context-free grammars are highly efficient for generating simple
sequences. However, the expressiveness of such grammars is too
limited when it comes to more complex sequences. One example
of this is the generation of bounded values, possibly even dynami-
cally parameterized, such as the generation of an address in a spe-
cific range. More complex examples are (address-range) bounded

ICCAD ’24, October 27-31, 2024, New York, NY, USA

CodeErrMinRunner

Manfred Schlagl and Daniel Grofie

OK

Configuration
Test Code " I .
CodeC —> diff?
(Code Block) Code Block Diff

yes (N —

[FAIL p—)
Full Test Case + State Diff 38

5

Code Block 8

Delta Code Reduction
’ FAIL ‘

Rea(ucc:;eT‘;z‘ckc)“e <> Binary Split > ¢ Isolated Instruction, —_

Reduced Test Case, State Diff 2
complete?) ig

Code Block
Code Minimization
|» GoodFragmentsnoFall) |, cogecheckRunner ———> Generate State Init Code
. code [1:n-1] Code State)
Block + Code Block
o) FAIL Init State
N Bad (_I:s([)nF.:g]menl combine —~— CodeC Isolated Instruction, > —3g
code [n-1: Code Block Emi Diff | Minimized Test Case, State Diff

Figure 1: CodeErrMinRunner

load/store operations, which consist of multiple instructions de-
pendent on each other. To handle such cases efficiently, we extend
the context-free grammar with special function symbols associated
with Python functions. The ISG expands such function symbols by
calling the associated function, which can provide context-sensitive
expressiveness. The result of the function is then integrated in the
generated Code Fragment. In our ISG, functions are for example
used to generate immediate values, register allocations, valid values
for CSRs and bounded load/stores.

4.3 RVVTS’s Building Blocks: Runners

The RVVTS framework is designed in modular, object oriented
design paradigm with expandability in mind. Central elements of
the framework are the so called Runners.

Basic Runners handle fundamental tasks as process execution,
timeout handling, logging and archiving of results. Extended Run-
ners add specific functionality to the framework and are created
by specializations and aggregations of basic and other extended
Runners. All Runners are controlled via central configuration data
structure, that contains target definitions (e.g. RISC-V configuration,
memory map) and other Runner specific settings. In the following,
we provide a brief overview of the most important low- and mid-
level Runners with regard to this paper.

BuildRunner takes a Code Block and a Machine State. The Runner
creates a instrumented program (e.g. initialization with given Ma-
chine State, trap counting, dump of Machine State after execution)
and invokes a compiler to create a Executable and Linkable Format
(ELF) binary.

Execution Runners take a ELF binary, execute that binary on a
specified target and extract the Machine State after the run. At the
time of writing, RVVTS comes with Execution Runners to run Spike,
which is used as a golden reference model, and RISC-V VP++ and
QEMU as supported DUTs. Spike is the official RISC-V reference
simulator maintained by RISC-V International [13].

Support for other SW targets (e.g. simulators, emulators) or even
HW targets can be introduced by adding new Execution Runners.
Requirements for new targets are, that (i) the target can be started
up in a controlled way with a given ELF binary and zeroed-out

memory, (ii) the target can be stopped when reaching a specified
PC position (e.g. breakpoint), and (iii) the targets architectural state
can be extracted (e.g. memory dump). One way to handle these
requirements is by utilizing the framework’s generic GNU Debugger
(GDB) client Runner. This GDBRunner is able to connect to any
targets providing a GDB Remote Debug Protocol (RDB) interface and
is also used by the Execution Runners for RISC-V VP++ and QEMU.
There is also another, special form of Execution Runner that
is used to measure the functional coverage of the given binaries.
This Execution Runner uses the free, but closed-source riscvOVPsim
simulator from Imperas [11]. The riscvOVPsim functional coverage
metric for RVV measures the use (hits) of specified RVV instructions
and their parameters. The maximum number of points of this metric
consists of hits on instructions, all possible integer, floating-point
and vector register addresses, and positive/negative integer register
and immediate values.
RefCovRunner takes a ELF binary as input and uses the Execution
Runners for Spike and riscvOVPsim to provide the Machine State
and functional coverage values.
CodeCheckRunner takes a Code Block as input. It first uses a
BuildRunner for instrumentation and build. The resulting ELF bi-
nary is then fed into a RefCovRunner which provides the Machine
State and functional coverage values of the executed Code Block.
CodeCompareRunner also takes a Code Block as input and uses
the BuildRunner for instrumentation and build. The resulting ELF
binary is fed in a RefCovRunner and any other given Execution
Runner, called DUT Runner in this context. The Runner provides a
comparison of the resulting Machine States and also the functional
coverage values of the executed Code Block.

4.4 Single Instruction Isolation with Code
Minimization

Next, we focus on the CodeErrMinRunner which implements

our novel Single Instruction Isolation with Code Minimization tech-

nique. The Runner is shown in Figure 1. We first consider the upper

part of the figure. The Runner takes a Code Block and first uses a

CodeCompareRunner to determine, if there are any deviations in

Single Instruction Isolation for RISC-V Vector Test Failures

Algorithm 1 Delta Code Reduction: Binary Search Algorithm

Input: Failing Code Block
Output: Position of the first failing Code Fragment.

: good «— 0
: bad < codeblock.len()
: test «— codeblock.len()
: while (bad — good) > 1do
if CodeCompareRunner.run(codeblock.subpart(0, test)) == FAIL then
bad « test
test « test — ((bad — good)/2)
else
good « test
test « test + ((bad — good)/2)

: return bad

> Reduce by half search area

I IR B A > e

=

> Extend by half search area

—-
jan

the Machine State. If not, the run is considered a pass, the results
(e.g. functional coverage values) are documented and the run is
complete. In case of a Machine State deviation, the run is considered
a fail. The results, including the failing Code Block, are documented,
and the Code Block is given to the Delta Code Reduction stage.

Delta Code Reduction is seen in the mid part of Figure 1. In this
reduction stage, the fail in the Code Block is isolated using a binary
search technique presented in Algorithm 1. The algorithms keeps
track of the last found good and bad code positions, and a current test
code position. In each iteration, a sub-part of the Code Block starting
from 0 to the test position is executed using a CodeCompareRunner.
The result is checked for a fail, the code positions are updated
accordingly and the search area is halved for the next iteration.
The algorithm stops once it has found the earliest single bad Code
Fragment, which is located at the bad position. The results of the
last run and the reduced failing Code Block, are documented.

The Delta Code Reduction stage results in a reduced Code Block
consisting of a number of non-failing Code Fragments and a single
failing Code Fragment at the end. Based on this information, it is
already possible to isolate a single failing instruction (the last Code
Fragment). However, the Code Block may still contain many more
Code Fragments, which makes analysis difficult. The Code Block is
therefore given to a final stage, the Code Minimization, seen in the
lower part of Figure 1. In this stage, the Code Block is split into two
separate blocks: The first Code Block contains all, non-failing Code
Fragments just before the failing fragment. The second Code Block
contains only the last failing Code Fragment.

The first block is executed by a CodeCheckRunner to extract the
Machine State after execution of the non-failing fragments. The
initialization code generated from this Machine State is then com-
bined with the second Code Block containing only the single failing
fragment. The result is a much easier to analyze minimized Code
Block containing only the Machine State initialization and a single
failing Code Fragment. In a final step, this minimized Code Block
is executed by a CodeCompareRunner to obtain the final results.
These results and the minimized Code Block are then documented.

An important variant derived from the CodeErrMinRunner is the
TestsetCodeErrMinRunner, which is used to run pre-generated
test sets in our case studies, in Section 5. TestsetCodeErrMinRunner
executes a series of Code Blocks provided as the files and collects
all obtained results. The Runner takes a path and a file matching
pattern as input. Files matching the given pattern are loaded as
Code Block and executed as described above. The results of all fails,
including the reduced and minimized Code Blocks are documented
for later analysis.

ICCAD ’24, October 27-31, 2024, New York, NY, USA

4.5 Coverage Guided Test Set Generation

With the CovGuidedTestsetGenerator, the RVVTS framework pro-
vides a Runner able to generate dense Code Blocks with high func-
tional coverage. Multiple, independent instances of these Runners
can be used in parallel to generate large sets of such Code Blocks.
Such sets are particularly useful for testing, as we will demonstrate
in our case studies in Section 5.

The generator uses the grammar-based ISG from Section 4.2 and
the CodeCheckRunner, presented in Section 4.3. The generation pro-
cess starts with an empty Code Block with zero functional coverage
and consists of two alternating phases: (i) The Extension phase, in
which the Runner tries to extend the Code Block with new Code
Fragments to improve coverage, and (ii) and the Reduction phase,
in which the Runner tries to densify the Code Block by removing
Code Fragments without hurting coverage. Switching between these
phases is determined by a configurable number of iterations for
each phase. The process can be stopped at any iteration by the
program that instantiated the Runner. Typical examples of this
are stopping after a certain number of iterations or time, or after
reaching a certain coverage value.

We will now look at the two phases in more detail. At each
iteration of the Extension phase, the ISG generates a new Code
Fragment, which is inserted at a random position in a copy of the
current Code Block. This new Code Block is then instrumented,
compiled and executed by a CodeCheckRunner, which returns a
Machine State and the coverage value. These results must meet two
requirements: (i) The Machine State must be valid, which will be
discussed below in more detail, and (ii) the coverage obtained for
the new Code Block must be maintained or improved compared to
the original Code Block. If one of these requirements is not met, the
new Code Block is rejected and the original Code Block is used in
the next iteration. If all requirements are met, the new Code Block
is used for for the next iteration.

At each iteration of the Reduction phase, a random Code Fragment
is removed from a copy of the current Code Block. Also in this
phase, the new Code Block is executed via a CodeCheckRunner. The
results are checked for similar requirements as above (validity and
coverage), with one important difference: The coverage obtained
for the new Code Block must stay the same wrt. the original Code
Block. Again the new Code Block is only used for the next iteration,
if these requirements are met.

The validity property mentioned above consists of at least the
minimum requirements that the generated Code Block must be
compilable and executable. However, additional requirements are
configurable. At the time of writing, the only configurable property
is a Boolean switch that controls whether the resulting Code Block
is allowed to cause traps in the execution. As we will see in our case
studies below, in Section 5, such a switch is crucial for generating
test sets targeted for pure positive, and positive/negative testing.

5 CASE STUDIES

In this section, we demonstrate the effectiveness of RVVTS and
the novel Single Instruction Isolation with Code Minimization tech-
nique. First, in Section 5.1, we present four test sets generated with
CovGuidedTestsetGenerator (Section 4.5), that can be used in the
verification process of RV32 and RV64 based RVV implementa-
tions. After this, we use the TestsetCodeErrMinRunner (Section 4.4)

ICCAD ’24, October 27-31, 2024, New York, NY, USA

Manfred Schlagl and Daniel Grofie

Table 1: Test Sets pre-generated with CovGuidedTestsetGenerator

Functional Coverage

RISC-V Million Million (riscvOVPsim RVV)

Test set Config Code Fragments RVV Instr. Points Percent
. RV32 1.78 1.25 30,500/ 31,894 95.63
Valid Sequences (VS) RV64 1.69 1.21 31,410/ 33,076 94.96
. . RV32 1.70 1.31 30,919 / 31,894 96.94
[nvalid+Valid Sequences (IVS) RV64 1.64 1.26 31,952 / 33,076 96.60
Merged Sequences (MS) RV32 3.49 2.56 30,920 / 31,894 96.95
(VS + IVS) RV64 3.33 247 31,952/ 33,076 96.60

including Single Instruction Isolation with Code Minimization to
apply the pre-generated test sets on two DUTs. The first DUT,
RISC-V VP++ [36] is considered in Section 5.2. The second DUT,
QEMU [6], is covered in Section 5.3. For both DUTs, we perform a
result analysis and discuss previously undetected bugs. All newly
found bugs are reported to the respective open-source projects.

5.1 Pre-Generated Testsets

We use the CovGuidedTestsetGenerator, presented in Section 4.5 to
generate four test sets by varying two configuration settings: (i)
the RISC-V configuration (RV32, RV64), and (ii) the Boolean switch,
that controls whether the generated test sets are allowed to contain
instruction sequences that trigger traps when executed.

The former, the RISC-V configuration is varied to enable support
for testing RV32 and RV64 DUTs and thus to extend the usability
of the pre-generated test sets. The latter switch enables support
for different test strategies, namely having separate test sets for
pure positive testing, containing only Valid Sequences (VS) and
positive/negative testing, containing Invalid+Valid Sequences (IVS).

For the generation of all test sets, the following global configu-
ration is chosen: (i) At least 3 MiB read/writeable memory located
at address 0x80020000 is expected. The memory is partitioned in
a 1,536 KiB code, a 10 KiB dump (Machine State) and a 1,526 KiB
data area. Generated bounded loads can access the full memory
area, while generated bounded stores can only access the data area.
(ii) Code is generated for RVV implementations with a VLEN of up
to 512 bits and a ELEN of 64 bits.

Table 1 summarizes the major characteristics of (i) the four gen-
erated test sets with Valid Sequences (VS) and with Invalid+Valid
Sequences (IVS) for RV32 and RV64, respectively, and (ii) the merged
test sets with Merged Sequences (MS) (i.e. VS + IVS), for RV32 and
RV64, respectively. For each test set, the table shows the number of
generated code fragments, the number of generated RVV instruc-
tions, and the achieved RVV functional coverage. As can be seen in
Table 1, all test sets reach a functional coverage above 94%.

The pre-generated test sets can be used to test RV32 and RV64
based RVV implementations and are available as open-source on
GitHub.

5.2 RISC-V VP++

In this case study, we consider the recently released RISC-V VP++
with support for RVV 1.0. We use the TestsetCodeErrMinRunner to
apply the test sets generated in Section 5.1 on different variants
and versions of the VP.

Table 2 shows the result of the application of the RV32 and
RV64 VS, IVS and MS test sets on RISC-V VP++. We obtained results
for two versions of the VP: (i) The initial version of RISC-V VP++

Table 2: Test Sets executed on RISC-V VP++

RISC-V vpP Detected Isolated Failing

Test set Config Version Fails Instructions
initial N/A N/A

Vs RV32 latest 1,656 9
RV64 initial 39,842 409

latest 1,301 9

RV32 initial N/A N/A

Vs latest 195 9
RV64 initial 112,015 539

latest 183 9

initial N/A N/A

MS RV32 latest 1,849 10
RV64 initial 151,857 542

latest 1,484 9

with support for RVV, presented in [36]. (ii) The latest version of
RISC-V VP++ at the time of writing (git commit hash ¢354bfea). Due
to a fundamental bug related to the integration of RVV in the initial
version of the RV32 VP variant, the results of the test runs are not
valid for this case and are therefore listed as N/A in the table.

For each run, Table 2 shows the overall number of detected fails
and the number of isolated, unique RVV instructions causing these
these fails. As explained in Section 4.4, a fail is defined as deviating
Machine State extracted after execution on a reference simulator
(Spike) and the DUT.

First, we focus on the differences from the initial to the latest
RV64 VP version on a high level. It can be seen, that the number of
detected deviations and identified instructions drops significantly
from the initial to latest VP version. This is not surprising due to
the fact that the latest version contains 42 RVV related bug fixes
compared to the initial version. These 42 fixes can be roughly clas-
sified in three categories: (i) 6 fixes are related to the integration
of RVV in the RV32 and RV64 ISSs (e.g. access to RVV CSRs), (ii)
11 fixes are related to the function of specific RVV instructions or
instruction groups (e.g. incorrect result for vector remainder, ...),
and (iii) 25 fixes are related to handling illegal parameter combi-
nations or configurations for RVV instructions (e.g. invalid type
settings, use of invalid registers, ...).

Bugs in the first category usually have a major impact and their
effects can be seen quickly in tests. For example, a generic bug in
floating-point handling can affect the behaviour of many floating-
point instructions. However, bugs in this category are often hard to
track down due to their generic effects. With respect to our results
in Table 2, such kind of bugs can be detected equally well with the
VS and IVS test sets.

Bugs in the second category are related to the function of specific
RVV instructions or instruction groups. For example, incorrect
results of a RVV remainder instruction for certain parameter values.

Single Instruction Isolation for RISC-V Vector Test Failures

Bugs of this kind can also be detected with the VS and IVS test
sets. However, since the VS test set is likely to contain more valid
parameter combinations for RVV instructions than a IVS test set
of roughly the same size, the VS test set is more suited to detect
such kind of bugs. This can also be seen in Table 2 for the initial VP.
For the VS and IVS test sets, we can identify 409 and 539 unique
instructions causing fails, respectively. However, for the merged
MS test set we can identify 542 unique instructions causing fails.
This means, that 542 — 539 = 3 instructions were identified only
with the VS test set containing valid sequences.

Bugs in the third and last category are related to illegal parameter
combinations or configurations. The functionality of RVV instruc-
tions is heavily dependent on the architectural state. Two prominent
examples for this are dynamic typing and register grouping. An ex-
ample of the former, floating-point operations on 8 bit elements,
was already presented in Section 1. The latter, register grouping, is
a special feature of RVV to group the 32 available vector registers
together to either 16, 8 or 4 registers with 2, 4 or 8 times the size of
a single register. For example, if register grouping is not used, the
instruction vadd vO0, v1, v2 isvalid.If register grouping is set
to 2, only even numbered registers are allowed. In this case, the
exact same instruction is invalid and will cause a trap.

Instruction sequences containing illegal parameter combinations
or configurations are by principle not included in the VS test set.
Bugs related to invalid sequences can only be detected with nega-
tive testing and hence with the IVS test set. This can also be seen
in Table 2: By subtracting the number of instructions with fails
detected by the VS test set (409) from the number detected by the
merged MS test set (542), we get 542 — 409 = 133 instructions with
fails detected only by the IVS test set.

We now focus on the results of the latest version of RISC-V VP++
in Table 2. Comparing the absolute number of fails detected by the
VS test set (1,656 and 1,301), with the IVS test set (195 and 183),
shows a large difference. The much lower values for the IVS test set
indicates, that most remaining problems in RISC-V VP++ are related
to the first and second category described above. Overall, for the
merged MS test set, we can observe 10 and 9 isolated instructions
with fails for RV32 and RV64, respectively. By analyzing the au-
tomatically generated minimized test cases and the difference of
the extracted Machine States after the run, we can identify four
types of potential bugs: (i) Deviations for floating-point reduction
operations, more specifically the unordered floating-point sums
viredusum.vs and viwredusum. vs, (ii) Unexpected traps of
floating-point to/from integer conversion operations, (iii) Unex-
pected traps and invalid results of vErsgrt 7. v, and (iv) Crashes
of the VP related to vrem. vv. We will now analyze the first two
and most interesting types in detail.

The first type can be identified as false-positive fail of the in-
structions vfredusum.vs and vfwredusum.vs, which are
specified to provide a sum of floating-point vector elements. It
is important to note that floating-point calculations are not asso-
ciative. Consequently, the order in which elements are processed
matters and can lead to different results. To avoid any potential
ambiguities, RVV specifies two variants of these sum operations:
(i) the ordered variants, vfredosum.vs and vifwredosum.vs,
which sums the values strictly in element order (0, 1, 2, ...), and (ii)
the unordered variants, vfredusum.vs and vfwredusum. vs,

ICCAD ’24, October 27-31, 2024, New York, NY, USA

Table 3: Test Sets executed on QEMU (git hash 02e16abof4)

RISC-V Detected Isolated Failing
Test set Config Fails Instructions
Vs RV32 10,575 114
RVe64 6,548 112
RV32 8,667 167
Vs RVeé4 8,463 166
RV32 19,242 168
MS RV64 15,011 166

which offer more freedom regarding the order of processing ele-
ments. While the former brings the advantage of comparability
and reproducibility, the latter may offer advantages in terms of
performance. However, RVV also specifies, that ordered implemen-
tations are also valid unordered implementations. This fact is ex-
ploited by the developers of RISC-V VP++, where vEredusum. vs
and viwredusum.vs use the exact same implementations as
viredosum.vs and vEfwredosum. vs, respectively. As this is
not the case for the reference simulator Spike, some results of the
operations differ and are identified as fails by RVVTS. However,
since we have the minimized test cases and Machine States, it is easy
to verify, that the unordered VP results match the ordered reference
results. We semi-automatically replace the unordered variants with
the ordered variants in all generated minimized test cases and per-
form a re-run on the reference simulator. Comparing the resulting
Machine States with the states of the previous run on the VP shows
no differences and therefore, all detected fails of vfredusum.vs
and vfwredusum. vs are false-positives.

The second type of potential bugs concerns conversion instruc-
tions of floating-point to/from integer with widening and narrow-
ing result width (e.g. vfwecvt . f.x.v, vincvt.x.f.w,...). A
quick analysis of the results of the corresponding minimized test
cases shows, that in all cases the VP has unexpected traps, while
the instructions are successfully executed on the reference simu-
lator. Since the VP can provide detailed output on causes of RVV
traps, and RVVTS automatically records all output of failed runs, we
can easily track down the cause of all traps. Analyzing the output
shows that the cause of the traps is the same in all detected failures,
namely that half-precision floating-point is not supported. Since
half-precision floating-point is not used in any of the failing test
cases this must be a bug in RISC-V VP++. A code analysis of the
RVV implementation in RISC-V VP++ reveals that there is indeed a
faulty assertion related to detecting the use of the not-yet-supported
half-precision floating-point.

53 QEMU

In this case study, we consider QEMU in its latest version at the time
of writing, v9.0.0-rc3. First, we use the TestsetCodeErrMinRunner to
apply the test sets generated in Section 5.1 on RV32 and RV64 vari-
ants of the emulator. Then, we perform a result analysis leveraging
RVVTS and Single Instruction Isolation with Code Minimization. Fi-
nally, we discuss a selection of interesting newly discovered bugs
in QEMU.

Table 3 shows the results of the application of the RV32 and RV64
VS, IVS and MS test stets on QEMU. For each run, the table shows
the overall number of detected fails and the number of isolated,
unique RVV instructions causing these these fails.

ICCAD ’24, October 27-31, 2024, New York, NY, USA

First, we focus on the difference between the VS (positive testing)
and IVS (positive/negative testing) test sets. Subtracting the number
of failing instructions detected by the IVS test sets (167 and 166)
from the corresponding numbers of the merged MS test sets (168
and 166), gives us 1 and 0 instructions for RV32 and RV64, which
are detected only by the VS test sets with valid sequences. Similarly,
subtracting the number failing instructions of the VS test sets (114
and 112) from the MS test sets (168 and 166), gives us 54 instructions
for RV32 and RV64, which are only detected by the IVS test sets
with invalid sequences. We can see that in the case of QEMU, the
IVS test sets, and therefore the negative tests, are very important.

We now focus on the failing instructions and perform a exem-
plary analysis of the results and a cause analysis leveraging RVVTS
and Jupyter notebooks. Please note that the workflow presented be-
low is only one of many possible workflows supported by RVVTS.

All failed instructions are classified according to their function
(e.g. load, store), or a main characteristic (e.g. float widening opera-
tion). For each class, all generated minimized cases form a new test
set which is loaded and executed by RVVTS until the first fail. By
studying the failing minimized test case and the resulting Machine
State difference, assumptions of the cause and corresponding mea-
sures are derived. These measures may include, for example, exper-
imental fixes in the DUT, and semi-automatically applied adaption
of test cases or result checks. After documenting the assumed cause
and implementing corresponding measures, the automated execu-
tion of all minimized test cases is repeated. Depending on whether
the assumptions and measures are correct and whether all fails
are due to the same cause, none, some, or all cases may still fail.
These still failing test cases are again automatically documented by
RVVTS and form a new (sub-)test set. The whole process is repeated
until all causes are found.

Table 4 presents the result of this process for our current QEMU
case study. The left-most column of the table shows the formed
instruction classes. For each class the number of corresponding
isolated failing instructions and the number of minimized test cases
for RV32 and RV64 is given. The right-most column of the table
represents the results of the analysis and contains a list of brief
descriptions of the isolated causes. In order to conclude our case
study on QEMU, we now discuss two interesting causes that have
been identified as previously undetected bugs in QEMU.

The first bug is related to the vs1idelx.vx class of instruc-
tions, vslidelup.vx and vslideldown . vx, which only fail
on RV32. Both instructions slide the elements in a vector in the
given direction by one element and insert a new vector element
from a given scalar integer register. On the affected RV32, the scalar
integer registers are 32 bit wide. All detected failing cases have
the following characteristics: (i) vector elements are configured to
64 bit, and (ii) the most significant bit in the 32 bit scalar integer
register is set, which can be interpreted as negative value. The
corresponding results show, that the reference simulator Spike and
QEMU provide the same result on the lower 32 bits of the newly
introduced vector element, which also matches the value of the
scalar integer register. However, the higher 32 bit of the value dif-
fer: While these bits are all set (= 1) by the reference simulator,
corresponding to a sign extension of the scalar value, they are all
cleared (= 0) by QEMU. This is definitely a bug in QEMU, as the
RVV specification version 1.0 clearly states that a sign-extend must

Manfred Schlagl and Daniel Grofie

Table 4: Result Analysis for QEMU

RVV #Isolated #Minimized

Instruction Instructions Test Cases

Class (RV32/RV64) (RV32/RV64) Isolated Causes

Load 80/78 4,492 / 3,285 RV32: 64 bit indices not supported
Traps on first 4KiB of memory
Fractional Imul in QEMU allowed

Store 46/ 48 3,149/ 727 RV32: 64 bit indices not supported
Fractional Imul in QEMU allowed

Reduction 16/ 16 7,095/ 6,714 Invalid behavior with vl=0

Float widening 21/21 843 /772 Invalid support for half-precision

vsetx 3/3 3,409 / 3,488 Extended support for fractional Imul

vslidels.vx 2/0 226/0 RV32: Broken sign-extend of 32 to 64 bits

be performed in these cases. Interestingly, the very similar vector
integer move instructions, which copy a scalar value from an inte-
ger register (vimv . v. x) or an immediate (vmv . v. i) into a vector,
behave as expected for negative values.

The second bug discussed here concerns all RVV reduction in-
structions. As the name suggests, all these instructions reduce a
vector to a single element. The vredsum.vs vd, vs2, vsl
instruction is an example for this. The instruction sums all elements
in vector register vs2 and the first element of vector register vs1.
The result is written to the first element of vector register vd. All
detected failing cases share one commonality: The vector length
(v1) is set to zero. The corresponding results show, that the refer-
ence simulator Spike does not perform a write to vd in these cases,
which is the correct behavior defined in the RVV specification. In
contrast, QEMU writes the value of the first element of vs2 to vd,
which contradicts the specification and is therefore a clear bug in
v9.0.0-rc3 of QEMU. A comparison run on an earlier version, v8.0.4,
of QEMU also shows that this is a new bug introduced somewhere
in between v8.0.4 and v9.0.0-rc3 of QEMU.

6 CONCLUSIONS

In this paper, we have introduced the modular and open-source
RVVTS framework which comes with our novel Single Instruction
Isolation technique for positive and negative testing of RVV imple-
mentations, addressing the challenges posed by the complexity of
the 600+ highly configuration-dependent RVV instructions.

The effectiveness of RVVTS was demonstrated in our case studies,
where we (i) generated test sets with functional coverage >94% for
positive and negative testing of 32 and 64 bit RVV implementations,
(ii) applied the test set on the RISC-V VP++ and QEMU resulting
in minimized test cases and isolated failing instructions using our
Single Instruction Isolation with Code Minimization technique, and
(iii) traced down the causes of the failed isolated instructions to
find the root cause.

Overall, we confirmed 3 new bugs in the RISC-V VP++ and 2
new bugs in QEMU (and 7 more are to be analyzed where we will
consider the formal RISC-V Sail specification model to finally clarify
potential ambiguities in the RVV specification). The generated test
sets and the RVVTS framework are available as open-source on
GitHub. Moreover, our findings are reported to the respective open-
source projects.

ACKNOWLEDGMENTS

This work has partially been supported by the LIT Secure and Correct Systems Lab
funded by the State of Upper Austria.

Single Instruction Isolation for RISC-V Vector Test Failures

REFERENCES

[16]

(17

[18

[19]
[20]

[21]

oo
sk

[23]

[24

[25]

[28]

[29]

[30]

[31]

[32

[33]

2021. RISC-V Compliance Task Group.
compliance.

2021. RISC-V Torture Test Generator. https://github.com/ucb-bar/riscv-torture.
2022. RISC-V V vector extension. https://github.com/riscv/riscv-v-spec.

2023. IEEE Standard for Standard SystemC Language Reference Manual. https:
//doi.org/10.1109/IEEESTD.2023.10246125

2024. FORCE-RISCV RISC-V Instruction Sequence Generator (ISG). https://
github.com/openhwgroup/force-riscv.

2024. QEMU A generic and open source machine emulator and virtualizer.
https://www.qemu.org.

2024. RISC-V Architecture Test SIG. https://github.com/riscv-non-isa/riscv-arch-
test.

2024. RISC-V Formal Verification Framework. https://github.com/YosysHQ/riscv-
formal.

https://github.com/riscv/riscv-

] 2024. RISCV-DV. https://github.com/google/riscv-dv.

2024. RISCV Sail Model. https://github.com/rems-project/sail-riscv.

2024. riscvOVPsim Imperas RISC-V Instruction Set Simulator (ISS). https://www.
imperas.com/riscvovpsim-free-imperas-risc-v-instruction- set-simulator.

2024. Siemens EDA Questa Formal Verification Apps. https://eda.sw.siemens.
com/en-US/ic/questa/formal-verification.

2024. Spike RISC-V ISA Simulator. https://github.com/riscv/riscv-isa-sim.
Allon Adir, Eli Almog, Laurent Fournier, Eitan Marcus, Michal Rimon, Michael
Vinov, and Avi Ziv. 2004. Genesys-Pro: innovations in test program generation
for functional processor verification. IEEE Design & Test of Comp. (2004), 84-93.
Niklas Bruns, Daniel Grof3e, and Rolf Drechsler. 2020. Early Verification of ISA
Extension Specifications Using Deep Reinforcement Learning. In ACM Great
Lakes Symposium on VLSI 297-302.

Brian Campbell and Ian Stark. 2014. Randomised Testing of a Microprocessor
Model Using SMT-Solver State Generation. In Formal Methods for Industrial
Critical Systems. 185-199.

Mikhail Chupilko, Alexander Kamkin, Artem Kotsynyak, and Andrei Tatarnikov.
2017. MicroTESK: Specification-Based Tool for Constructing Test Program Gen-
erators. In Haifa Verification Conference. 217-220.

Keerthikumara Devarajegowda, Mohammad Rahmani Fadiheh, Eshan Singh,
Clark W. Barrett, Subhasish Mitra, Wolfgang Ecker, Dominik Stoffel, and Wolf-
gang Kunz. 2020. Gap-free Processor Verification by S2QED and Property Gener-
ation. In Design, Automation and Test in Europe. 526-531.

Roger Espasa, Mateo Valero, and James E. Smith. 1998. Vector Architectures: Past,
Present and Future. In International Conference on Supercomputing. 425-432.
Shai Fine and Avi Ziv. 2003. Coverage directed test generation for functional
verification using Bayesian networks. In Design Automation Conf. 286-291.

M.J. Flynn. 1966. Very high-speed computing systems. IEEE 54, 12 (1966), 1901—
1909.

Vladimir Herdt, Daniel Grofle, and Rolf Drechsler. 2020. Closing the RISC-V
Compliance Gap: Looking from the Negative Testing Side. In Design Automation
Conf. 1-6.

Vladimir Herdt, Daniel Grof3e, and Rolf Drechsler. 2020. Enhanced Virtual Proto-
typing: Featuring RISC-V Case Studies. Springer.

Vladimir Herdt, Daniel Grof3e, and Rolf Drechsler. 2020. Towards Specification
and Testing of RISC-V ISA Compliance. In Design, Automation and Test in Europe.
995-998.

Vladimir Herdt, Daniel Grofie, Eyck Jentzsch, and Rolf Drechsler. 2020. Efficient
Cross-Level Testing for Processor Verification: A RISC-V Case-Study. In Forum
on Specification and Design Languages. 1-7.

Vladimir Herdt, Daniel Grofie, Hoang M. Le, and Rolf Drechsler. 2019. Verifying
Instruction Set Simulators using Coverage-guided Fuzzing. In Design, Automation
and Test in Europe. 360-365.

Jaewon Hur, Suhwan Song, Dongup Kwon, Eunjin Baek, Jangwoo Kim, and
Byoungyoung Lee. 2021. DifuzzRTL: Differential Fuzz Testing to Find CPU Bugs.
In Symposium on Security and Privacy. 1286-1303.

Charalambos Ioannides, Geoff Barrett, and Kerstin Eder. 2011. Feedback-Based
Coverage Directed Test Generation: An Industrial Evaluation. In Haifa Verification
Conference. 112-128.

Victor Jimenez, Mario Rodriguez, Marc Dominguez, Josep Sans, Ivan Diaz, Luca
Valente, Vito Luca Guglielmi, Josue V. Quiroga, R. Ignacio Genovese, Nehir
Sonmez, Oscar Palomar, and Miquel Moreto. 2023. Functional Verification of a
RISC-V Vector Accelerator. IEEE Design & Test of Comp. 40, 3 (2023), 36—44.
Yoav Katz, Michal Rimon, and Avi Ziv. 2012. Generating instruction streams
using abstract CSP. In Design, Automation and Test in Europe. 15-20.

Lucas Klemmer and Daniel Grof3e. 2021. EPEX: Processor Verification by Equiva-
lent Program Execution. In ACM Great Lakes Symposium on VLSI. 33-38.
Lorenzo Martignoni, Roberto Paleari, Giampaolo Fresi Roglia, and Danilo Bruschi.
2009. Testing CPU Emulators. In International Symposium on Software Testing
and Analysis. 261-272.

Manfred Schldgl and Daniel Grofe. 2023. GUI-VP Kit: A RISC-V VP Meets Linux
Graphics - Enabling Interactive Graphical Application Development. In ACM

[34

[35

[36

[38

[39

[40

ICCAD ’24, October 27-31, 2024, New York, NY, USA

Great Lakes Symposium on VLSI 599-605.

Manfred Schlagl and Daniel Grofie. 2024. Bounded Load/Stores in Grammar-based
Code Generation for Testing the RISC-V Vector Extension. In RISC-V Summit
Europe.

Manfred Schlégl, Christoph Hazott, and Daniel Grofle. 2024. RISC-V VP++: Next
Generation Open-Source Virtual Prototype. In Workshop on Open-Source Design
Automation.

Manfred Schligl, Moritz Stockinger, and Daniel Grofie. 2024. A RISC-V “V”
VP: Unlocking Vector Processing for Evaluation at the System Level. In Design,
Automation and Test in Europe. 1-6.

Eshan Singh, David Lin, Clark W. Barrett, and Subhasish Mitra. 2018. Logic
Bug Detection and Localization Using Symbolic Quick Error Detection. IEEE
Transactions on Computer Aided Design of Circuits and Systems (2018).

Eshan Singh, Florian Lonsing, Saranyu Chattopadhyay, Maxwell Strange, Peng
Wei, Xiaofan Zhang, Yuan Zhou, Deming Chen, Jason Cong, Priyanka Raina,
Zhiru Zhang, Clark W. Barrett, and Subhasish Mitra. 2020. A-QED Verification
of Hardware Accelerators. In Design Automation Conf. 1-6.

Andrew Waterman and Krste Asanovi¢. 2019. The RISC-V Instruction Set Manual;
Volume I: Unprivileged ISA. SiFive Inc. and UC Berkeley.

Andrew Waterman and Krste Asanovi¢. 2019. The RISC-V Instruction Set Manual;
Volume II: Privileged Architecture. SiFive Inc. and UC Berkeley.

https://github.com/riscv/riscv-compliance
https://github.com/riscv/riscv-compliance
https://github.com/ucb-bar/riscv-torture
https://github.com/riscv/riscv-v-spec
https://doi.org/10.1109/IEEESTD.2023.10246125
https://doi.org/10.1109/IEEESTD.2023.10246125
https://github.com/openhwgroup/force-riscv
https://github.com/openhwgroup/force-riscv
https://www.qemu.org
https://github.com/riscv-non-isa/riscv-arch-test
https://github.com/riscv-non-isa/riscv-arch-test
https://github.com/YosysHQ/riscv-formal
https://github.com/YosysHQ/riscv-formal
https://github.com/google/riscv-dv
https://github.com/rems-project/sail-riscv
https://www.imperas.com/riscvovpsim-free-imperas-risc-v-instruction-set-simulator
https://www.imperas.com/riscvovpsim-free-imperas-risc-v-instruction-set-simulator
https://eda.sw.siemens.com/en-US/ic/questa/formal-verification
https://eda.sw.siemens.com/en-US/ic/questa/formal-verification
https://github.com/riscv/riscv-isa-sim

	Abstract
	1 Introduction
	2 Related Work
	3 The RISC-V "V" Vector Extension (RVV)
	4 The RVVTS Framework
	4.1 Fundamental Data Structures
	4.2 The Grammar-based ISG
	4.3 RVVTS's Building Blocks: Runners
	4.4 Single Instruction Isolation with Code Minimization
	4.5 Coverage Guided Test Set Generation

	5 Case Studies
	5.1 Pre-Generated Testsets
	5.2 RISC-V VP++
	5.3 QEMU

	6 Conclusions
	References

