
Leveraging Virtual Prototypes and Metamorphic Testing for Verifica-
tion of Embedded Graphics Libraries *

Christoph Hazott, Florian Stögmüller, Daniel Große
Institute for Complex Systems, Johannes Kepler University Linz, Austria
christoph.hazott@jku.at, stoegmueller.f@gmail.com, daniel.grosse@jku.at

Abstract

In this extended abstract, we summarize our work from [6], where we proposed a novel approach focusing on integration
testing of embedded graphics libraries. We leveraged Virtual Prototypes (VPs) and integrated them with Metamorphic
Testing (MT). Additionally, we eliminated the need for physical hardware by virtualizing the displays within the virtual
environment. On an extended RISC-V VP for the GD32V platform we found 15 distinct bugs for the widely used
TFT_eSPI embedded graphics library.

1 Extended Abstract

In embedded systems, Software (SW) is closely tied to the
Hardware (HW) it runs on. An important part of the em-
bedded SW is the Firmware (FW) which provides low-
level control for the device’s specific HW. As many em-
bedded systems include displays to visualize information
as well as to enable easy interaction, FW libraries for these
displays are very crucial components. Over the years, these
FW libraries have become more and more powerful: One
of the first implementations, where the term FW was al-
ready used, has been presented in [14]. This work in-
terfaced different graphical terminals via the FW. Today,
much more complex functionality is integrated in these
embedded graphics libraries, extending the fundamental
support of drawing simple geometric elements on differ-
ent displays to advanced objects, fonts, and even features
like sprites. Moreover, optimizations for different HW
architectures are performed improving the rendering per-
formance. Due to this increasing feature complexity, the
importance of verification of embedded graphics libraries
progressively amplifies.
To address the growing complexity, advancements in sim-
ulators and emulators are leveraged to enable the adaption
of SW testing strategies for FW testing. The most funda-
mental strategy which is adopted is testing of individual
components and functions in isolation, also referred to as
unit testing [12]. While this approach is effective at un-
covering numerous bugs, blind spots emerge because unit
testing does not capture complex interactions among com-
ponents, and overlooks integration challenges that can lead
to functional and performance issues. Integration testing
complements unit testing by focusing on these blind spots,
capturing the interfaces and interactions among compo-
nents [13, 11].
For successful integration testing on embedded devices,
test inputs forcing the system into potential error cases

*This work has partially been supported by the LIT Secure and Correct
Systems Lab funded by the State of Upper Austria.

have to be defined as well as comprehensive reference
models are necessary to determine the test result. The lat-
ter may be very difficult to create as the effort to imple-
ment such models increases if more and more components
(e.g. deeply layered functions) interact and if complex SW-
to-HW stacks are involved. This challenge is well-known
as test oracle problem [1] and in case of embedded graph-
ics libraries it is even worse, as it typically means visual
inspection of the results when executed on the HW. Alto-
gether, this makes automating the verification very compli-
cated.
In this extended abstract, we summarize our work from [6],
where we present a novel approach focusing on integration
testing of embedded graphics libraries. As first compo-
nent, Virtual Prototypes (VPs) are leveraged targeting the
need of HW for visual inspection. VPs are predominantly
modeled in SystemC, a standardized C++ library [10];
for a broader overview on SystemC we refer the reader
to [3, 8, 4]. VPs enable the development and execution
of SW production code as if the physical HW were present
on the table [2].
The second essential component of our approach to face
the test oracle problem is Metamorphic Testing (MT) [16].
MT circumvents the need of a reference model and found
an impressive amount of bugs in different domains [17].
MT is based on the core principle of using known rela-
tionships and properties among inputs and outputs to de-
sign effective test cases. These relationships are formalized
within so-called Metamorphic Relations (MRs). An exam-
ple of a MR for embedded graphics libraries is drawing
a line: Assuming our line has the start position A(x1,y1)
and end position B(x2,y2), if we switch A and B the out-
put should be the same line. Based on this relation we are
able to insert concrete values for x1,y1 and x2,y2 to gen-
erate Metamorphic Test Cases (MTCs). With this idea in
mind we created 21 generic MRs for embedded graphics li-
braries and devised a framework to automatically generate
MTCs based on the random testing strategy.
Fig. 1 provides an overview of our automated MT frame-
work. In the upper left part (gray box), we consult the



Automatic Execution of MTCs

Generate JSON

select MTC
Generator

next MTC
 Generator

Manual Definition of MRs

..

...

...

Other MTCs

...

Parameter
constraints

DrawPixel
MTC Generator

DrawPixel MR

Parameter
constraints

Nikolaus
MTC Generator

Nikolaus MR

DrawPixel MTC Nikolaus MTC

Compile & Run MTC on VP

Memory

TIMER

Executable Binary

Compile and Link

C/C++
Standard Library

C/C++ Program Memory
Interface

Memory

Virtual
Environment

Memory-MappingTLM
2.0 Bus

Peripherals

PLICISS

Generate MTC

Selected MTC
Generator

Compile & Run
MTC

Analyze Outputs

+TFT_eSPI
API Specification

Graphics Domain
Knowledge

Figure 1 Automated MT Framework

(a) Source FW (b) Follow-up FW (c) Difference

Figure 2 drawWedgeLine Bug

API specification of the TFT_eSPI, and combine this infor-
mation with general knowledge from the graphics domain.
The result serves as basis to define the MRs (cf. blue box).
In addition, we need to implement a generator for each MR
within our MT framework. According to a given MR the
generator will produce concrete values for two FW, i.e. a
source FW and a follow-up FW, constituting a MTC. Since
the generation is automated, multiple MTCs per MR can
be generated.
The main part of our MT framework (green box in the
center), selects and starts the different MTC Generators.
The generated source FW and follow-up FW of an MTC
are then compiled and executed on the VP. In Fig. 1, the
VP is depicted within the yellow box on the right. To
compile and run our MTCs we enhanced the RISC-V VP
from [7, 9] to support the GD32V and added a virtual dis-
play. The enhancements are available in the open-source
RISC-V VP++ on GitHub1 together with general improve-
ments [15]. The developed virtual display can also capture
images. This is used to store the outputs produced by the
source FW and the follow-up FW, which are compared at
the end on an MTC Execution.
In the evaluation, we were able to find 15 distinct bugs
for the widely used TFT_eSPI embedded graphics library,
confirming the strength of our approach. One of those bugs
is shown in Fig. 2. This is also the most severe one found
by our approach. When calling the drawWedgeLine
method of TFT_eSPI with a specific combination of valid
arguments, the resulting wedge line is incomplete. We
found this issue to be infrequent, occurring only twice out
of 817 MTCs, which suggests that the bug is only triggered
by very specific arguments.
In future work, we plan to integrate a detailed test analysis
based on dynamic instrumentation techniques as recently
presented in [5].

1https://github.com/ics-jku/riscv-vp-plusplus

2 Literature
[1] E. T. Barr, M. Harman, P. McMinn, M. Shahbaz, and S. Yoo.

The oracle problem in software testing: A survey. IEEE Trans-
actions on Software Engineering, 41(5):507–525, 2015.

[2] T. De Schutter. Better Software. Faster!: Best Practices in Vir-
tual Prototyping. Synopsys Press, March 2014.

[3] D. Große and R. Drechsler. Quality-Driven SystemC Design.
Springer, 2010.

[4] M. Hassan, D. Große, and R. Drechsler. Enhanced Virtual Pro-
totyping for Heterogeneous Systems. Springer, 2022.

[5] C. Hazott and D. Große. DSA monitoring framework for
HW/SW partitioning of application kernels leveraging VPs.
In Design and Verification Conference and Exhibition Europe,
2023.

[6] C. Hazott, F. Stögmüller, and D. Große. Verifying embedded
graphics libraries leveraging virtual prototypes and metamor-
phic testing. In ASP Design Automation Conf., pages 275–281,
2024.

[7] V. Herdt, D. Große, H. M. Le, and R. Drechsler. Extensible
and configurable RISC-V based virtual prototype. In Forum on
Specification and Design Languages, pages 5–16, 2018.

[8] V. Herdt, D. Große, and R. Drechsler. Enhanced Virtual Proto-
typing: Featuring RISC-V Case Studies. Springer, 2020.

[9] V. Herdt, D. Große, P. Pieper, and R. Drechsler. RISC-V based
virtual prototype: An extensible and configurable platform for
the system-level. Journal of Systems Architecture - Embedded
Software Design, 109:101756, 2020.

[10] IEEE Standard SystemC Language Reference Manual. IEEE
Std. 1666, 2011.

[11] C. Kaner and R. L. Fiedler. Foundations of Software Testing.
Cengage Learning, 2013.

[12] P. Liggesmeyer and M. Trapp. Trends in embedded software
engineering. IEEE Software, 26(3):19–25, 2009.

[13] A. Marrero Perez and S. Kaiser. Integrating test levels for em-
bedded systems. In TAICPART, pages 184–193, 2009.

[14] G. A. Rose. “intergraphic,” a microprogrammed graphical-
interface computer. IEEE Trans. on Electronic Comp., EC-16
(6):773–784, 1967.

[15] M. Schlägl and D. Große. GUI-VP Kit: A RISC-V VP meets
Linux graphics - enabling interactive graphical application de-
velopment. In ACM Great Lakes Symposium on VLSI, pages
599–605, 2023.

[16] S. Segura and Z. Q. Zhou. Metamorphic testing 20 years later:
A hands-on introduction. In International Conference on Soft-
ware Engineering, pages 538–539, 2018.

[17] S. Segura, G. Fraser, A. B. Sanchez, and A. Ruiz-Cortés. A
survey on metamorphic testing. IEEE Transactions on Software
Engineering, 42(9):805–824, 2016.

https://github.com/ics-jku/riscv-vp-plusplus

