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Abstract—In this paper, we present the heavily extended
open-source RISC-V VP++, which combines several VP-based
projects into a powerful new tool to support early design space
exploration, evaluation, verification and validation of RISC-V
based systems at the system level. The paper briefly describes
three projects that started as independent works and highlights
the associated synergies and great new potentials that arise from
integrating them into a single solution.

I. INTRODUCTION

Virtual Prototypes (VPs) are high-level, executable mod-
els of the entire Hardware (HW) platforms which can run
unmodified production Software (SW) [1], [2]. VPs allow
early design space exploration, and system evaluation and
validation before a physical HW is built or even designed.
Today, VPs are predominantly implemented in SystemC, a
standardized class library for C++ (IEEE 1666, [3]) [4]. Based
on the abstraction of communication details by leveraging
Transaction Level Modeling (TLM) [5], the simulation is or-
ders of magnitude faster in comparison to RTL [1].

A central element of a HW platform is the pro-
cessor. In the recent years, the open and royalty-free
Instruction Set Architecture (ISA) RISC-V [6], [7], which
features an extremely modular design, gained enormous
momentum in academia and industry. In RISC-V, mod-
ularity is achieved by a variety of standard extensions
that can be added to a very small base ISAs according
to application specific requirements. One of these exten-
sions is the RISC-V "V" Vector Extension (RVV) [8], which
adds Single Instruction, Multiple Data (SIMD) functionality
to the RISC-V architecture. In SIMD, operations are ap-
plied not only to single data elements but on whole vec-
tors of elements simultaneously. SIMD takes advantage of
Data-Level Parallelism (DLP) and can significantly improve
data throughput and thus the performance of parallelizable
algorithms such as those used in machine learning and mul-
timedia applications [9]. An overview of RVV is depicted
in Fig. 1. It is worth noting that, unlike in classic SIMD
(e.g. ARM Neon), the length of the vector registers (VLEN)
is not fixed in the ISA, but can be chosen by the designer.
SW can determine VLEN at runtime and automatically adapt
to the capabilities of a specific HW.

The open-source RISC-V VP++ considered in this pa-
per was introduced in [10] and is available on GitHub1.
The VP comes with Instruction Set Simulators (ISSs) for
RISC-V in 32 (RV32) and 64 bit (RV64) configura-
tions. A TLM bus connects the ISSs, memory and
the peripherals. A Core Local Interruptor (CLINT) and

1https://github.com/ics-jku/riscv-vp-plusplus

Fig. 1: Overview of the RISC-V "V" Vector Extension (RVV)

Platform-Level Interrupt Controller (PLIC) provide support
for timer and interrupts. The VP includes different configura-
tions that model small microcontroller-based, up to larger ap-
plication processor-based platforms. Small configurations lack
support for Virtual Memory Management (VMM) and are typ-
ically used to run bare-metal SW or small Operating Systems
(OSs) systems. Larger configurations come with VMM and
can run general purpose OSs, like Linux.

II. EXTENSIONS OF RISC-V VP++
A. RISC-V "V" Vector Extension

The extension of RISC-V VP++ with the ratified RVV
version 1.0 [8] is presented in [11]. The paper de-
scribes the integration of the 32 vector registers, 7 RVV
Control and Status Registers (CSRs) and 624 RVV instruc-
tions (as shown in Fig. 1) in the RV32 and RV64 ISSs
of RISC-V VP++. The RVV extended VP is verified via
comparing execution traces of randomly generated instruction
sequences against a golden model. In total, a functional
coverage of 81.44% (riscvOVPsim basic coverage for RVV)
is achieved. The paper also demonstrates the value of the
RVV extended VP for system-level evaluation with a case
study. However, the value goes beyond the presented case
study: The integration of RVV in the RV32 and RV64 ISSs of
RISC-V VP++ enables support for RVV in all configurations
contained in RISC-V VP++. This opens up a wide range of
possibilities for experimentation (e.g. system, HW, system
SW, application SW) with platforms at different scales (from
microcontroller- up to application processor-based).

B. GD32V
GD32V is a RISC-V based microcontroller family from

GigaDevices. RISC-V VP++ includes a model and configu-
ration of one derivate of this family, the GD32VF103VBT6
System-On-Chip (SoC). The SoC comes with large set of
peripherals which include, for example, general purpose IO
(+interrupts), Serial Peripheral Interface (SPI) and the exter-
nal parallel bus. To make the GD32V configuration practically



Fig. 2: Real and Virtual Environments

useful, the model also includes external peripherals, namely a
display (connected via parallel bus) and a touchscreen (con-
nected via SPI). To interact with the platform, RISC-V VP++
includes a GUI that can be connected to the running model.
Fig. 2 shows the execution of the exact same program on the
real HW (left) and the VP+GUI (right).

The value of RISC-V VP++ with GD32V was demonstrated
in [10] where an approach for virtual verification of embedded
graphics libraries is introduced leveraging a VP and metamor-
phic testing leading to uncover 15 previously unknown bugs in
a widely used library. The combination with RVV, presented
in Sec. II-A, opens up an even wider range of possibilities:
RVV is not seen in small scale systems today. RISC-V VP++
with GD32V can, for example be used as a powerful tool for
the evaluation of RVV for small scale systems.

C. GUI-VP Kit and RISC-V VP++

GUI-VP Kit and GUI-VP were introduced in [12] and pro-
vide a full RISC-V development and simulation environment
for interactive graphical Linux applications. GUI-VP is a
greatly extended and improved RISC-V VP, that comes with
new TLM peripherals providing graphical output, and mouse
and keyboard input by adopting Virtual Network Computing
(VNC). Additionally, the VP introduces a CLINT imple-
mentation that ensures real-time behavior for interaction.
GUI-VP Kit includes GUI-VP, comes with drivers for the
new peripherals and provides everything necessary to build a
runnable Linux environment. In summary, GUI-VP Kit allows
for execution of complex Linux graphics frameworks and ap-
plications, as demonstrated in Fig. 3 and Fig. 4. Fig. 3 presents
a running X.Org desktop environment with applications. Fig. 4
shows a Linux port of a classic 3D game (PrBoom) reaching
up to 8.8 frames per second.

All modifications of GUI-VP are now fully integrated and
maintained in RISC-V VP++, and GUI-VP Kit is migrated
to use RISC-V VP++. With this, users of GUI-VP Kit can
now benefit from all other extensions made to RISC-V VP++.
Examples of this are the optimization of the boot time and
support for persistent storage through the use of memory
mapped file system images. However, the synergy with the
highest potential is the combination with RVV from Sec. II-A.
By migrating GUI-VP Kit to GCC-13 and Linux-6.6, we have
enabled support for RVV. Consequently, GUI-VP Kit is now
also a quick to create and easy to use Linux + RVV experi-
mentation environment. This allows not only the evaluation of
DLP algorithms and RVV HW implementations, but also, for
example, the evaluation of system SW, such as the handling

Fig. 3: X.Org desktop and applications running on RISC-V VP++

Fig. 4: PrBoom running on RISC-V VP++

of RVV in the Linux kernel. First successful experiments were
already performed with our RVVRADAR [13] framework.
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