WSVA: A SystemVerilog Assertion to WAL Compiler

Lucas Klemmer

Daniel Grofle

Institute for Complex Systems, Johannes Kepler University Linz, Austria

lucas.klemmer @jku.at

Abstract—SystemVerilog Assertions (SVA) is an industry stan-
dard for specifying properties that describe the correct behavior
of a system. Compared to SystemVerilog’s immediate assertions,
they provide a much more powerful syntax including the ability to
specify properties spanning over multiple clock cycles. However,
to the best of our knowledge, SVA is not supported by any
available open-source Electronic Design Automation (EDA) tool.
In this paper, we present WSVA, a compiler from SVA to the
Waveform Analysis Language (WAL).

I. INTRODUCTION

In this paper, we present WSVA!, a compiler from SVA
to the Waveform Analysis Language (WAL) [1]. WSVA can
compile SVA properties to WAL programs, leveraging WAL’s
waveform analysis features and its ability to easily act as a
backend for other languages. By using WAL as a backend,
SVA properties can exploit all features available in WAL. As
a consequence, SVA properties can be checked on a waveform.
The other way round, WAL programs can also use compiled
SVA properties and thus can leverage SVA for example to
specify complex signal behaviors.

Currently, WSVA is a proof-of-concept and in an experi-
mental stage. Therefore, it is not intended to be used for proper
verification of a design. However, even in its current form,
WSVA allows some interesting use cases: First, it gives people
without access to costly commercial tools the possibility to
get to know and try out SVA. Second, because it operates
on waveforms, it allows to quickly develop properties without
having to simulate the same design again. And last, because of
its current experimental nature, WSVA can serve as a test bed
for new ideas in open-source Electronic Design Automation
(EDA) tools. For example, we plan to integrate WSVA into
waveform viewers such as Surfer [2] to provide users a very
direct and rich debug and verification environment.

II. RELATED WORK

SystemVerilog Assertions (SVA) is an industry standard for
specifying properties that describe the correct behavior of a
system. However, to the best of our knowledge, SVA is not
supported by any available open-source EDA tools. Tools such
as Yosys [3] and Verilator [4] either support only immediate
assertions, a limited subset of SVA, or require commercial
extensions to unlock SVA support.

Checking SVA properties on waveforms was first presented
by SAWD in [5]. However, SAWD was not made available,
which prompted us to start developing WSVA.

Thttps://gitlab.com/Iklemmer/wsva

daniel.grosse @jku.at

set_cnt: assert property(
@(posedge clk)
disable iff(rst)
start |=> (cnt == value));

EESVS I St

Listing 1: Simple SVA property example

1 (defun sva_set_cnt_single []

2 (define was-disabled? #f)

3 (define started-at TS)

4 (define property-status #f)

5 (defun check-disable [] (set (was-disabled? reset)))
6 (timeframe

7 (set (property-status

8 (do (check-disable)

9 (cond [start (do (step 1)

10 (check-disable)
11 (= cnt value))]
12 [#t #t1))))

13 (unless (|| property-status was-disabled?)
14 (list started-at TS))))

Listing 2: WAL code generated for simple property

A related research domain is the synthesis of PSL and SVA
properties to hardware which has been studied before [6]-[8].

III. SVA TO WAL COMPILATION

In this section, we provide a small example of how SVA
properties are compiled into WAL programs. Consider the
SVA property shown in Listing 1. This property checks, that
on every rising clock edge an asserted start signal results in
the counter cnt being set correctly to the value of the value
signal in the following clock cycle.

This SVA property is compiled to the WAL function shown
in Listing 2. This function checks if the property holds at the
current timestamp. Further, another function is compiled which
checks if the property holds on the whole waveform, however,
it is much simpler, and we omit it due to space limitations.

The variables defined on Lines 2—4 track if the disable
condition was true some time, when the property started
being evaluated, and the result of the property, i.e., if it is
violated or if it holds. Next, the check-disable function is defined
which is used inside the property to determine if the disable
condition is true. Finally, the generated code of the property is
on Line 8-12. First, the code checks if the disable condition
is true on Line 8. The implication is compiled into a WAL
cond expression, shown between Line 9 and Line 11. If the
antecedent is true (i.e., start is high), the time is advanced
to the next clock edge (using step 1), the disable condition is
checked, and the result of the consequent is returned as the
result of the implication. If the antecedent is false, the result
of the implication is true (we plan to support vacuous results
in the future). Finally, if the result was not true and the disable

https://gitlab.com/lklemmer/wsva

Trace single-cycleriscufst

Time 8655000000

Indices 32

30000000 > 40000000

= R:C Qaam

KIS

90800820 99800670

Fearreet Trc7a703

480000000 Fs

Fig. 1: A screenshot of the GUI and a failing property opened in Surfer.

$ wsva run single-cycle-riscv.fst --sv instr.sv regs.sv

Property Result
reg_0_is_always_0
pc_after_lui

pc_after_auipc

Result
: FAIL

Property
reg_1l_update_on_write
reg_l_no_change_on_other_write

8610000000

Listing 3: Output of the WSVA CLI showing passing and failing properties.

condition was not activated, a list containing the start and end
matching times of the property are returned. If the property
was true, or if it was disabled, the function returns a null value.

This is a simple example. However, it shows how WAL
code for complex properties can be constructed by following
a set of rules for translating SVA operators to WAL.

IV. WSVA INTERFACES

The Command Line Interface (CLI) allows checking a
number of SVA files against a waveform. After finding failing
properties, WSVA CLI allows the user to select and open
one of the failing properties in the Surfer waveform viewer
(see Fig. 1). An exemplary output of the WSVA CLI is shown
in Listing 3. Since WSVA requires no licenses, the CLI can
check properties in parallel, utilizing as many threads as are
available.

The WSVA GUI allows developing and checking properties
on a loaded waveform (see Fig. 1). To aid developers in writing
properties, information about the waveform (e.g., signals or
length) is also shown in a sidebar.

The WSVA compiler does not check properties but emits a
WAL file which can be used by other WAL programs. This
WAL file contains all required utility functions and the single-
time and full-waveform functions of each property.

An example application for using compiled SVA properties
is shown in Listing 4. This example, taken from [9], shows
how compiled SVA properties can work together with other
WAL features such as virtual signals. In this case, a compiled
SVA property (check_forwarding) is used to detect a bug occur-
ring in a waveform. Using WAL’s virtual signals, the faulty
signal is shadowed with a virtual signal implementing a bug
fix. Finally, the new implementation is checked again using
the same compiled SVA property.

>-> (load "bug.vcd")
>-> (require properties)
>-> (check_forwarding)
(90000000 90000000))
>-> (step-to-ts 90000000)
>-> forwardae
0
>-> (wire forwardae/new

(cond [(&& (= rsle rdm) regwritem rsle) 2]
10 [(&& (= rsle rdm) regwritew rsle) 1]
11 [else 01))
(alias forwardae forwardae/new)
forwardae

O 001NN AWM -

>=>
13 >->

2
15 >-> (check_forwarding)

16 ((90000000 90000000))
17 >-> (wire srca/new

18 (case forwardae

19 [0 rdle]

20 [1 resultw]

21 [2 aluresultm]))

22 >-> (alias srca srca/new)
23 >-> (check_forwarding)
24 O

Listing 4: WAL shell session documenting the analysis and repair of the
forwarding logic.
V. CONCLUSIONS

In conclusion, WSVA allows checking if SVA properties
hold on a given waveform. The tool is experimental, however,
it can be used in various use cases, including quickly devel-
oping SVA properties without having to simulate again after
updating properties.

VI. ACKNOWLEDGMENTS
This work has partially been supported by the LIT Secure

and Correct Systems Lab funded by the State of Upper Austria.
REFERENCES

[1] L. Klemmer and D. Grofle, “WAL: a novel waveform analysis language
for advanced design understanding and debugging,” in ASP Design
Automation Conf., 2022, pp. 358-364.

[2] FE. Skarman, O. Gustafsson, and L. Klemmer, “Surfer 0.1.0,” Feb. 2024.
[Online]. Available: https://doi.org/10.5281/zenodo.10653541

[3] C. Wolf and Yosys Contributors, “Yosys open synthesis suite,” https://
yosyshq.net/yosys/.

[4] W. Snyder and Verilator Contributors, “Verilator,” https://www.veripool.

org/verilator/.

A. Alsawi, “Sawd: Systemverilog assertions waveformbased development

tool,” in Design and Verification Conference and Exhibition Europe, 2022.

S. Das, R. Mohanty, P. Dasgupta, and P. Chakrabarti, “Synthesis of system

verilog assertions,” in Proceedings of the Design Automation & Test in

Europe Conference, vol. 2, 2006, pp. 1-6.

O. Amin, Y. Ramzy, O. Ibrahem, A. Fouad, K. Mohamed, and M. Abdel-

salam, “System verilog assertions synthesis based compiler,” in 2016 17th

International Workshop on Microprocessor and SOC Test and Verification

(MTV), 2016, pp. 65-70.

[8] M. Boule and Z. Zilic, “Automata-based assertion-checker synthesis of
psl properties,” ACM Transactions on Design Automation of Electronic
Systems (TODAES), vol. 13, no. 1, pp. 1-21, 2008.

[9] L. Klemmer and D. GroBe, “Towards a highly interactive design-debug-
verification cycle,” in ASP Design Automation Conf., 2024, pp. 692—697.

[5

—_

[6

—_

[7

—

https://doi.org/10.5281/zenodo.10653541
https://yosyshq.net/yosys/
https://yosyshq.net/yosys/
https://www.veripool.org/verilator/
https://www.veripool.org/verilator/

	Introduction
	Related Work
	SVA to WAL Compilation
	WSVA Interfaces
	Conclusions
	Acknowledgments-0.2cm
	References

