Bounded Load/Stores in Grammar-based Code
Generation for Testing the RISC-V Vector
Extension
Manfred Schléagl and Daniel Grofe

Institute for Complex Systems, Johannes Kepler University Linz, Austria
manfred.schlaegl@jku.at, daniel.grosse@jku.at

Abstract

In this paper, we consider a Grammar-based fuzzing framework for testing the RISC-V "V" Vector Extension.
We focus on one of the major challenges, namely generating valid vector load/store instruction sequences by
extending a context-free grammar with functions to create elements in a contert-sensitive way.

Introduction
In recent years, the open and royalty-free
Instruction Set Architecture (ISA) RISC-V [1]

has gained significant traction in both academia and
industry. A distinctive feature of the RISC-V ISA
is its high degree of modularity, which is achieved
through a wide range of extensions that can be
seamlessly integrated with a minimal base ISA
to tailor it to specific application requirements.
One outstanding extension is the RISC-V "V"
Vector Eztension (RVV), which was recently ratified
in version 1.0 [2]. With 624 new instructions and 32
vector registers, the extension introduces extensive
Single Instruction, Multiple Data (SIMD) capabilities
to the RISC-V architecture. In SIMD, operations are
executed not only on individual data elements but
on entire vectors of elements simultaneously. With
this, SIMD leverages Data-Level Parallelism (DLP)
to enhance data throughput and overall performance
of parallelizable algorithms like those often utilized in
machine learning and multimedia applications [3].

Recently, RVV was integrated in the open-
source, SystemC TLM (IEEE 1666, [4]) based
Virtual Prototype (VP) RISC-V VP++ [5, 6]. VPsare
high-level, executable models of the entire Hardware
(HW) platforms which can run unmodified production
Software (SW) [7] and therefore allow early design
space exploration, and system evaluation and vali-
dation. The paper [5] also presents the verification
method of the RVV integration. Here, the authors use
the FORCE-RISCV Instruction Sequence Generator
(ISG) provided by the OpenHW Group [8] to gen-
erate RVV programs. The generated programs are
then executed in a reference simulator and in the
Simulator under Test (SuT), the VP. Finally, the
traces of each execution are compared for differences.
With this method, the authors were able to achieve
a functional coverage of 81.44% (RVV basic score)
according to riscvOVPsim from Imperas [9].

As limiting factor for the coverage, we identified
the ISG itself and the fact, that there is no feedback
path from the measured coverage to the ISG. To ad-
dress these limitations, we are currently working on
a new, grammar-based and coverage-driven approach.
At time of writing, we are able to achieve a functional

RISC-V Summit Europe, Munich, 24-28th June 202/

Listing 1: FEzxcerpt of a context-free grammar for RVV

RVVGrammar = {

1
2 "<start>": ["<instr_v_config>", "<instr_v_compute>", ... 1,
3 .
4 "<instr_v_compute>": ["<instr_v_vector_int>", ... 1,
5 "<instr_v_vector_int>": ["vadd<.vv>", "vadd<.vx>", "vadd<.vi>", ... 1,
7 t<ivv>" [".vv <vd>, <vs2>, <vsl><vm>"],
8 "<vx>"t [".vx <vd>, <vs2>, <rsl><vm>"],
9 "<vix>": [".vi <vd>, <vs2>, <imm5><vm>"],
10 <vm>": e, o, ve.ttl,
11 B
12 "<vd>": ["<vreg>"1,
13 "<vsl>": ["<vreg>"1,
14 "<vs2>": ["<vreg>"1,
15 "<vreg>": ["vO", "v1", ... "v31"],

17}

coverage beyond 94% (according to riscvOVPsim),
based on a generated test set consisting of 100 test
cases with over 12k instructions each. Furthermore,
this new approach does not depend on execution traces,
but instead uses system state comparison after exe-
cution (registers, memory, ...). With this, it will be
possible to perform the verification on any target for
which state extraction is possible, e.g. on real HW.
Our new verification approach, including code gener-
ators and pre-generated test sets, will be released as
open source in the near future.

In this paper we discuss one of the major challenges
in developing our new verification approach, namely
the generation of valid load/stores with a grammar-
based code generator. In the next section, we will
briefly introduce grammar-based code generation with
focus on RVV. After that, we will discuss the com-
plexities associated with generating valid load/store
instructions and propose a solution approach, illus-
trated on a specific RVV load/store operation.

Grammar-based Code Generation

Grammars can be used to generate syntactically valid
input. In our case, a grammar is utilized several times
to create a valid assembler program step by step, which
is then translated into machine code and executed.
Listing 1 shows a small excerpt of our context-free
grammar for generating RVV instructions. Technically,
the grammar is written in Python as a dictionary, map-
ping from strings to lists of strings, with each string
describing a symbol of the grammar. Symbols written
in pointed brackets (e.g. "<start>" in Line 2) are non-
terminal symbols. Symbols without pointed brackets
(e.g. ", vO.t" in Line 10) are terminal symbols. Each

manfred.schlaegl@jku.at
daniel.grosse@jku.at

Listing 2: Grammar for RVV with generation function

RVVGrammar = {
"<start>": ["<instr_v_config>", "<instr_v_load_store>", ...],
"<instr_v_load_store>": ["<instr_v_load>", "<instr_v_store>"],

"<instr_v_store>": ["<instr_v_store_vse8>, ...],
"<instr_v_store_vse8>": gen_v_store_vse8,

© 000Uk WN -

}

entry in the dictionary (= each line in Listing 1) de-
scribes an expansion rule for a non-terminal symbol
(left side). The list (right side) describes the expansion
alternatives and can contain non-terminal or termi-
nal symbols. Non-terminal symbols are expanded
according to the expansion rules until only terminal
symbols remain. All remaining terminal symbols are
integrated in the finally generated instruction as string.
By randomly selecting expansion candidates, the gram-
mar shown in Listing 1 can, for example, generate
instruction strings such as "vadd.vv v2, v3, v4" or
"vadd.vx v0, v3, x3, v0.t".

Generating bounded Load/Stores

As we have shown in the last section, we can gener-
ate randomized instructions from our grammar. This
holds also true for RVV load/store operations. For ex-
ample, our grammar is able create the RVV unit stride
store instruction vse8.v v1, (x5). This instruction
stores the elements in vector register vl to a memory
location starting at an address specified by the value
of integer register x5 and with an increment of 8 bits,
or 1 byte per element (unit stride). However, since the
value in x5 depends on the instructions executed so
far, chances are high, that it does not point in a valid
memory region (especially on RV64 with 64 bit address
range). As a consequence, most generated load/store
instructions will be invalid and lead to a fault in the
execution. To get valid vse8.v instructions, it must
be ensured that the values in the used integer register
(plus the number of elements) are addresses in a valid
range. In the following, we present the generation of
bounded load/stores as a solution to this problem.

Prior to each load/store instruction, we generate
code that ensures that the value of the used register
is within a valid address range. However, this is not
efficiently expressible in a context-free grammar. For
example, the creation of specific values for the bound-
aries alone would inflate the grammar enormously. The
solution is to extend the context-free grammar with
new function symbols (in addition to non-/terminal
symbols), which can generate strings in a context-
sensitive way. Generation is done exactly as described
above, but whenever the left side of an expansion is a
function symbol, the corresponding function is called
and its return value is used as result of the expansion.
An example of such an extended grammar is presented
in Listing 2. The newly introduced function symbol
gen_v_store_vse8, which generates bounded vse8.v
store instruction sequences is shown in Line 7.

To illustrate the concept, Listing 3 shows a sample
pseudocode implementation of the gen_v_store_vse8
generation function. RISC-V assembler instructions
are highlighted in blue. Global variables defining the

Listing 3: Generation function: Bounded RVV vse8.v

1 # Global values (allowed to change while code generation)

2 <VALID_START> = start address of valid area

3 <VALID_LEN> = length of valid area

4 <MAX_STORE_LEN> = maximum number of bytes in a vector (VLENB * 8)
5

6 # Bounded vse8 generation function (pseudocode)

7 def gen_v_store_vse8():

8 <ireg_rsl> = select random integer register

9 <vreg_vd> = select random vector register

10 <ireg_scratch> = select rand integer register other than <ireg_rsi>
11

12 # mask for upper bound

13 <upper_bound_mask> = 1 << (log2(<VALID_LEN> - <MAX_STORE_LEN>) - 1)
14 # offset to add to meet lower bound

15 <lower_bound_offs> = <VALID_START>

16

17 # ensure address below upper bound by masking

18 code = 1li <ireg_scratch>, <upper_bound_mask>

19 code += and <ireg_rs1>, <ireg_rsl>, <ireg_scratch>

20

21 # ensure address above lower bound by addition

22 code += 1i <ireg_scratch>, <lower_bound_offs>

23 code += add <ireg_rsl>, <ireg_rsl>, <ireg_scratch>

24

25 # generate store

26 code += vse8.v <vreg_vd>, (<ireg_rsl>)

27

28 # return generated code

29 return code

valid address range and maximum store length are
defined in Lines 1-4. Allocation of the source vector
registers and the integer registers (address and scratch)
is done in Lines 8-10. The calculation of the mask for
the upper bound and the offset for the lower bound
is performed in Lines 12-15. Code for masking the
address with the upper bound mask is generated in
Lines 17-19. Code generation for adding the lower
bound offset is done in Lines 21-23. Finally, the
vse8.v instruction is generated in Line 26.

This concludes our presentation of the concept of
grammar-based bounded load/store code generation,
based on a relatively simple vse8.v instruction. Over-
all, RVV supports a very powerful and extensive set of
different and more complex load/store instructions
for dealing with arrays and other data structures
(e.g. strided, indexed). In the current state of our
verification framework, the presented concept is used
to realize code generation for all RVV load/store in-
structions. Our RVV verification framework, including
code generators and pre-generated test sets, will be
released as open source in the near future.

Acknowledgments

This work has partially been supported by the LIT Secure and
Correct Systems Lab funded by the State of Upper Austria.

References

[1] Andrew Waterman and Krste Asanovi¢. The RISC-V Instruc-
tion Set Manual; Volume I and II. SiFive Inc. and UC Berkeley.
2019.

[2] RISC-V V wector extension. https://github.com/riscv/riscv-
v-spec. 2022.

[3] Michael J. Flynn. “Very high-speed computing systems”. In:
IEEE 54.12 (1966), pp. 1901-1909.

[4] IEEE Standard for Standard SystemC Language Reference
Manwual. por: 10 . 1109 / IEEESTD . 2023 . 10246125. URL: https:
//doi.org/10.1109/IEEESTD.2023.10246125.

[5] Manfred Schligl, Moritz Stockinger, and Daniel Grofe. “A
RISC-V “V” VP: Unlocking Vector Processing for Evaluation
at the System Level”. In: DATE. 2024.

[6] Manfred Schligl, Christoph Hazott, and Daniel Grofe. “RISC-
V VP++: Next Generation Open-Source Virtual Prototype”.
In: Workshop on Open-Source Design Automation. 2024.

[7] Vladimir Herdt, Daniel Grofe, and Rolf Drechsler. En-
hanced Virtual Prototyping: Featuring RISC-V Case Studies.
Springer, 2020.

[8] FORCE-RISCV RISC-V Instruction Sequence Generator
(ISG). https://github.com/openhwgroup/force-riscv.

[9] riscvOVPsim Imperas RISC-V Instruction Set Simulator
(ISS). https://www.imperas . com/riscvovpsim- free- imperas-
risc-v-instruction-set-simulator.

RISC-V Summit Europe, Munich, 24-28th June 202/

https://github.com/riscv/riscv-v-spec
https://github.com/riscv/riscv-v-spec
https://doi.org/10.1109/IEEESTD.2023.10246125
https://doi.org/10.1109/IEEESTD.2023.10246125
https://doi.org/10.1109/IEEESTD.2023.10246125
https://github.com/openhwgroup/force-riscv
https://www.imperas.com/riscvovpsim-free-imperas-risc-v-instruction-set-simulator
https://www.imperas.com/riscvovpsim-free-imperas-risc-v-instruction-set-simulator

	Introduction
	Grammar-based Code Generation
	Generating bounded Load/Stores

