
Surfer:
A Waveform Viewer as Dynamic as RISC-V

Lucas Klemmer1, Frans Skarman2, Oscar Gustafsson2 and Daniel Große1

1Institut for Complex Systems, Johannes Kepler University Linz, Austria
2Department of Electrical Engineering, Linköping University, Sweden

lucas.klemmer@jku.at, frans.skarman@liu.se, oscar.gustafsson@liu.se, daniel.grosse@jku.at

Abstract

A growing ecosystem of available cores, ISA extensions, accelerators, and software creates new challenges for
EDA tools. We believe that EDA tools have to be as dynamic and extensible as RISC-V itself to be able to
optimally support developers handling RISC-V’s dynamic ecosystem. In this paper, we present an extension to
the Surfer waveform viewer. Surfer is explicitly developed with extensibility and customization in mind, which
allows a range of new applications. We present Surfer’s ability to utilize the Waveform Analysis Language (WAL)
to provide a CPU pipeline abstraction and other debugging information inside the waveform viewer.

Introduction

Two of the most valuable aspects of RISC-V [1] are
its open license, and its customizable and extendable
nature. These two features have led to the explosive
growth of a community that spans across commercial,
academic, and even hobbyist groups. In just a few
years, this community has created a large collection
of available cores [2], ISA extensions [3], accelerators,
and software. However, this fast pace also creates
challenges, especially regarding the tools, on which
further progress relies. Hardware tooling often still
lacks behind its counterparts in the software domain.
One example of this are waveform viewers, which are
one of the most used tools of hardware designers and
verification engineers alike. GTKWave [4], while be-
ing undoubtedly battle-proven, has changed little in
the last few years. With rising design sizes and a
growing number of highly custom designs, working
in GTKWave can feel tedious. This is due to a lack
of many quality-of-life features such as automatic de-
tection and abstraction of buses, pipelines, a lack of
integration with other tools, and a generally dated
user interface.

In this paper, we extend Surfer, a new and open-
source waveform viewer specifically designed with ex-
tensibility and customization in mind. Surfer has many
features that make it easy to extend and integrate with
other tools. As an example, we present that Surfer
can connect to a waveform analysis program specified
in the Waveform Analysis Language (WAL) [5]. The
waveform analysis program provides an abstraction
over the pipeline stages of a RISC-V processor [6]. Fur-
ther, we are working on adding entirely new features
such as connecting to simulators or waveform analyzers
over network connections or deeply integrating Surfer
into other applications via a remote control protocol.
Surfer is available natively on all major platforms and
the web through a version compiled to WebAssembly.

Surfer
Surfer [7] is an open source waveform viewer designed
to be snappy and extensible to support new use cases.
One example of this extensibility is the ease of adding
translators which translate from the bit vectors present
in a waveform to the actual values they represent.
Adding a translator simply requires implementing two
functions:

• variable_info() which tells Surfer what struc-
ture a translated signal will have

• translate() which performs the translation from
bit vector to a more interesting value

In case of the RISC-V instruction translator,
variable_info() tells Surfer that the structure of
a translated value is a single field containing the dis-
assembled instruction. translate() then takes each
bit vector and runs it through a disassembler to get
the human-readable RISC-V mnemonic.

For this work, Surfer being extensible to support
many waveform sources is also important. In addition
to just loading waves from waveform files like VCD
and FST, Surfer can load waves from different pro-
grams via TCP. This allows it to interact with external
programs that can dynamically generate waves such
as an interactive simulator, or in this work, WAL.

Waveform Analysis based CPU
Abstraction in Surfer

In this section, we present how programs in WAL
can be used to define a powerful abstraction layer over
RISC-V CPUs for use inside Surfer. The foundation of
the proposed Surfer integration is the Domain Specific
Language (DSL) for specifying pipelines of RISC-V
cores, presented in [6]. This DSL allows creating an
abstraction of the pipeline that tracks instructions
flowing through the pipeline and allows easy injection
of additional virtual signals [8] for debug and analysis.

RISC-V Summit Europe, Munich, 24-28th June 2024 1



Figure 1: Virtual Signals injected into a waveform of VexRiscv. The injected signals contain information about the
pipeline stages, instruction lifetime, and even link instructions to their location in the binary.

Figure 1 shows Surfer connected to a WAL program
that analyzes the pipeline (four stages shown in green,
yellow, blue, and orange) of a VexRiscv core. All dis-
played signals are “virtual” signals injected into the
waveform by the WAL program. These signals are
derived from other “real” signals or from external data,
e.g., from debug information of an ELF file. Our ex-
ample includes virtual signals that show the current
pipeline stage state, the function to which the currently
executed instruction belongs, a disassembled instruc-
tion, and the lifetime of an instruction, i.e., how long
it took from entering the pipeline until completion.
1 (load "trace.fst")
2 (import rvnm)
3 (call rvnm.ranges "program.elf")
4 (defsig [decode-function 64]
5 (call rvnm.find_func top.decode.pc))
6 (defsig [execute-function 64]
7 (call rvnm.find_func top.execute.pc))
8 (server-start 1234)
9 (repl)

Listing 1: Injecting new signals containing the function
names to which the currently executing instructions belong.

Listing 1 presents a simple WAL program that in-
jects two new debugging signals into the loaded wave-
form. Two pipeline stages decode and execute both
keep track of the pc of the currently contained instruc-
tion. For both stages, a new signal is injected that
will contain the name of the function to which the in-
struction belongs. The new signals will compute their
values by calling a small external Python function that
analyzes the supplied ELF file using the nm command.
Then, the program starts a TCP server that allows
Surfer to connected to it and it opens a REPL, to
keep the program alive while Surfer is still connected.
Inside this REPL, new signals can be injected anytime
and further waveform analysis is possible.

Outlook

We are working on integrating a remote control inter-
face to Surfer that gives external tools the possibility

to control all aspects of Surfer including adding and
removing signals, setting the format and style of sig-
nals, adding markers, and zooming to specific time
points. In addition, the protocol will also feature a
set of drawing commands that will open up new pos-
sibilities for debugging, for example by highlighting
assertion failures from simulators. Finally, we plan to
integrate more waveform formats including high-level
traces produced by RISC-V virtual prototypes at the
TLM level.

Acknowledgements

This work has partially been supported by the LIT
Secure and Correct Systems Lab funded by the State
of Upper Austria.

References

[1] Andrew Waterman and Krste Asanović. The RISC-V In-
struction Set Manual; Volume I: Unprivileged ISA. SiFive
Inc. and CS Division, EECS Department, University of
California, Berkeley. 2019.

[2] Alexander Dörflinger et al. “A comparative survey of open-
source application-class RISC-V processor implementa-
tions”. In: CF’21. Virtual Event, Italy, 2021, pp. 12–20.

[3] Enfang Cui, Tianzheng Li, and Qian Wei. “RISC-V Instruc-
tion Set Architecture Extensions: A Survey”. In: IEEE
Access 11 (2023), pp. 24696–24711.

[4] GTKWave Waveform Viewer. https : / / github . com /
gtkwave/gtkwave.

[5] Lucas Klemmer and Daniel Große. “WAVING Goodbye to
Manual Waveform Analysis in HDL Design with WAL”. In:
IEEE Transactions on Computer Aided Design of Circuits
and Systems (2024). (accepted).

[6] Lucas Klemmer and Daniel Große. “A DSL for Visualizing
Pipelines: A RISC-V Case Study”. In: RISC-V Summit
Europe. 2023.

[7] Frans Skarman et al. Surfer 0.1.0. 2024. doi: 10.5281/
ZENODO.10653540.

[8] Lucas Klemmer and Daniel Große. “Towards a Highly In-
teractive Design-Debug-Verification Cycle”. In: ASP-DAC.
2024, pp. 692–697.

2 RISC-V Summit Europe, Munich, 24-28th June 2024

https://github.com/gtkwave/gtkwave
https://github.com/gtkwave/gtkwave
https://doi.org/10.5281/ZENODO.10653540
https://doi.org/10.5281/ZENODO.10653540

	Introduction
	Surfer
	Waveform Analysis based CPU Abstraction in Surfer
	Outlook
	Acknowledgements

