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Abstract. The waveform viewer is one of the most important tools in a
hardware engineer’s toolbox. It is the main interface used to track down
design bugs found by simulation or formal verification. In this paper,
we present Surfer, a modern waveform viewer designed to integrate with
the broader hardware design ecosystem. It supports translation from bit
vectors to semantically meaningful values, integration with simulation
and verification tools, and lays the groundwork for interactive simulation
in the open-source ecosystem.

1 Introduction

The computer-aided verification community has excelled at generating ideas and
tools that automatically find bugs in system designs. However, once a verifica-
tion tool finds a trace that demonstrates the violation of an invariant, then the
real work for the system engineer begins. They need to debug their system to
understand what is going wrong and how the issue can be addressed. When
the system in question is a digital hardware design for a microchip, the tool of
choice for investigating the buggy behavior is the waveform viewer. A waveform
viewer visualizes the signals in a circuit over time. We present Surfer, an open-
source4 waveform viewer that is designed from scratch to be easily customizable
and embeddable. It has enabled new research around hardware description lan-
guages [19] and verification languages [15], been used to teach digital hardware
debugging5, and has been considered for integration in commercial hardware
verification products.

A lot of engineering work goes into building a capable waveform viewer and
thus, until recently, there has only been one fully-featured open-source imple-
mentation of such a tool. GTKWave [10] has been a staple in the teaching and
open-source community for years. GTKWave supports many input formats and
the development team has pioneered the FST format, the most-space efficient

4 https://gitlab.com/surfer-project/surfer/
5 We are aware of classes at Cornell, MIT, UC Santa Cruz, and Johannes Kepler
University Linz recommending Surfer to their students.
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Fig. 1: A screenshot of the Surfer waveform viewer debugging a RISC-V core.

waveform format with an open specification. However, it has proven to be rather
difficult to extend GTKWave beyond its current functionality, as the code base
is quite old and appears to not have been written with extensibility in mind.
Surfer was built from the ground up to address these issues and enable new
workflows.

While existing waveform viewers excel at debugging hardware designs written
in SystemVerilog or VHDL, there is no support for newer hardware languages
like Chisel [3] or any of the other new languages [2, 4, 20, 26]. These languages
generally feature more advanced type systems, but none of that rich meta-data
is considered when viewing signal traces in existing viewers. Without seeing
the native representation of signal values, the user has a bad debugging experi-
ence. This is a significant hurdle that prevents these new languages from being
adopted. Surfer addresses this problem by including an extensible translator
system that can be used to decode semantically meaningful values from raw bit
vectors debug traces (Section 2).

Besides new languages, there is also a need for a flexible waveform viewer
that can be used to design new high-level debugging and analysis tools. Surfer
can be easily embedded in web-applications and features a novel remote control
protocol. It is also the first open-source viewer to support direct integration with
a running simulator (Section 3). A custom waveform backend quickly loads VCD,
FST or GHW files, taking advantage of modern multicore CPUs while minimiz-
ing user-facing latency and memory use and avoiding exploitable memory bugs
(Section 4). Fig. 1 shows a screenshot of the Surfer waveform viewer.

2 Extensible Translator System

An important job of a waveform viewer is to transform the raw bit vectors
emitted by the simulator into semantically meaningful values. Most waveform
viewers have some support for doing this for numeric values, for example allowing
the user to show numbers as signed, unsigned, or hexadecimal versions. However,
real-world signals often have much richer semantic meanings.
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Currently, Surfer primarily deals with two sources of these semantically rich
formats. The first are modern Hardware Description Languages (HDLs) with
more expressive type systems compared to VHDL and Verilog. Thus, effective
debugging requires seeing native values directly rather than raw bit vectors.
Surfer also has extensive support for decoding RISC-V, LA64, and MIPS in-
structions, which are commonly found in modern hardware designs. Less com-
mon formats which might be specific to a particular project can be incorporated
with a custom translator written in Rust or Python.

2.1 Hardware Description Language Support

VHDL and SystemVerilog are not longer the only options available to designers
when designing hardware. Chisel [3] has seen widespread adoption in industry for
both design and verification [9]. VexRiscV perhaps the most commonly used soft
core RISC-V is written in SpinalHDL [26], and several ASIC and FPGA designs
are being developed in Amaranth [1], BlueSpec [21] and Clash [2]. In addition,
there are a very large number of languages in development that have yet to see
widespread adoption, including Spade [25] PipelineC, [11] Silice, [16] SUS [28],
Filament [20], RHDL [4], and many others. Many of these languages include fea-
tures that make traditional waveform viewers difficult to use. These languages
often have more advanced type systems than Verilog. Most allow defining prod-
uct types like structs or tuples. Some languages like Spade, SUS, and Clash and
RHDL take this one step further and allow full algebraic data types.

Currently, most of these languages are compiled to Verilog or VHDL for
synthesis and simulation, and in this process, the high-level type information is
lost. After the simulation is done, the user is left with a trace that consists only of
bit vectors that they then need to interpret. To exemplify this problem, Listing
2a contains the definition of a Spade type modelling commands to a memory
module. A short simulation trace of a signal of this type is shown in Fig. 2b.
Without knowledge of the internal representation of Spade types, this trace is
very difficult to interpret, and even with such knowledge, doing the translation
manually requires significant mental effort.

Surfer’s translator system makes it possible for a specialized Spade translator
to use type information to recover the hierarchical data from the signal. Fig. 2c
contains the same trace as Fig. 2b but with hierarchical translation enabled.
From the root translated trace, the user quickly gets an overview of the full
value of the signal. By expanding the individual field, it is easy to tell at a
glance when commands are present, and which commands are active at different
timestamps.

Translation is currently implemented for the Spade language as well as Chisel
via the Tywaves [19] research project. There is also in progress work to support
Clash [2] and RHDL [5] demonstrating that the translator system is extensible
to support multiple different languages.
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enum Option<T> {
  Some{val: T},
  None
}
enum Op {
  Write{val: uint<8>},
  Read
}
struct MemCommand {
  addr: uint<8>,
  command: Option<Op>
}

(a)

(b)

(c)

Fig. 2: Example of a Spade type (a), a trace with a raw bit vector of that type
(b), and a trace with a translated version of the same signal.

2.2 Instruction decoding

Another common source of semantically meaningful values are processor instruc-
tions. To help work with these, Surfer includes a dedicated system for decoding
instructions6. This system lets users define the structure of their instruction set
in a TOML based configuration format. Surfer ships with definitions for all offi-
cially ratified RISC-V instructions, LongArch64, and MIPS instructions and can
thus translate them out of the box.

2.3 Project-Specific Python Translators

In addition to supporting translation of common formats like instructions and
HDL types, Surfer also features support for user defined custom translators,
allowing easy translation of project-specific signal formats. Currently, users can
write simple python scripts to implement their translations. In the future, we will
explore the use of plugins via WebAssembly to allow faster translators written in
any language. WebAssembly being sandboxed also means that these user plugins
can be distributed safely without the risk of malicious code affecting the viewer
or the system it is running on.

3 Integrating Surfer with the EDA Ecosystem

The open-source EDA ecosystem has many excellent tools that do one partic-
ular job very well. However, compared to commercial EDA tools, there is sig-
nificantly less integration. Most integration consists of workflow specific one-off
scripts, which presents a hurdle to adopting these tools. Recently, Visual Studio
Code has become a hub for more integrated HDL workflows, with plugins such as

6 https://github.com/ics-jku/instruction-decoder



Surfer — An Extensible Waveform Viewer 5

YoWASP [8] and TerosHDL [27] enabling synthesis and simulation without leav-
ing the editor. However, neither approach integrates a waveform viewer, instead
relying on the user to install GTKWave manually on their local machine.

Besides Integrated Development Environments (IDEs) for developers, many
online teaching tools also rely on simulation and need some sort of waveform
viewer to show simulation results to students. Projects like TinyTapeout [29]
require users to use locally installed waveform viewers in an otherwise fully in-
browser flow, presenting a hurdle for novices. Platforms like MakerChip [22] and
quicksilicon [6] have used ad-hoc waveform viewers that are built specifically
for running in the web. However, since there are limited resources available for
building such a tool, those end up being very basic compared to the tools used
in real design work. Being able to leverage a solid waveform viewer like Surfer
would make these tools more effective.

Hardware verification tools can often benefit from having an integrated wave-
form viewer that is powerful and easy to use. For example, Silogy [24] and Lu-
bisEDA [18] run simulations or formal checkers in cloud infrastructure and then
generate a web-based report. Showing these results in an interactive waveform
viewer right on the web browser is much more convenient than requiring users to
download VCD files for offline viewing as it accelerates the process, and doesn’t
require having a waveform viewer available on the machine on which the re-
sults are viewed. A deep integration of a waveform viewer would allow users to
seamlessly navigate from the textual report to the signals and time at which the
problem manifests, significantly reducing setup costs for debugging.

3.1 Embedding Surfer in Web Applications and Visual Studio Code

A common thread across these three integration areas is the heavy reliance
on web technology. Visual Studio Code is a Chromium-based editor, and both
teaching tools and cloud compute reports are usually built on web technology.
Web integration requires the tool to either be built in JavaScript, or be com-
piled to WebAssembly (WASM) a portable compilation target for programming
languages which allows it to be run in any web-based client. Surfer is written in
Rust and compiled to WASM, which allows web-integration without sacrificing
performance in native builds. Besides embedding, this also allows Surfer to be
used directly in a web browser without an installation.

3.2 Controlling Surfer from a Third Party Tool

Web technology solves many problems associated with embedding the waveform
viewer into a bigger application. However, we also need to be able to control the
viewer from the application Surfer is embedded into. In debugging and verifi-
cation tools, this can be used to point the user to specific problematic signals
and time stamps. As Surfer supports drawing annotations, it can also be used
to show more complex things like relationships between values of different sig-
nals. Teaching tools benefit in similar ways, being able to control the viewer to
highlight interesting timestamps or signals can be very beneficial.
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We developed a Waveform Control Protocol (WCP) that can be used to
control a waveform viewer (server) from an embedding application (client). The
protocol is heavily inspired by the Language Server Protocol (LSP) which is used
to build language and editor-agnostic IDEs. Like the LSP, the WCP defines a set
of JSON commands and responses that a client can send to control the waveform
viewer, or query it about the currently viewed signals. Being JSON-based means
that the protocol can be both language, and transport agnostic. Like the LSP,
the WCP can be sent over network sockets, standard IO, or in the case of web
integration, by passing full JSON messages between web views. While Surfer is
the first implementor of the protocol, the intention is to allow other waveform
viewer-like projects to also adopt this protocol to allow broader interoperability
between debugging tools.

Besides the limited but stable WCP interface, Surfer also exposes a much
lower level, unstable API to integrators. The reactive architecture of Surfer,
allows external programs to directly inject messages to control Surfer in a man-
ner very similar to how Surfer reacts to mouse and keyboard commands from
the user. In Surfer, the callback function that reacts to a user pressing a par-
ticular button does not directly modify program state, but instead generates
a message, for example, AddSignal(...). This message is added to a central
queue which is processed at the end of each frame. All state changes go through
this system, whether they are user interactions like adding signals, events like
WaveformDataLoaded(...) or messages injected by external integration. This brings
huge advantages for integrators because the source of these messages is irrele-
vant to the program, and messages can easily be serialized in a way that simple
function calls cannot. This means that the messages can be injected from an
integrator via any source that can communicate serialized strings such as sock-
ets, standard input, or JavaScript. Fig. 3 illustrates this architecture, which also
powers Surfer’s VSCode-inspired command palette and snapshot testing infras-
tructure.

3.3 Interactive Simulation

In the open-source ecosystem, simulation is currently exclusively done in batch
mode. This means that the simulator runs a test bench to completion while
generating a signal trace. Only after the simulation is done, the trace is loaded
into a waveform viewer for inspection. Alternatively, in an interactive workflow,
the simulation is controlled through a GUI. The user can run the simulation
for a few clock cycles, inspect the result right away, change some signal values
and continue simulation. Previously, interactive simulation was only available
with commercial tools, benefiting from tight integration between simulator and
waveform viewer. In the open-source space, the user is generally free to mix and
match their choice of simulator with their choice of waveform viewer, making it
more difficult to support interactive simulation for the large number of possible
combinations.

Instead of a tight integration between one company’s simulator and viewer,
the open-source approach requires standardizing a common interface. Recently,
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Fig. 3: The Surfer architecture. Solid lines denote the main program. Interfaces
used by external integrators are dashed.

the CXXRTL Debug Server Protocol (CDSP) [7] has been introduced to support
exactly this use-case. Like the WCP discussed previously, it is a JSON-based pro-
tocol that allows a client (waveform viewer) to connect to a server (simulator)
to receive signal values and control the simulation. Surfer is the first waveform
viewer to support this new open standard. Based on this support, we are cur-
rently integrating Surfer with the RTL-Debugger project which allows for an
integrated simulation, debugging, and development environment7.

While WCP and the CDSP are similar in implementation, their use case is
quite different, which is why a both protocols are needed. CDSP is intended for
communication between a simulator and a waveform viewer, with the simulator
acting as the host. Through it, the waveform viewer can control the simulation,
receive information about events such as failed assertions, and query the simula-
tor for waveform data. WCP on the other hand has the waveform viewer acting
as the host, and allows clients to control what the waveform viewer is currently
showing. The primary use case is to allow clients integrating surfer to add signals
of interest, show the user specific timestamps and draw additional information
on the waveform to highlight important details. WCP also includes facilities for
adding additional user interactions to the viewer, for example, allowing the user
to jump to the source code location of a signal in their text editor.

3.4 Tools Integrating Surfer

We are aware of several tools that take advantage of the fact that Surfer is
easy to embed and control, as described in the previous sections. The WSVA
system [12] evaluates SystemVerilog Assertions on waveform traces and uses
Surfer to visualize failed assertions by creating coursers pointing out the start
and end of the property through the WCP interface. The WAL language runtime

7 https://github.com/amaranth-lang/rtl-debugger/pull/5

https://github.com/amaranth-lang/rtl-debugger/pull/5
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integrates Surfer to display results of waveform analysis programs written in
WAL [13–15]. It uses CXXRTL Debug Protocol [7] to inject analysis results as
signals into Surfer.

Several commercial and open-source projects have already integrated Surfer
as part of their projects. Two commercial verification platforms LubisEDA [18]
and Silogy [24] have successfully used Surfer as an embedded waveform viewer
to show waveforms that reproduce errors found during verification. Currently,
the products are still in the prototype phase, and have not been released to the
public.

Surfer has also seen adoption in numerous teaching tools. An example of
this is SonicRV8, a tool which lets students explore how processors execute each
instruction. The primary interface in it shows the current state of the proces-
sor graphically and the user can step through execution, or click on individual
instructions to see how they flow through the pipeline. The Surfer integration
lets the user dive deeper to see the full state of the processor using the remote
control functionality. This view also allows for interacting with instructions and
seeing the relevant signals and timestamps in the waveform viewer.

Since the primary means of debugging digital designs is the waveform viewer,
teaching platforms that teach HDLs also need to have an integrated waveform
viewer for students to see their results. Quicksilicon [6] is such a platform and
now uses Surfer as the primary waveform viewer. MakerChip [22], a tool used
primarily to teach the TL-Verilog language [23] also has the option of using
Surfer as the waveform viewer, though they still maintain their own viewer which
has integration with TL-Verilog that Surfer currently lacks. TinyTapeout [29]
is an educational project that makes it straightforward to get small designs
manufactured on real chips. Their workflow is fully browser-based, with the full
synthesis and simulation flow being run in the cloud to let users play with chip
design without installing any tools. Once the simulation is complete, users, of
course, need to inspect the results if problems occurred. By using a version of
Surfer that is embedded in the TinyTapeout flow, this is now possible without
having to install software, reducing a hurdle to people getting their designs
working and taped out.

4 A Performant Waveform Backend

Surfer displays signal traces from VCD, FST and GHW files. Our file parsing
code was designed from the ground up with three important requirements in
mind: (1) To keep memory consumption in check, we need to only load the
signals that a user has selected. Most signals in a waveform are never displayed
and should not consume unnecessary memory. (2) To improve responsiveness,
the file metadata and signal names must be available as soon as possible. (3) To
support re-use and embedding in various applications, Surfer needs to be able
to work with untrusted input files.

8 https://sonic-rv.ics.jku.at/

https://sonic-rv.ics.jku.at/
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VCD file: on-disk size 2.9 GiB

GTKWave: time to load / total application memory use 16s / 800 MiB

Surfer: time to load / compressed signal size (1 thread) 7.5s / 74 MiB

Surfer: time to load / compressed signal size (8 threads, 4-core CPU) 2.0s / 74 MiB

Surfer: average time to decompress a signal for viewing 271 µs

Tab. 4: Speed and memory comparisons for a single example VCD file.

To render the values of a signal, Surfer needs to be able to efficiently query
the most recent value of the signal at a given time and the duration until the
next change. This lookup is implemented in 𝑂(log2(𝑛)) by performing a binary
search on an array of changes sorted by the time at which the change occurs.
This requires all values to be stored in a fixed size, 𝑂(1)-accessible, manner which
takes a lot of space as it prohibits most compression schemes. To keep memory
consumption in check, Surfer only stores signals that have been selected by the
user in this uncompressed representation. The FST file format makes this task
relatively simple, since it allows for efficient access to individual signals. VCD
and GHW, on the other hand, require the complete file to be read and parsed,
even if only a single signal is selected.

We developed an interesting middle ground between parsing all signals from a
VCD into the uncompressed representation and reparsing the whole VCD every
time a signal is added to the view. In our implementation, we parse the VCD
once and then store all signals in a compressed in-memory representation, using
many ideas for the FST on-disk format. When a signal is selected, it can be
quickly decompressed without any file I/O. The compression rate achieved this
way is high enough that this approach works, even for large VCD files. Besides
allowing fast access with reduced memory usage, this intermediate storage layer
also enables parallel file parsing. We can split up a single VCD file and parse
each chunk on a separate CPU core. Performance results for a single example
VCD are shown in Tab. 4.

A typical workflow for Surfer consists of the user loading a file and then
browsing the signal hierarchy to select signals of interest. Thus, we first parse
the header and metadata, including the signal names and hierarchy. For most
input files, this can be done in much less than one second, and thus the user is
presented with a signal hierarchy almost instantaneously. We continue parsing
the actual signal value data in the background while the user is making their
signal selection. This has allowed Surfer to avoid a loading screen.

Many of the applications described in Section 3.4 require running Surfer on
files that were not generated by the user. Unfortunately, file parsers are notori-
ous for containing exploitable bugs. Our parsing code exclusively uses the safe
subset of Rust and therefore Surfer can be used on untrusted input files without
having to worry about exploitable memory bugs. Maintaining the modular de-
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sign philosophy of Surfer, our parsing library is available under the name wellen

on GitHub9. It has been used outside Surfer to read waveform traces for power
analysis10 and as part of the VaporView VSCode plugin [17]. There is also a
python wrapper available. Thus, our focus on modularity has already paid off,
enabling the community to develop new analysis and debugging tools.

4.1 Remote Servers and Continuous Integration

Simulation of large designs is often performed on dedicated compute servers
rather than the developer’s local computer. To view simulation results, devel-
opers traditionally have to download the whole trace file to open it up in their
local waveform viewer. This transfer takes time and generates a lot of data traf-
fic, with VCD files often measuring in the tens of gigabytes in size. Surfer offers
a server mode in which it opens a waveform file on a remote machine and then
allows a local instance of Surfer to access the data on demand. As soon as the
local viewer receives the meta-data and signal names for the server, the user can
browse them and make their selection. Once a signal is selected, the server sends
the compressed value change data to the local instance for displaying. Since
this feature re-uses our in-memory signal compression, it drastically reduces the
amount of data sent over the network while also reducing the user-facing latency
since signal data is transferred lazily.

5 Software Project

Surfer is developed as an open-source project11 under the EUPL license. It was
created at Linköping university and has since seen several major contributions
from the community. For longevity, the project is now stewarded by the FOSSi
foundation. We have recently received funding from the NLnet foundation12 to
implement several highly requested features including signal grouping, drawing
of analog signals, and plugin support.

6 Conclusion

Surfer is a new open-source waveform viewer that is built to be extensible and
embeddable to enable new workflows in hardware design and verification. A
major goal of Surfer is to integrate more high-level information from modern
hardware type systems, analysis and verification tools to simplify debugging.
Surfer is also the first open-source tool to support interactive simulation. Surfer
has been used inside several bigger tools, primarily web-based verification and
teaching platforms. We would like to invite the reader to consider what they

9 https://github.com/ekiwi/wellen
10 https://github.com/antmicro/trace2power
11 https://gitlab.com/surfer-project/surfer/
12 https://nlnet.nl/

https://github.com/ekiwi/wellen
https://github.com/antmicro/trace2power
https://gitlab.com/surfer-project/surfer/
https://nlnet.nl/
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want to build with Surfer. We like to look back at the project where an M.Sc.
student was trying to work on a waveform viewer with support for Chisel types
for his thesis. Building such a viewer from scratch would be impossible, but
enhancing Surfer with his idea turned out to be a realistic goal [19]. Whether
you want to use Surfer for teaching, or as a graphical user interface for your next
verification tool, please get involved. We are happy to help you get started.
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