
Fast Interpreter-Based Instruction Set Simulation for
Virtual Prototypes

Manfred Schlägl Daniel Große
Institute for Complex Systems, Johannes Kepler University Linz, Austria

manfred.schlaegl@jku.at daniel.grosse@jku.at

Abstract—The Instruction Set Simulators (ISSs) used in
Virtual Prototypes (VPs) are typically implemented as interpreters
with the goal to be easy to understand, and fast to adapt and
extend. However, the performance of instruction interpretation
is very limited and the ever-increasing complexity of Hardware
(HW) poses an increasing challenge to this approach.

In this paper, we present optimization techniques for
interpreter-based ISSs that significantly boost performance while
preserving comprehensibility and adaptability. We consider the
RISC-V ISS of an existing, SystemC-based open-source VP with
extensive capabilities such as running Linux and interactive
graphical applications. The optimization techniques feature a
Dynamic Basic Block Cache (DBBCache) to accelerate ISS in-
struction processing and a Load/Store Cache (LSCache) to speed
up ISS load and store operations to and from memory.

In our evaluation, we consider 12 Linux-based benchmark
workloads and compare our optimizations to the original VP as
well as to the very efficient official RISC-V reference simulator
Spike maintained by RISC-V International. Overall, we achieve
up to 406.97 Million Instructions per Second (MIPS) and a signif-
icant average performance increase, by a factor of 8.98 over the
original VP and 1.65 over the Spike simulator. To showcase the
retention of both comprehensibility and adaptability, we imple-
ment support for RISC-V half-precision floating-point extension
(Zfh) in both the original and the optimized VP. A comparison of
these implementations reveals no significant differences, ensuring
that the stated qualities remain unaffected. The optimized VP
including Zfh is available as open-source on GitHub.

I. INTRODUCTION

Virtual Prototypes (VPs) are high-level, executable models
of Hardware (HW) platforms capable of running unmodified
production Software (SW) [1], [2]. They are used to accelerate
early design space exploration before physical HW is built. To
ensure this acceleration is effective, VPs must be easy to create
and understand. This is achieved by using high level languages
like C++, domain specific standardized libraries like SystemC
(IEEE 1666 [3]) [4]–[6], and abstraction of communication
details with Transaction Level Modeling (TLM) [7]. For the
same reason, although less efficient than dynamic binary trans-
lation methods, interpreter-based Instruction Set Simulators
(ISSs) are often preferred for simulating processors in VPs
due to their ease of implementation, comprehensibility, and
adaptability. Adding new instructions to an interpreter ISS
typically involves straightforward modifications to the decoder
and the instruction execution logic. However, their perfor-
mance limitations often become apparent in later stages when
VPs are used for interleaving HW and SW development or
as reference models for verification. The techniques presented
in this paper aim to significantly improve the performance of

interpreter-based ISS implementations without sacrificing their
comprehensibility or adaptability.
Contribution: Our contributions include two optimization
techniques: (i) the Dynamic Basic Block Cache (DBBCache),
which generates an alternative representation of the executed
code, the Dynamic Basic Block Graph (DBBG), to efficiently
cache data needed for instruction processing by the ISS, and
(ii) the Load/Store Cache (LSCache), which allows direct
translation of in-simulation virtual addresses to host system
memory addresses, to speed up load and stores on data mem-
ory. In our evaluation, we compare these optimizations using
12 Linux-based benchmark workloads, achieving up to 406.97
Million Instructions per Second (MIPS) and a significant aver-
age performance increase, by a factor of 8.98 over an existing
open-source VP and 1.65 over the efficient RISC-V refer-
ence simulator Spike from RISC-V International [8]. We also
showcase that these optimizations retain comprehensibility and
adaptability of the VP by implementing the RISC-V half-
precision floating-point extension (Zfh) in both the original
and optimized VP, with no significant differences observed.
The optimized VP including Zfh is available on GitHub1.
Related Work: There are a number of open-source RISC-V
simulators, such as RISC-V VP++ [9], RISC-V VP [10],
RISC-V-TLM [11], Spike [8], QEMU [12], RV8 [13] or
DBT-RISE [14]. RISC-V VP++, its predecessor RISC-V VP,
and RISC-V-TLM are all SystemC VPs with a non-optimized,
interpreter-based ISSs. Due to its extensive functionality (see
Section II), RISC-V VP++ is chosen as the basis for this
work. Spike comes with an already highly efficient caching
interpreter-based ISS, and is therefore chosen as a comparison
in our evaluation. QEMU, RV8 and DBT-RISE use dynamic
binary translation. Although dynamic binary translation offers
higher performance, this work focuses on interpreter-based
techniques for earlier motivated reasons. Commercial VPs,
such as Synopsys Virtualizer, Siemens Vista and SIM-V from
MachineWare are closed source, and thus exclude the qualities
of comprehensibility and adaptability emphasized in this pa-
per. To the best of our knowledge, the optimized VP resulting
from this work has the highest performance interpreter-based
ISS, among the SystemC-based, Linux-enabled VPs currently
available as open-source.

II. BACKGROUND AND OUTLINE

A key component of any HW platform is the pro-
cessor. In recent years, the open, royalty-free RISC-V

1https://github.com/ics-jku/riscv-vp-plusplus

https://github.com/ics-jku/riscv-vp-plusplus


Fig. 1: RISC-V VP++ Architecture

Instruction Set Architecture (ISA) [15], [16], known for its
modularity and adaptability, has gained substantial traction in
both academia and industry. A standout feature of RISC-V
is its modularity, enabling extensive customization and spe-
cialization to balance performance with power efficiency. This
flexibility is achieved through a range of standard extensions
that can be added to the base ISA, enhancing the architec-
ture’s capabilities for specific tasks. One example of such
an extension is Zfh, ratified in 2021 [17], which is used in
our evaluation. Similar to the F and D extensions for single-
and double-precision floating-point, Zfh adds support for half-
precision floating-point to RISC-V.

This paper considers the open-source RISC-V VP++ [9].
The VP provides extensive capabilities such as running Linux
and interactive graphical applications [18], comes with support
for the RISC-V "V" Vector Extension (RVV) [19], and is used
for advanced verification approaches [20]–[22]. Its architecture
is outlined in Fig. 1. The blue blocks show the components
included in the original RISC-V VP++. The added and mod-
ified components presented in this paper are highlighted in
green and orange, respectively. The VP includes interpreter-
based ISSs for RISC-V in 32-bit (RV32) and 64-bit (RV64)
configurations, and is capable of simulating multiple cores as
indicated by the stacked ISS components in Fig. 1. The ISSs
also include optional support for a Memory Management Unit
(MMU) to realize Virtual Memory Management (VMM). A
TLM-based bus links the ISSs, memory, and peripherals. The
CLINT and PLIC provide timer and interrupt functionality.
The VP offers several configurations, ranging from small
platforms without VMM, e.g. for bare metal SW, to larger
platforms with VMM, which can run OSes such as Linux.

The operation principle of the interpreter-based ISS can
be seen in Fig. 2 [23]. At each iteration, an Instruction
Word (instrWord) is fetched from the memory at the current
Program Counter (PC) address. The instrWord is decoded to a
ISS internal, unique Operation Identifier (opId), which is then
used in a case distinction to select the appropriate implemen-
tation for the instruction. Finally, the chosen implementation
extracts the necessary field values for execution (e.g., register
addresses, immediate values, . . . ) from the retrieved instrWord.

Static Basic Blocks (SBBs) are defined by the program
structure and can be extracted with static code analysis.
They start with a label to branch/jump to, and end with a
branch/jump instruction. Dynamic Basic Blocks (DBBs), on
the other hand, are determined dynamically by the actual exe-
cution flow and Control Flow Changes (CFCs), i.e. changes of

1 loop {
2 (opId, instrWord) = fetch_decode(PC);
3 switch (opId) {
4 case ADD: regs[instr.rd] = regs[instr.rs1] + regs[instr.rs2]; break;
5 case SUB: regs[instr.rd] = regs[instr.rs1] - regs[instr.rs2]; break;
6 ...
7 }
8 }

Fig. 2: ISS Instruction Interpretation

the PC at taken branches, jumps, traps/interrupts and trap/in-
terrupt returns [23]. The labels are not known in advance, so
the start of a block is determined by the target PC of a CFC in
the preceding block. The end of the block is determined by the
next instruction in the execution flow that causes a CFC. In the
first optimization technique, DBBCache, which we present
in Section III, we identify and store DBBs during execution.
For each instruction in such a block, we save all data that can
be reused the next time the ISS processes the instruction. We
also track all CFCs and store the relationships between blocks
accordingly. This allows us to quickly switch to previously
known blocks when the same CFC occurs in the future. As a
result, we dynamically create an alternative representation of
the executed code, which we call a DBBG.

In SystemC VPs, Direct Memory Interface (DMI) is a tech-
nique to accelerate simulation by giving initiators a direct
pointer to a memory area, thus bypassing more costly TLM
transactions. Usually, in-simulation memory is realized by
a contiguous host memory and is therefore DMI capable.
The execution path of a RISC-V load/store instruction in
RISC-V VP++ is as follows: The ISS calls the Data Mem-
ory Interface (DMem IF) with the respective in-simulation
address. If VMM is used, the in-simulation virtual address is
translated to a in-simulation physical address using the MMU
and the page table setup. The DMem IF checks, if the in-
simulation physical address allows DMI. If so, the address
is translated to a host system memory address, which is then
directly dereferenced. Otherwise, a TLM transaction is issued.
The goal of the second optimization technique, LSCache,
which we present in Section IV, is to eliminate the above
execution path for as many load/store instructions as possible.
For all load/store instructions to DMI capable memory, we
cache the host system memory addresses of the in-simulation
page start addresses. As a result, subsequent accesses to cached
in-simulation pages in the future can be realized directly by
calculating and dereferencing host system memory addresses.

III. THE DYNAMIC BASIC BLOCK CACHE (DBBCACHE)
This section describes the DBBCache integrated in the ISS

as seen in Fig. 1. Since each core can have its own VMM
page table setup, each ISS instance has its own independent
instance of a DBBCache. The DBBCache is organized in
Blocks, which correspond to DBBs identified while execution.
Blocks contain a variable number of Entries corresponding
to the instructions covered by the DBB. Entries contain the
instrWord and a decoded opId corresponding to the instruction
implementation to execute in the ISS. New Blocks are created
for the entry point, i.e. start PC of ISS execution, and any CFC
in the execution flow. Each newly created Block is added to
a BlockHashMap, to keep track of all Blocks and their start



Fig. 3: DBBCache: Example for a Dynamic Basic Block Graph (DBBG) after Execution from entry to PC (red arrow)

PCs. However, as we will see later, the BlockHashMap is only
used as a last resort when looking for a Block on a CFC.

An instruction is retrieved by the ISS by calling a function
of the DBBCache with the current PC. This is called the
fetch/decode step. The DBBCache checks if the next Entry
in the currently active Block is available. If so, the instruction
has already been processed and the cache has a hit. The cache
advances to the subsequent Entry and returns its opId and
instrWord to the ISS. Otherwise, the cache has a miss. The
cache fetches the instruction from the instruction memory,
decompresses potential compressed RISC-V instructions and
decodes the instruction. The resulting instrWord and opId
are stored in a new Entry in the currently active Block, and
returned to the ISS. Finally, the ISS uses the opId to select
the instruction implementation and the instrWord to extract the
required field values.

An example of an identified DBBCache structure is shown
in Fig. 3. Left, backed in green, we see the RISC-V assembler
code of an executed code fragment including the execution
entry, a call to a function with a loop and some branches, and
a return from a function. The add and sub instructions are
placeholders for any RISC-V instructions that can not result in
a CFC. Right, backed in blue, we see the corresponding DBBG
that was identified by the DBBCache during execution up to
the PC indicated by the red arrow. The ISS starts at entry in
1 . Correspondingly, the DBBCache identifies the DBB 1’ .

While the ISS continues to interpret the instructions from 1
(add, sub, jalr), the DBBCache analogously creates Entries
in 1’ . The execution of the jalr instruction finally causes a
CFC, resulting in the creation of DBB 2’ . The CFCs and other
important events of the ISS are reported to the DBBCache via
provided interface functions. We will now first discuss the

handling of CFCs in Section III-A. After that, we will look at
other important events in more detail in Section III-B.

A. Control Flow Changes (CFCs)

In RISC-V, CFCs appear on taken branches, static and
dynamic jumps, and trap/interrupt enters and returns. For
didactic purposes, they will now be discussed in that order.

1) Taken Branches: If the condition of a RISC-V branch
instruction is met, the control flow is changed by a constant
offset relative to the PC, i.e. the branch is "taken". Otherwise,
the execution continues with the next instruction, i.e. the
branch is "not taken". For example, beq t0, t1, 8 causes
a CFC if the registers t0 and t1 are equal, in which case the
PC is adjusted by the offset 8.

The ISS reports each taken branch with the PC offset to the
DBBCache. Each Entry contains a pointer to a Block, referred
to as linkAddr, which is initialized with NULL. If the linkAddr
of the current Entry is not NULL, the branch was taken
before, which corresponds to a link hit. In this case, the cache
switches to the pointed-to Block for the next fetch/decode
step and returns to the ISS. Otherwise, the branch was never
taken before, which corresponds to a link miss. In this case,
the target PC is calculated using the offset and checked
for existence in the BlockHashMap. If the PC was already
identified as start of a Block, there is already a Block to switch
to, otherwise a new empty Block is created. The linkAddr of
the current Entry is set to the found or newly created Block,
which allows to switch directly to this Block in the future.
Finally, the cache switches to this Block for next fetch/decode
step and returns to the ISS. Using this scheme allows us
to have Blocks containing multiple branch instructions. This
increases the overall average length of Blocks and with this



the efficiency of the cache, because less block switches occur
on average. Examples for branches are shown in Fig. 3. The
code in 2 and 3 defines a function with a loop containing
three branches (beq, bne, blt). The corresponding DBBCache
representations are shown in 2’ and 3’ . 2’ contains the
function’s first loop iteration where none of the branches were
taken, while 3’ includes subsequent iterations, with two of the
three branches (<idx> 1 and 3) taken at least once.

2) Static Jumps: A static jump in RISC-V changes the con-
trol flow by a constant offset relative to the PC. For example,
jal x0, -16 causes a CFC where the PC is adjusted by the
offset -16. Static jumps are used to realize loops and (static)
function calls. Static jumps are reported and handled in the
same way as taken branches described above in Section III-A1
using the linkAddr in the current Entry. The only difference
is, that static jumps are never not taken, which means, that
they are always the last instruction in a Block. Examples for
static jumps are shown in Fig. 3, at the end of 2 , 3 and 4
(jal). The corresponding DBBCache representations can be
seen in the last Entries of 2’ , 3’ and 4’ .

3) Dynamic Jumps: In contrast to static jumps, where the
target PC is known at compile time, dynamic jumps in RISC-V
allow to jump to locations calculated at run-time. For example,
jalr x0, t0, 4 causes a CFC where the PC is set to the
value stored in register t0 plus 8. On RISC-V, dynamic jumps
can be used to realize jumps over the full address range
(i.e. wide jumps). Another common use of dynamic jumps
is returning from functions. For example, a function is called
with the static jump jal ra, function, where the PC of the
following instruction, the return address, is saved in register
ra. A return from the function is realized with the dynamic
jump jalr x0, ra, 0, where the PC is set to the previously
stored return address in ra. Other important use cases for
dynamic jumps are, for example, function pointers in C or
methods of polymorphic classes in C++.

The ISS reports each dynamic jump with the target PC to the
DBBCache. Each Block contains a ring buffer, referred to as
DynLinkCache. This DynLinkCache can hold up to 16 entries
consisting of a identified target PC with a corresponding
pointer to a Block, referred to as dynLinkAddr. If the target
PC is found in the DynLinkCache, the dynamic jump to this
PC has already been seen (link hit). The cache switches
to the Block pointed-to by the found dynLinkAddr for the
next fetch/decode step and returns to the ISS. Otherwise, the
jump to that PC was never been seen (link miss). Again, the
BlockHashMap is used to check whether a Block already exists
or whether a new empty Block needs to be created. The PC
and the pointer to the found or newly created Block is added
to the DynLinkCache, which allows to switch directly to this
Block in the future. Finally, the cache switches to this Block
for next fetch/decode step and returns to the ISS. This generic
approach is agnostic w.r.t the concrete use of the dynamic jump
i.e. a complex algorithm to distinguish wide jumps, dynamic
calls or returns is not necessary, which makes the handling
very efficient. Examples of dynamic jumps can be found in
Fig. 3, at the end of 1 and 5 (jalr), once as a dynamic call

and once as a function return. The corresponding DBBCache
representations can be seen in the last Entries of 1’ and 5’ .

4) Trap/Interrupt Enters: Traps and interrupts are events
that interrupt the normal execution flow of a program and
cause switches to predefined handler code. Traps are syn-
chronous to the execution flow and are triggered by the
executed instruction, e.g. system calls, illegal instructions,
access to invalid memory regions. Interrupts, are asynchronous
to the instruction flow and are triggered externally, e.g. by
peripherals, to indicate that they require attention.

RISC-V provides a wide variety of trap/interrupt handling
schemes, ranging from handlers in different privilege levels
to vectorized interrupt handling. For reasons of efficiency,
we take a generic approach that is agnostic to all these
schemes. The ISS reports all trap and interrupt enters with
the corresponding target (handler) PC to the DBBCache. The
DBBCache has a TrapLinkCache which holds up to 8 entries
consisting of a identified target PC with a corresponding
pointer to a Block, referred to as trapLinkAddr. If the target PC
is found in the TrapLinkCache, the trap handler has already
been entered (link hit). The cache switches to Block the
pointed-to by the found trapLinkAddr for the next fetch/decode
step and returns to the ISS. Otherwise, the trap handler has
never been entered (link miss). Again, the BlockHashMap is
used to check whether a Block already exists or whether a new
empty Block needs to be created. The PC and the pointer to the
found or newly created Block is added to the TrapLinkCache,
which allows to switch directly to this Block in the future.
Finally, the cache switches to this Block for next fetch/decode
step and returns to the ISS.

5) Trap/Interrupt Returns: Returns from traps or interrupts
cannot be handled in the same way as the function returns
described in Section III-A3. Reasons for this are: (i) interrupts
can happen at any point in execution, and (ii) both events may
cause process context switches in an Operating System (OS).
As a result, the return PC can point anywhere in program
memory and does not necessarily indicate the start of a DBB.
The likelihood of such Blocks reoccurring is very small, so
caching them would be a waste of runtime and memory. When
the ISS reports a trap or interrupt return to the DBBCache, the
cache switches to a special, empty DummyBlock. Subsequent
instructions are handled as cache misses, i.e. are fetched from
memory and decoded. This continues until the next CFC in
the instruction flow, whereupon the cache continues to work
as described in the sections above.
B. Fences and Cache Coherency

Important events in the execution that need to be handled
are changes that render the contents of the DBBCache po-
tentially incoherent to the instruction memory. In case of the
DBBCache, this can be (i) changes to the instruction memory
contents (e.g. self-modifying code) or, (ii) changes to the
VMM setup (e.g. page table changes). Since such changes usu-
ally also affect caches on real HW, most architectures provide
special instructions which must be used by SW to indicate such
changes. In RISC-V these are the fence instructions fence.i
for (i) and fence.vma for (ii).



Each occurrence of one of these instructions is reported
to the DBBCache by the ISS. The cache then increments
a counter called CoherenceCnt. Each Block also has a cor-
responding CoherenceCnt, which is set to the value of the
cache’s CoherenceCnt when it is created or updated. In the
fetch/decode step, the cache compares the CoherenceCnt of
the current Block and the cache. If the counter values match,
the Block is coherent and the cache continues. Otherwise, the
Block may be incoherent and its Entries are compared against
the memory contents. If there are no differences, the Block is
still coherent. If there are differences, coherence is restored
by updating the affected Entries from memory (fetch/de-
code) and by resetting the affected Block links (linkAddr and
DynLinkCache). In both cases, the CoherenceCnt of the Block
is set to that of the cache and execution continues.

C. DBBCache-Based Optimizations

Based on DBBCache and the high hit rates it can achieve,
further optimizations are possible. We will now give a brief
overview of some of the most important optimizations.

1) Computed Goto: In the ISS, we replace the opId-based
case distinction with more efficient computed gotos, using
macros to maintain clarity (e.g. Fig. 5 in Section V-B). These
macros generate jump labels and create a compile-time lookup
table for opIds to jump label addresses. After each instruction
decode, the DBBCache uses this table to retrieve the jump
label address, which is then stored in the Entry instead of the
opId and returned to the ISS. The ISS then directly jumps to
the appropriate instruction implementation.

2) Fast and Slow Path: The ISS and DBBCache contain
several rarely entered code paths. For example, in the ISS
this includes termination checks, interrupt, debug and trace
handling. We move all these rarely used cases to a slow
path, which is only taken if the corresponding functionality is
requested, e.g. if an interrupt is set pending. In the DBBCache,
we implement a fast path using a pointer to the currently active
Entry which is simply incremented after each fetch/decode
step. The end of Block is detected with a special end-of-block
marker in the last Entry of a Block. The cache switches to the
fast path on each CFC if the target Block is guaranteed to be
coherent (Section III-B), and remains in fast path execution
unless a cache miss or fence instruction occurs. The resulting
fast paths are extremely lean and therefore highly efficient.

IV. THE LOAD/STORE CACHE (LSCACHE)

Besides efficient instruction interpretation, another impor-
tant factor for high ISS performance is data flow to and from
memory. In this section, we describe the LSCache which is
integrated into the ISS as seen in Fig. 1.

In RISC-V, load and store instructions exist for different
types of data (e.g. different width integers, floats, . . . ). For
example, lw t1, t0, 8 loads a 32 bit word from a memory
location pointed to by t0 plus offset 8 into register t1.

As outlined in Section II, the goal of LSCache is to
eliminate interaction with the DMem IF, including costly
address translation by the MMU, DMI handling, etc., for

as many load/store instructions as possible. The LSCache is
organized as a direct-mapped cache with 256 entries and stores
direct translations from in-simulation page start addresses to
corresponding DMI host system memory addresses. From a
given 64 bit in-simulation address, the cache uses the upper
44 bits [63 : 20] as TAG, the following 8 bits [19 : 12] as Index
and the lowest 12 bits [11 : 0] as Offset within the 4 KiB page.
For each memory access, the cache checks, if the entry at
Index is valid and its TAG matches the extracted TAG. If this
is the case, the cache has a hit and directly dereferences the
stored host system memory page address plus the Offset to
perform the memory access. Otherwise, the cache has a miss,
in which case the access is performed using the DMem IF
as described above, but with one modification: For each DMI
access, DMem IF stores the translated host system memory
address. The cache checks whether the last access was using
DMI. If not, the cache stays untouched. Otherwise, the cache
retrieves the used host system memory page address, updates
the cache entry at Index with the TAG and the retrieved host
memory address and sets the entry valid. Similar to what is
described for the DBBCache in Section III-B, a change in the
VMM setup can cause the LSCache to become incoherent.
Again, we use fence.vma to indicate such changes. Any
occurrence is reported by the ISS to the LSCache, in which
case all cache entries are invalidated.

The LSCache is agnostic to the use of VMM. It can directly
translate from in-simulation physical or virtual addresses to
host memory addresses for up to 256∗4 KiB = 1 MiB of DMI
capable memory. It only takes a single cache miss anywhere
in a 4 KiB page to eliminate DMem IF interactions for all
subsequent accesses to the same page until the next VMM
setup change.

V. EVALUATION

In our evaluation, we first discuss in Section V-A the
performance improvements of the introduced DBBCache and
LSCache compared to the original RISC-V VP++ and the
Spike simulator. Then, in Section V-B, we demonstrate the
preserved comprehensibility by comparing implementations of
Zfh for both the original and the optimized VP.

A. Performance

All measurements were performed on a host system with an
Intel® CoreTM i7-10700 8-core processor running at 2.9 GHz,
with 128 GiB RAM. The simulated RV64 system is based on
Linux 6.9.0 [24], created by buildroot-2023.08.2 [25] using the
GCC compiler in version 13 [26].

Fig. 4 presents the results of our performance measurements
and comparisons in three bar charts. The X-axis common to
all charts shows the 12 selected workloads and the simulators
examined. The top chart shows absolute results in MIPS
obtained by taking the median of multiple measurement runs.
The two charts below show the same results as acceleration
factors relative to the original RISC-V VP++ (middle) and the
Spike simulator (bottom). As for the set of selected workloads,
we use (i) Dhrystone [27] and Whetstone [28], targeting



Fig. 4: Results of the Workload Performance Measurements and Comparison of the Simulators

integer and floating-point, respectively, (ii) all 9 workloads
from CoreMark®-PRO [29], which target integer, floating-point
and also the memory subsystem, and (iii) a two minute demo
run of PrBoom, a Linux port of a classic game [30], rendering
350x250 images in a in-memory framebuffer, targeting integer,
but also OS interaction. As for the simulators, we compare
(Fig. 4, left to right) (i) the original RISC-V VP++, (ii) three
optimized VPs with different combinations of DBBCache and
LSCache enabled, and (iii) the Spike simulator, built with GCC
optimization level 3.

We can see from Fig. 4 that using LSCache alone does
not improve performance. The overhead of instruction in-
terpretation is much higher than the overhead of accessing
data. However, the combination of DBBCache and LSCache
gives a significant performance boost compared to using
only DBBCache. Another interesting observation is that Spike
performs very well for most workloads, and even outperforms
the optimized VP in core. However, in the case of PrBoom,
the performance of Spike is conspicuously low. Since PrBoom
interacts more frequently with the Linux kernel, a likely ex-
planation is that Spike cannot handle context switches between
kernel and userspace efficiently. A more detailed investigation
is left for future work.

For the VP with DBBCache and LSCache enabled, we
measure up to 406.97 MIPS for the zip test workload. On
average, we get a significant performance increase by a factor
of 8.98 over the original RISC-V VP++ and 1.65 over Spike. In
a run of all workloads with statistics enabled, the periodically
calculated average hit rates never drop below 99.5% for the
DBBCache and 98.7% for the LSCache. 98.5% of all executed
instructions are handled in the ISS and DBBCache fast paths.

B. Preserved Comprehensibility and Adaptability

To demonstrate preserved comprehensibility and adapt-
ability, we implement support for Zfh in both the orig-
inal RISC-V VP++ (VP Original) and the optimized VP
(VP DBBCache + LSCache). The differences between these

VP Original
1 case OpId::FNMADD_H: {
2 fp_prepare_instr();
3 fp_setup_rm();
4 fp_regs.write(RD, f16_mulAdd(...
5 fp_finish_instr();
6 } break;

VP DBBCache + LSCache
OP_CASE(FNMADD_H) {
fp_prepare_instr();
fp_setup_rm();
fp_regs.write(RD, f16_mulAdd(...
fp_finish_instr();

} OP_END();

Fig. 5: ISS Implementation Differences for fnmadd.h

implementations are then used to assess whether the stated
qualities remain unaffected by the introduced optimizations.

Both implementations change the same number of code
lines, 530. 271 of these changes are related to the instruction
decoding of Zfh. However, since decoding is not affected
by the optimizations, there are no differences between the
implementations, as expected. The remaining 259 changes are
related to the interpretation and execution of Zfh. Here, we
observe 68 differences, 2 for each of the 34 newly introduced
instructions. These differences are related to the replacement
of the case distinction by computed gotos as presented in
Section III-C1. Fig. 5 shows an example of these differences
for instruction fnmadd.h in Lines 1 and 6. We can see
that the basic structure is maintained by the appropriately
named macros, and therefore conclude that the optimizations
presented in this paper have no significant negative impact on
the comprehensibility or adaptability of the VP’s ISS.

VI. CONCLUSIONS

In this paper, we presented in detail the two optimization
techniques, DBBCache and LSCache, applicable to interpreter-
based ISSs to significantly improve their performance while
preserving comprehensibility and adaptability. These optimiza-
tions yielded a performance of up to 406.97 MIPS, with
an average speedup factor of 8.98 over the unoptimized
RISC-V VP++ and 1.65 over the Spike simulator. The imple-
mentation of the RISC-V Zfh extension in both the original
and optimized VPs showed no significant differences, confirm-
ing that the stated qualities remained intact. The optimized VP
including Zfh is available on GitHub.

ACKNOWLEDGMENTS
This work has partially been supported by the LIT Secure and Correct Systems Lab

funded by the State of Upper Austria.



REFERENCES

[1] T. De Schutter, Better Software. Faster!: Best Practices in Virtual
Prototyping. Synopsys Press, March 2014.

[2] R. Leupers, G. Martin, R. Plyaskin, A. Herkersdorf, F. Schirrmeister,
T. Kogel, and M. Vaupel, “Virtual platforms: Breaking new grounds,”
in Design, Automation and Test in Europe, 2012, pp. 685–690.

[3] “IEEE 1666-2023 standard for standard SystemC language reference
manual.” [Online]. Available: https://doi.org/10.1109/IEEESTD.2023.
10246125

[4] D. Große and R. Drechsler, Quality-Driven SystemC Design. Springer,
2010.

[5] V. Herdt, D. Große, and R. Drechsler, Enhanced Virtual Prototyping:
Featuring RISC-V Case Studies. Springer, 2020.

[6] M. Hassan, D. Große, and R. Drechsler, Enhanced Virtual Prototyping
for Heterogeneous Systems. Springer, 2022.

[7] OSCI TLM-2.0 Language Reference Manual, OSCI, 2009. [On-
line]. Available: https://www.accellera.org/images/downloads/standards/
systemc/TLM_2_0_LRM.pdf

[8] “Spike RISC-V ISA simulator,” https://github.com/riscv/riscv-isa-sim,
2024.

[9] M. Schlägl, C. Hazott, and D. Große, “RISC-V VP++: Next generation
open-source virtual prototype,” in Workshop on Open-Source Design
Automation, 2024.

[10] V. Herdt, D. Große, H. M. Le, and R. Drechsler, “Extensible and
configurable RISC-V based virtual prototype,” in Forum on Specification
and Design Languages, 2018, pp. 5–16.

[11] M. Montón, “A RISC-V SystemC-TLM simulator,” 2020. [Online].
Available: https://arxiv.org/abs/2010.10119

[12] “QEMU a generic and open source machine emulator and virtualizer,”
https://www.qemu.org, 2024.

[13] “RV8,” https://rv8.io, 2024.
[14] “DBT-RISE,” https://github.com/Minres/DBT-RISE-Core, 2024.
[15] A. Waterman and K. Asanović, The RISC-V Instruction Set Manual;

Volume I: Unprivileged ISA, SiFive Inc. and UC Berkeley, 2019.

[16] ——, The RISC-V Instruction Set Manual; Volume II: Privileged Archi-
tecture, SiFive Inc. and UC Berkeley, 2019.

[17] The RISC-V Instruction Set Manual Volume I: Unprivileged Architecture,
Version 20240411, https://github.com/riscv/riscv-isa-manual/releases/
tag/riscv-isa-release-698e64a-2024-09-09, RISC-V International, 2024.

[18] M. Schlägl and D. Große, “GUI-VP Kit: A RISC-V VP meets Linux
graphics - enabling interactive graphical application development,” in
ACM Great Lakes Symposium on VLSI, 2023, pp. 599–605.

[19] M. Schlägl, M. Stockinger, and D. Große, “A RISC-V “V” VP: Un-
locking vector processing for evaluation at the system level,” in Design,
Automation and Test in Europe, 2024, pp. 1–6.

[20] C. Hazott and D. Große, “Relation coverage: A new paradigm for
hardware/software testing,” in European Test Symposium, 2024, pp. 1–4.

[21] M. Schlägl and D. Große, “Single instruction isolation for RISC-V
vector test failures,” in International Conference on Computer-Aided
Design, 2024.

[22] C. Hazott, F. Stögmüller, and D. Große, “Using virtual prototypes and
metamorphic testing to verify the hardware/software-stack of embedded
graphics libraries,” Integr., vol. 101, p. 102320, 2025.

[23] J. Smith and R. Nair, Virtual Machines: Versatile Platforms for Systems
and Processes (The Morgan Kaufmann Series in Computer Architecture
and Design). San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 2005.

[24] “The Linux kernel archives,” https://kernel.org, 2024.
[25] “Buildroot,” https://www.buildroot.org, Accessed: 2023-02-19.
[26] “GCC the GNU compiler collection,” https://gcc.gnu.org, 2024.
[27] “Dhrystone benchmark version 2.1,” https://www.netlib.org/benchmark/

dhry-c, 2024.
[28] “C converted Whetstone double precision benchmark version 1.2,” https:

//www.netlib.org/benchmark/whetstone.c, 2024.
[29] “The EEMBC CoreMark-PRO processor benchmark,” https://www.

eembc.org/coremark-pro, 2024.
[30] “PrBoom,” https://prboom.sourceforge.net, 2024.

https://doi.org/10.1109/IEEESTD.2023.10246125
https://doi.org/10.1109/IEEESTD.2023.10246125
https://www.accellera.org/images/downloads/standards/systemc/TLM_2_0_LRM.pdf
https://www.accellera.org/images/downloads/standards/systemc/TLM_2_0_LRM.pdf
https://github.com/riscv/riscv-isa-sim
https://arxiv.org/abs/2010.10119
https://www.qemu.org
https://rv8.io
https://github.com/Minres/DBT-RISE-Core
https://github.com/riscv/riscv-isa-manual/releases/tag/riscv-isa-release-698e64a-2024-09-09
https://github.com/riscv/riscv-isa-manual/releases/tag/riscv-isa-release-698e64a-2024-09-09
https://kernel.org
https://www.buildroot.org
https://gcc.gnu.org
https://www.netlib.org/benchmark/dhry-c
https://www.netlib.org/benchmark/dhry-c
https://www.netlib.org/benchmark/whetstone.c
https://www.netlib.org/benchmark/whetstone.c
https://www.eembc.org/coremark-pro
https://www.eembc.org/coremark-pro
https://prboom.sourceforge.net

	Introduction
	Background and Outline
	The Dynamic Basic Block Cache (DBBCache)
	Control Flow Changes (CFCs)
	Taken Branches
	Static Jumps
	Dynamic Jumps
	Trap/Interrupt Enters
	Trap/Interrupt Returns

	Fences and Cache Coherency
	DBBCache-Based Optimizations
	Computed Goto
	Fast and Slow Path


	The Load/Store Cache (LSCache)
	Evaluation
	Performance
	Preserved Comprehensibility and Adaptability

	Conclusions
	References

