
Boosting SW Development Efficiency with
Function Lifetime Diagrams

Christoph Hazott Daniel Große
Institute for Complex Systems, Johannes Kepler University Linz, Austria

christoph.hazott@jku.at daniel.grosse@jku.at

Abstract—Embedded systems play a crucial role in today’s
Internet-of-Things (IoT) ecosystems. These systems can range
from simple sensors to edge Artificial Intelligence (AI) solutions.
However, their complex Hardware (HW)/Software (SW) inter-
actions demand new analytical methodologies which encompass
both the HW and the SW execution.

In this work, we present a novel approach for early visual-
ization of complex HW/SW interactions during SW development
for embedded systems. Our approach traces the lifetime of HW
and SW functions during the simulation of a Virtual Prototype
(VP), which represents the HW while executing the SW. We
dynamically instrument the execution of the VP at runtime
such that neither the VP binary file nor the SW binary file
has to be modified for tracing. The results are presented as a
Function Lifetime Diagram (FLD) by storing the data into the Fast
Transaction Recording (FTR) file format, which can be visualized,
e.g. by the Surfer waveform viewer.

To demonstrate the effectiveness of our approach, we first ana-
lyze the HW and SW interactions of a Micro-Electro-Mechanical
System (MEMS) sensor. More specifically, the root causes of
two already identified HW/SW interaction issues are analyzed.
Second, the application flow of an edge AI application for
recognizing handwritten digits on a touch display utilizing a
pretrained Neural Network (NN) is analyzed. These experiments
demonstrate that FLDs provide an effective abstraction to foster
a deeper understanding of the embedded system behavior. An
additional runtime evaluation reveals an approximately 1.9-fold
runtime overhead, demonstrating that our instrumentation ap-
proach remains runtime-efficient even for larger IoT applications.

I. INTRODUCTION

In the realm of embedded systems for Internet-of-Things
(IoT), balancing real-time requirements, minimizing power
consumption, and ensuring robust performance in diverse
applications requires complex interactions between Hardware
(HW) and Software (SW). To address these complex inter-
actions at early design stages, Virtual Prototypes (VPs) are
widely utilized when developing modern embedded systems
SW [1]. This approach facilitates simultaneous SW develop-
ment and HW architectural exploration.

In essence, a VP is a high-level executable model of the
entire HW platform (processor, accelerator, sensor, bus, dis-
play, ...) which runs unmodified production SW [1]. As such,
a VP allows simulation and validation of the functionality of
an embedded system before physical implementation. For VP
development, the most commonly used language is SystemC,
a standardized C++ library (IEEE 1666 [2]); for an overview
of SystemC, we refer to [3], [4]. SystemC includes an event-
driven simulation kernel that serves as the foundation of the
VP and is compiled into a simulation binary. Additionally,
leveraging Transaction Level Modeling (TLM) [5], [6], e.g. for

bus communication, enables a simulation performance that is
orders of magnitude faster than Register Transfer Level (RTL)
simulations. This significant speed-up is achieved by TLM
through abstracting away unnecessary communication details
while preserving the HW behavior. A prerequisite is to ensure
the correctness of the VP, which has been addressed, for in-
stance, in [7], [8]. Furthermore, using the VP for validation of
SW has been considered, for example, in [9]–[13]. Altogether,
a VP allows the SW developer to write and test code as if they
were working directly on the actual HW platform, with full
visibility of bus transactions and access to all HW registers.

However, in the process of SW development for an em-
bedded system, the SW must leverage the HW, resulting
in the aforementioned complex HW/SW interactions. These
interactions are shaped by factors such as concurrency, in-
terrupt handling, memory-mapped I/O, etc. As an example
consider a Micro-Electro-Mechanical System (MEMS) sensor:
the SW developer has to create sophisticated algorithms for
sensor data processing, calibration and fusion while interacting
with the underlying HW. Another example demonstrating the
complexity of HW/SW interactions is the embedding of edge
Artificial Intelligence (AI) applications utilizing frameworks
like TensorFlow Lite (TFLite)1 from Google [14]. Here, the
SW developer must ensure that inputs, such as those from
a touch sensor, and outputs, like those on a display, are
correctly managed while the trained AI model is running. In
general, keeping track of and visualizing HW/SW interactions
necessitates opting for the right level of abstraction to focus on
the relevant aspects while filtering out unnecessary complexity.

The chosen level should flatten out the interplay between
HW and SW while keeping a meaningful level of detail on
both sides. To the best of our knowledge, no such approach
has been proposed yet.

In this paper, we present a novel approach for visual-
ization of complex HW/SW interactions in VPs. As a
suitable abstraction for the visualization, we identified the
invocation of functions. Please note, the term function used
from here on encompasses both SW functions (executed on
an Instruction Set Simulator (ISS) of a VP) and SystemC
functions modeling the HW behavior. Following this idea,
our approach cohesively traces the lifetime of HW and SW
functions during SystemC simulation and eventually forms the
so-called Function Lifetime Diagram (FLD).

To realize the proposed approach, we leverage the observ-

1Google renamed TFLite to LiteRT in September 2024.



ability of VPs. In the following, we describe our approach
and demonstrate its usefulness by analyzing the HW and SW
interactions of two common IoT applications, including (1)
a MEMS gyroscope sensor and (2) an edge AI application
utilizing a pretrained Neural Network (NN) for handwritten
digit recognition on a touch display. At the heart of our im-
plementation, we perform dynamic runtime instrumentation on
the VP binary. More precisely, our approach makes use of the
open-source runtime manipulation system DynamoRIO [15].
By this, we fulfill a major requirement: neither the VP nor
the (embedded) SW have to be modified. Hence, the provided
visualizations reflect exactly the HW/SW interactions which
are executed on the VP and later on the real HW, i.e. no
extra code is inserted distorting function lifetimes. For the
visualization, we leverage the extensible open-source wave-
form viewer Surfer [16] such that we can make the complete
approach available as open source on GitHub2.

In summary, the key contributions of this work include:
• novel approach for visualizing complex HW/SW interac-

tions of VPs with a FLD
• non-intrusive cohesive tracing for the VP (representing

the HW) and the SW
• implementation available as open-source on GitHub
• fully reproducible experiments, also made available on

GitHub

II. RELATED WORK

There have been several papers which analyze/trace the HW
side of a VP (see [17]–[19]), i.e. logging for instance TLM
functions like b_transport together with the transported
payload. Furthermore, on the SW side there have been works
targeting the execution flow of variables [20] or visualizing
symbolic execution traces [21]. Clearly, the HW/SW inter-
action is missing. Commercial tools, e.g. Virtualizer from
Synopsys, offer functionality to visualize the execution of SW
functions, but lack the information about the corresponding
HW functions. Additionally, the visualization and analysis
cannot be modified as these tools are proprietary. A general
challenge for all these approaches is a non-intrusive realiza-
tion, i.e. neither the VP itself nor the SW may be modified.
The paper [22] presented a non-intrusive approach, which only
focuses on HW and additionally has performance limitations
due to the dependency on GDB [23].

In contrast to all these works, our approach focuses on
determining lifetimes of SW functions and HW functions
cohesively. We extend the approach introduced in [24], [25],
which performs dynamic runtime instrumentation for non-
intrusive cohesive HW/SW tracing. The resulting implemen-
tation and experiments will also be made available as open
source.

III. HW/SW FUNCTION LIFETIME VISUALIZATION

In this section, we present the proposed approach for visual-
ization of complex HW/SW interactions. In Section III-A, we
start by discussing two typical cases of HW/SW interactions,

2https://github.com/ics-jku/function_lifetime_diagram

Bus Peripheral
Write MemorySW

HW

Fig. 1: SW executes Write Memory; HW identifies memory address as
Peripheral target and transfers the data via Bus

Interrupt
SW
HW

FLIH SLIH

Fig. 2: HW Interrupt triggering the FLIH within the SW calling the SLIH to
execute according actions

how they are taking place in a VP and why this ultimately
leads to the consideration of function lifetimes to extract the
HW/SW interactions. Thereafter, in Section III-B we describe
our implementation.

A. HW/SW Interactions and Function Lifetimes
We want to specifically look at two cases of HW/SW

interactions, which we use to illustrate our approach. First,
we sketch both cases using two conceptual figures.

Fig. 1 depicts the first case where the SW writes into
a register of a HW peripheral. In this case the HW/SW
interaction depicted is based on memory-mapped I/O. First,
the Write Memory of the SW executes e.g. the C/C++ line:

*CONFIG_REG_ADDRESS = 1;

Where CONFIG_REG_ADDRESS is a pointer containing the
address of the configuration register of the HW peripheral.
In this case, 1 is set to be the new value of the register. Next,
the HW recognizes that the address belongs to the memory-
mapped I/O region and transfers the data via the Bus to the
target Peripheral, which then stores the new value in the
configuration register.

The second case considers the triggering of an interrupt by
the HW as depicted in Fig. 2. The interaction starts when
the HW triggers an Interrupt. This trigger invokes the so-
called First-Level Interrupt Handler (FLIH) within the SW.
The FLIH has the task to quickly acknowledge the interrupt
and prepare the system for subsequent processing, e.g. by
storing the application context. After this, the FLIH invokes
the corresponding Second-Level Interrupt Handler (SLIH), see
right side of Fig. 2. The SLIH is registered to handle the
specific interrupt to execute the appropriate SW actions, e.g.
read peripheral data.

After the discussion of both figures, it becomes evident that
they very well capture the HW/SW interaction in the sense
that an action, e.g. triggering an interrupt in HW leads to
a reaction, e.g. executing the according interrupt handlers in
SW. In the context of VPs, action and reaction can be easily
mapped to function executions: More precisely, due to the
high-level nature of a VP, the behavior of the HW is modeled
using SystemC classes and methods; HW functions in our
terminology. Similarly, the SW running on the VP is modeled
using C/C++ classes, methods and functions; SW functions
in our terminology. For both, the function information can
be easily extracted using the debug information generated by
the compiler. Using this information, we get where a certain

https://github.com/ics-jku/function_lifetime_diagram


HW and SW

Source Codes

and Binaries

<< methods >>

 Functions 

Entry and Exit

Extractor

Traced

Function

Lifetimes

Function

Lifetimes

Tracer

FTR File

Generator
FTR File

FTR File

Viewer

Fig. 3: Function lifetime tracing, starting by extracting fuction information from HW/SW source code and binaries, tracing the desired entry and exit points
and finally displaying the data; Blue boxes indicate input/output files for the flow stages which are depicted as gray boxes

functionality is executed, i.e. within the HW or the SW.
Furthermore, the function name provides some information
of what is executed. Missing is only when the functionality
is executed to fully understand the HW/SW interactions. This
information can be easily discovered by capturing the times
when a function is entered and exited, or in other words the
function lifetime. Note that for the SW (functions), running on
the VP, the simulated program counter variable is utilized.

B. Function Lifetime Tracing

Our approach is based on dynamic runtime instrumentation
as presented in [25]. The presented solution (implementation
available on GitHub [26]) efficiently collects and evaluates
structural coverage metrics of HW/SW executions in a cohe-
sive manner.

In this work, we extended the existing solution by incorpo-
rating additional algorithms to enable tracing the lifetime of
HW and SW functions, providing deeper insights into their
interactions. The resulting tracing flow is depicted in Fig. 3.
The flow starts with a so-called Functions Entry and Exit
Extractor. This algorithm is parsing the source codes of the
HW and SW to identify all existing function interfaces. If
a function interface has been identified, the parser stores the
position (file and line) of the function entry and determines the
end of the function. Although a function has only one entry
point, due to the possibility of exiting the function anywhere
throughout its code block, multiple exit points can exist. Next,
the extractor uses the debug information from the compiled VP
and SW binaries to translate the identified code positions into
Program Counter (PC) addresses. These addresses correspond
to the memory locations where the stored instructions mark
entry or exit points of the respective functions. To distinguish
between the VP and the SW in subsequent discussions, we
refer to the PC containing the VP position as HW PC and the
PC containing the SW position as SW PC. The translated
addresses are then given to the Function Lifetime Tracer
which instruments the VP binary dynamically at runtime and
is implemented as a DynamoRIO client. DynamoRIO is a
runtime instrumentation system that exports an interface for
building dynamic tools for a wide variety of applications. The
concept behind DynamoRIO is to load and execute the binary,
in our case the VP binary, within an application cache that can
be manipulated at runtime. This mechanism allows for tracing
of both, the HW and SW, while keeping the original binaries
intact, eliminating the need for extensions to either. Moreover,
provided that the simulation operates on a host PC compatible
with DynamoRIO, contains debug information of the binaries,

1 static void trace_hw_pc(uint pc) {
2 (buffer->buf_ptr)->type = TYPE_HW;
3 (buffer->buf_ptr)->time_stamp = getTime();
4 (buffer->buf_ptr)->pc = pc;
5

6 buffer->buf_ptr += sizeof(buffer_entry);
7

8 if (buffer->buf_ptr >= buffer->buf_end) {
9 flush_file();

10 }
11 }

Listing 1: Function called by instrumentated code at runtime to record the
occurance of a HW function entry or exit (with timestamp and pc) utilizing
a buffer.

and simulates a type of SW PC, this method can be seamlessly
applied.

The DynamoRIO client, created for our approach, utilizes
the so-called HW-to-SW memory hierarchy to cohesively trace
the HW and SW PCs. Listing 1 shows the implementation for
tracing the HW PC. A call to this function is instrumented
at the points where a HW function is entered or exited to
write the information into the Traced Function Lifetimes file.
To efficiently trace the SW, file accesses are reduced by
storing the data in a buffer before they are written into the
file (Line 2–4). This data contains the type TYPE_HW, which
is a constant to indicate a HW function (Line 2), as well
as the current timestamp (Line 3) and the content of the
current HW PC (Line 4). As already mentioned, the HW PC
contains the address of the HW function entry or exit point.
Line 6 increments the buffer pointer to make space for the
next occurrence of a HW PC. To make sure the buffer is not
overflowing, Line 8–10 are flushing the buffer to the Traced
Function Lifetimes at the time when the buffer is full. The
implementation, tracing the SW PCs, looks quite similar. The
difference in implementation arises because compared to the
HW instrumentation, the SW PC is stored in a variable within
the VP binary, therefore, only this variable needs to be traced
leaving the SW binary unmodified even at runtime. The overall
gathered data within the Traced Function Lifetimes file enables
the generation of the FLD.

Next, an algorithm was implemented which reads the Traced
Function Lifetimes file and combines the content with the
original function information to generate the so-called Fast
Transaction Recording (FTR) file. FTR was originally in-
troduced to store TLM transactions [27]. These transactions
are organized by streams which contain generators. Each of
these generators contains a list of transactions with start and
end times. By using streams for files and generators for
functions, we can store our function executions in the form



of transactions. The last step in the implemented flow is to
visualize the gathered function lifetimes. Due to the use of
the FTR file format, we are able to use different tools. For
this work, we selected the Surfer waveform viewer [16].

IV. EXPERIMENTS

As basis for our experiments, we use the open-source
RISC-V VP++ [28]. We evaluate our approach for two ap-
plications running on this VP: First, we take the experiments
from [25] which already identified two issues when adding a
new MEMS gyroscope sensor peripheral to the VP. We analyze
the function lifetime of these two issues to determine the root
causes (Section IV-A). In the second part of our experiments,
we consider the HW/SW interactions and application flow of
a pretrained NN able to recognize a handwritten digit coming
from a touch display connected to the VP (Section IV-B). In
the last part of this section, the runtime impact of our approach
is evaluated.

A. MEMS Gyroscope Sensor

With the experiments from [25], available as open source on
GitHub [26], we analyzed the two published issues with our
approach. The gyroscope sensor peripheral has a configuration
register, a status register, and three data registers for x-, y-, z-
axis, respectively. All these registers can be accessed using
memory-mapped I/O via the generic TLM-2.0 bus. Addi-
tionally, the sensor peripheral is connected to the Platform-
Level Interrupt Controller (PLIC) of the VP. To configure the
sensor, the SW has four functions. The first function init is
setting up the sensor via the configuration register. Further
adjustments to the configuration should be made incrementally
to preserve the previous settings. Three enable functions, one
for each axis, called enable_[x, y, z], are therefore designed
to first read the configuration register, then set the bit for the
corresponding axis, and finally write the updated configuration
back to the register. The first issue involves incorrect register
access behavior, while the second issue pertains to missing
interrupts; in the following two paragraphs, we explain how
the proposed approach helped to determine the root causes.

Register Issue: The register issue showcases a situation
where the y and z register addresses are swapped. Such cases
are hard to investigate because current approaches fail to
cohesively capture HW reactions to SW actions, resulting in
insufficient information being provided for in-depth analysis.
In contrast, the visualization of the proposed FLD directly
exposes this case. Fig. 4 shows an excerpt of the lifespan of
the HW sensor peripheral via its SystemC run function and
the SW via the main function. At the bottom of the FLD,
we can see the execution of the print_data SW function to
print the current sensor data for the aforementioned axes in
the order x-, y- z-axis. The FLD shows that the HW registers
of the sensor peripheral are accessed in the wrong order. The
annotated bubbles 1 , 2 , 3 show that the order of access
was x, z and y. This means the SW requested data from the
z register instead of the y register and vice versa, leading to
the root cause of misaligned register addresses in the SW.

Fig. 4: Zoomed and annotated FLD for reading the axes’ data registers,
showing a wrong order for get_y_data and get_z_data; green is HW,
blue is SW

Fig. 5: Zoomed and annotated FLD for interrupt processing, showing a
misallignment between the trigger_interrupt of the HW and the interrupt
handlers of the SW; green is HW, blue is SW

Interrupt Issue: To signal the SW the availability of valid
data, the sensor peripheral supports interrupts. The interrupt is-
sue showcases a situation where the HW is triggering more in-
terrupts than the SW can handle. Interrupts in general are hard
to debug due to their asynchronous nature which can be altered
when debug and tracing mechanisms are intrusive, as they
can fundamentally influence the interrupt timings. So, having
a non-intrusive approach which neither modifies the source
code nor the binary is essential for interrupts. Fig. 5 depicts
an excerpt of the FLD containing the interrupt handling. The
image confirms that the execution order aligns with our expec-
tations. The gyroscope HW (trigger_interrupt) tells the
HW PLIC (gateway_trigger_interrupt) to execute the
SW FLIH (level_1_interrupt_handler) which in turn ex-
ecutes the gyroscope SW SLIH (mems_gyro_irq_handler).
The dotted red lines in the FLD mark the points at which
an interrupt is triggered by the HW. Looking at the HW/SW
interaction of the interrupt, we can see that the interval
between being triggered by the HW and executed by the SW
is growing for each interrupt over time (see bottom of Fig. 5).
By the fourth interrupt, the FLIH is no longer executed (lost).
This reveals the root cause: the SW cannot process interrupts
at the rate they are triggered by the HW.

B. Edge AI Application
To evaluate the benefits of FLDs for understanding applica-

tion flows, we consider a typical edge AI example: We want
to recognize handwritten digits coming from a touch display.
Therefore, we trained a NN with the widely recognized Mod-
ified National Institute of Standards and Technology (MNIST)
database. As HW, we use the GD32 configuration of the VP
which supports touch input and display output via a virtual
display. For the SW part, we leverage TFLite from Google



Fig. 6: Annotated FLD of single handwritten digit detection using NN pretrained with MNIST database; blue is SW, green is HW, boxes with border indicate
single execution, boxes without border depict multiple executions, color tone indicates execution frequency (the brighter, the more frequent)

(a) Initialization (b) Touch Input (c) Display Output

Fig. 7: Digit recognition on GD32 from initialization over touch input to
display output; white box indicates output area, black field indicates touch
input area. Red digit is annotated to indicate touch input.

to deploy the trained NN. The user interaction is depicted in
Fig. 7. In Fig. 7a, the application initializes the display. Next,
the user draws a digit via touch on the display (Fig. 7b digit
annotated in red). Finally, the input is processed with TFLite
and the detected digit is printed on the display in the upper left
corner (Fig. 7c). The pixel-by-pixel rendering of the display
output, combined with the sampling of touch input, results
in a high amount of HW/SW interactions. For these types of
systems, it is crucial to have an abstraction layer that reduces
unnecessary execution details while preserving the overall flow
for effective analysis.

Fig. 6 shows the FLD generated when executing the appli-
cation as depicted in Fig. 7. The collected function lifetimes
are visualized in an order which best presents the previously
mentioned application flow. Additionally, the diagram con-
tains color coding which is needed to interpret the results.
Boxes which have a border indicate that this is a single
execution, e.g. the main.cpp:main SW function, which is
executed only once, depicts the lifespan of the application.
Boxes without a border illustrate multiple executions of the
function, where the brightness of the color indicates the
execution frequency (high brightness means high frequency).
For example, the mnist_app.cpp:mnist_app_handle SW
function begins with a bright blue box indicating frequent
executions of this function. Within the annotated period 2 ,
the box is slightly darker, indicating less frequent executions
of this function. In this example, it is evident that the box is
not filled with a uniform color but instead displays multiple
executions of the function. With this in mind, we can interpret
the FLD. The annotated numbers 1 , 2 , 3 show the segments
in the diagram where the initialization 1 , the touch input 2
and the display output 3 take place.

Initialization: The diagram shows that for the initializa-
tion 1 , the mnist_app.cpp:mnist_app_init SW function

and the mnist_app.cpp:prepare_digit SW functions are
executed. Additionally, the tft.c:writedata SW driver and
the exmc.h:transport_external HW function for the ex-
ternal memory controller are invoked to draw the white field
on the display. The high frequency of executions is attributed
to the fact that the display output is rendered on a pixel-by-
pixel basis.

Touch Input: The touch input is processed through the
SPI interface and depicted by the area annotated with 2 . We
can see that on the SW side the spi.c:transfer_bytes
function of the SPI driver is executed with a high fre-
quency, polling the data from the HW. The polling
is causing the HW functions spi.h:transport and
spi.h:register_access_callback to collect the touch
input via SPI and communicate the data back to the
SW. For the regions before and after 2 we see that the
mnist_app.cpp:mnist_app_handle SW boxes are in bright
blue until a certain point. The region before 2 indicates the
polling after initialization until the first touch input occurs.
The region after 2 is a wait time for some digits: Since the
implementation is sensitive to the start of touch input, digits
that require lifting the hand to write (e.g., 4) may otherwise
be incorrectly recognized as two distinct digits. To solve this,
a detection period was introduced linking multiple parts into
one concise input. For touch input, the high frequency of
executions is due to the sampling rate required to achieve the
resolution necessary for the NN to accurately recognize the
handwritten digit. We can additionally see a reduced execution
frequency for the mnist_app.cpp:mnist_app_handle SW
execution while the input occurs. This reduced frequency
results from processing the input data.

Display Output: The execution of the mnist_app.cpp:
mnist_app_handle SW function, after the detection period,
contains the TFLite processing of the input data (box with
border for mnist_app.cpp:mnist_app_handle SW func-
tion) and the output on the display 3 . For this segment, we
can see that the mnist_app.cpp:draw_digit SW function
is invoked, which again invokes the tft.c:writedata SW
function of the TFT driver and transports the information to the
display via the exmc.h:transport_external HW function.
Compared to the initialization, these HW/SW interactions are
quite similar. The main difference is the initiator of the in-
teraction, which were the mnist_app.cpp:mnist_app_init
and the mnist_app.cpp:prepare_digit SW functions for



the initialization and the mnist_app.cpp:draw_digit SW
function for the display output segment. Again, the high fre-
quency of execution is attributed to the pixel-by-pixel output.

C. Runtime Impact
Given the use of dynamic runtime instrumentation, in the

final part of our experiments we evaluate the instrumentation
impact of our approach by performing two types of runtime
measurements.

The first type of measurement was conducted as a baseline
measurement without instrumentation, while the second type
was performed with instrumentation. Both measurements were
carried out using the AI application as described in Fig. 7.
Specifically, after initialization, the digit 3 was drawn manually
as touch input, followed by the output of the recognized digit
on the display. This process involves a significant amount
of HW/SW interactions and consequently a high amount
of instrumented code executions. Since this flow includes a
manual input, which introduces variability, each measurement
was repeated 10 times, and the average runtime was calculated
to mitigate instability. We found that for our baseline mea-
surement, the average runtime was about 4.38 seconds. The
average runtime for the instrumented executions was about
8.20 seconds. By dividing the average of the instrumented
measurement by that of the baseline measurement, we observe
an approximate 1.9-fold increase in runtime when using our
approach.

Overall, the experiments demonstrate that the FLD pro-
vides an effective abstraction for efficiently analyzing IoT
applications while preserving detailed HW/SW interaction
information, enhancing the understanding of embedded sys-
tem behavior. Furthermore, the non-intrusive nature of the
approach resulted in an acceptable runtime increase, making it
also suitable for applications with a high amount of HW/SW
interactions.

V. CONCLUSIONS

In this paper, we presented an approach for visualizing the
intricate HW/SW interactions of embedded systems. Specif-
ically, for VPs, which provide a high-level executable HW
platform running unmodified SW, we have identified function
invocations as suitable abstraction for extracting the HW/SW
interactions. Our non-intrusive implementation (i.e. neither the
VP binary nor the SW binary has to be modified) traces
function lifetimes during VP simulation to generate a FLD.

In a first experiment, we considered SW for a MEMS
gyroscope where already two issues have been reported. By vi-
sualizing the FLDs we were able to quickly determine the root
causes. In a second experiment, we generated and analyzed the
HW/SW interactions of touch inputs and display outputs as
well as the application flow for an edge AI application recog-
nizing handwritten digits on a touch display. Additionally, we
have demonstrated that our approach introduces an acceptable
runtime overhead by a factor of approximately 1.9.

For future work, we plan to extend our approach for multi-
threaded SW applications as well as adding programmable

analysis on top of the traces via concepts from [29]. Addi-
tionally, we will use the techniques from [30] to reduce the
baseline runtime.

ACKNOWLEDGMENTS

This work has been partially supported by the LIT Secure
and Correct Systems Lab funded by the State of Upper Austria.

REFERENCES
[1] T. De Schutter, Better Software. Faster!: Best Practices in Virtual Prototyping.

Synopsys Press, March 2014.
[2] IEEE Standard for Standard SystemC Language Reference Manual, IEEE Std.

1666 (Revision of IEEE Std 1666-2011), 2023.
[3] V. Herdt, D. Große, and R. Drechsler, Enhanced Virtual Prototyping: Featuring

RISC-V Case Studies. Springer, 2020.
[4] M. Hassan, D. Große, and R. Drechsler, Enhanced Virtual Prototyping for

Heterogeneous Systems. Springer, 2022.
[5] OSCI TLM-2.0 Language Reference Manual, OSCI, 2009.
[6] F. Ghenassia, Transaction level modeling with SystemC. Springer, 2005.
[7] V. Herdt, H. M. Le, D. Große, and R. Drechsler, “Compiled symbolic simula-

tion for SystemC,” in ICCAD, 2016, pp. 52:1–52:8.
[8] ——, “Verifying SystemC using intermediate verification language and stateful

symbolic simulation,” TCAD, vol. 38, no. 7, pp. 1359–1372, 2019.
[9] V. Herdt, D. Große, H. M. Le, and R. Drechsler, “Early concolic testing of

embedded binaries with virtual prototypes: A RISC-V case study,” in DAC,
2019, pp. 188:1–188:6.

[10] M. Hassan, V. Herdt, H. M. Le, D. Große, and R. Drechsler, “Early SoC
security validation by VP-based static information flow analysis,” in ICCAD,
2017, pp. 400–407.

[11] V. Herdt, D. Große, J. Wloka, T. Güneysu, and R. Drechsler, “Verification of
embedded binaries using coverage-guided fuzzing with SystemC-based virtual
prototypes,” in GLSVLSI, 2020, pp. 101–106.

[12] C. Hazott, F. Stögmüller, and D. Große, “Verifying embedded graphics libraries
leveraging virtual prototypes and metamorphic testing,” in ASP-DAC, 2024, pp.
275–281.

[13] ——, “Using virtual prototypes and metamorphic testing to verify the
hardware/software-stack of embedded graphics libraries,” Integr., vol. 101,
2025.

[14] https://github.com/google-ai-edge/LiteRT, 2024.
[15] “Dynamorio,” https://github.com/DynamoRIO/dynamorio, 2024.
[16] “Surfer,” https://gitlab.com/surfer-project/surfer, 2024.
[17] M. Goli and R. Drechsler, “Through the looking glass: Automated design

understanding of SystemC-based VPs at the ESL,” TCAD, vol. 41, no. 4, pp.
1181–1185, 2022.

[18] W. Hong et al., “Cult: A unified framework for tracing and logging C-based
designs,” in S4D, 2012, pp. 1–6.

[19] N. Bosbach, J. M. Joseph, R. Leupers, and L. Jünger, “NISTT: a non-intrusive
SystemC-TLM 2.0 tracing tool,” in VLSI-SoC, 2022, pp. 1–6.

[20] P. Pieper, V. Herdt, D. Große, and R. Drechsler, “Dynamic information flow
tracking for embedded binaries using SystemC-based virtual prototypes,” in
DAC, 2020, pp. 1–6.

[21] J. Zielasko, S. Tempel, V. Herdt, and R. Drechsler, “3D visualization of
symbolic execution traces,” in FDL, 2022, pp. 1–8.

[22] M. Goli, J. Stoppe, and R. Drechsler, “Automated nonintrusive analysis of
electronic system level designs,” TCAD, vol. 39, no. 2, pp. 492–505, 2020.

[23] “GNU debugger,” https://www.gnu.org/software/gdb, 2024.
[24] C. Hazott and D. Große, “DSA monitoring framework for HW/SW partitioning

of application kernels leveraging VPs,” in IEEE DVCon Europe, 2023, pp. 34–
41.

[25] ——, “Relation coverage: A new paradigm for hardware/software testing,” in
ETS, 2024, pp. 1–4.

[26] “Relation coverage repository,” https://github.com/ics-jku/relation_coverage,
2024.

[27] “Lightweight transaction recording for SystemC,” https://github.com/Minres/
LWTR4SC, 2024.

[28] M. Schlägl, C. Hazott, and D. Große, “RISC-V VP++: Next generation open-
source virtual prototype,” in Workshop on Open-Source Design Automation,
2024.

[29] L. Klemmer and D. Große, “WAVING goodbye to manual waveform analysis
in HDL design with WAL,” TCAD, vol. 43, no. 10, pp. 3198–3211, 2024.

[30] M. Schlägl and D. Große, “Fast interpreter-based instruction set simulation for
virtual prototypes,” in DATE, 2025.

https://github.com/google-ai-edge/LiteRT
https://github.com/DynamoRIO/dynamorio
https://gitlab.com/surfer-project/surfer
https://www.gnu.org/software/gdb
https://github.com/ics-jku/relation_coverage
https://github.com/Minres/LWTR4SC
https://github.com/Minres/LWTR4SC

	Introduction
	Related Work
	HW/SW Function Lifetime Visualization
	HW/SW Interactions and Function Lifetimes
	Function Lifetime Tracing

	Experiments
	MEMS Gyroscope Sensor
	Edge AI Application
	Runtime Impact

	Conclusions
	References-0.2cm

