Leveraging RISC-V for Flexible and Adaptive
Real-Time Radar Sequencing

Michael Atzmiiller!
Wolfgang Ecker?

1Inﬁneon Technologies Austria AG, Linz, Austria

Rainer Findenig!

Bernhard Greslehner-Nimmervoll!
Daniel Grofe?

2Inﬁneon Technologies AG, Munich, Germany

3 Johannes Kepler University Linz, Linz, Austria

{michael.atzmueller, rainer.findenig, bernhard.greslehner-nimmervoll, wolfgang.ecker} @infineon.com

Abstract—Frequency-Modulated Continuous-Wave (FMCW)
radar is essential for accurate measurements of distance, velocity,
and angle in applications such as autonomous vehicles and indus-
trial sensing. In FMCW radar, ramp scenarios involve the grad-
ual change of transmitted signal frequency over time, repeated in
sequences to enable precise object detection and tracking. Central
to these systems is the sequencer, a specialized unit responsible for
generating and distributing control signals with precise timing to
synchronize hardware components during ramp generation. Tra-
ditional implementations, such as the Domain-Specific Sequencer
(DSS), rely on custom Instruction Set Architectures (ISAs) opti-
mized for radar operations but suffer from limitations in flexibil-
ity. This paper introduces the RISC-V Sequencer (RVS), a novel
approach leveraging the modular and extensible RISC-V ISA
to overcome these challenges. By extending a RISC-V processor
with custom Control and Status Registers (CSRs) and providing
a software library, the RVS enables high-level and adaptive
ramp scenarios, offering a flexible and advanced alternative
to traditional radar sequencers such as DSS, which lack the
adaptability required for real-time scenario changes.

I. INTRODUCTION

The Frequency-Modulated Continuous-Wave (FMCW) radar
principle is a widely used technology to measure distance,
velocity, and angle by transmitting frequency-modulated sig-
nals and analyzing their reflections [1]. Its high precision
and robustness make it essential in applications such as
automotive driver-assistance systems, autonomous vehicles,
industrial sensing, and environmental monitoring. By leverag-
ing frequency sweeps, FMCW radar enables accurate object
detection and tracking in complex and dynamic environments.
These frequency sweeps, or ramps, involve a gradual change
in frequency over a set period of time. In practice, multiple
ramps are combined and repeated in sequences, forming what
is known as a ramp scenario.

In FMCW radar systems, precise timing is critical
to ensure accurate control of various involved hardware
components, such as transmitters, receivers, monitoring
components, and power amplifiers. This requires gener-
ating and distributing control signals with highly accu-
rate timing to synchronize all hardware operations. A se-
quencer 1is a specialized unit responsible for orchestrat-
ing the precise timing and coordination of control sig-
nals, thereby enabling the accurate execution of ramp sce-
narios [2], [3]. Crucially, this coordination must occur in
real-time — referred to as real-time radar sequencing —

daniel.grosse @jku.at

meaning the sequencer must deliver configuration data with
deterministic timing during ongoing radar operation. Simply
speaking, the sequencer ensures that each hardware unit re-
ceives the correct control values at exactly the right time.

State-of-the-art FMCW radar chips implement the se-
quencer as a domain-specific unit, equipped with a cus-
tom Instruction Set Architecture (ISA) optimized for radar
operations [3]-[5]. Another prominent example is the
Domain-Specific Sequencer (DSS) from [2], [6]. In essence,
the DSS reads a sequencer program which describes the ramps
and defines control parameters for the hardware. Its execution
generates control values paired with timestamps. A global
timer ensures that these values are delivered to the hardware at
precisely the right times. A key benefit of this DSS is, that its
programming model allows users to adapt the ramps to their
needs regarding frequency bands, bandwidth, and many more
configurations. This is particularly important in a competitive
landscape, as the parameters used for ramp generation often
represent intellectual property. Therefore, programmability is
essential to enable users — or customers — to differentiate their
radar systems.

However, the primary drawback of implementing the se-
quencer as a domain-specific hardware unit is its lack of
flexibility. Specifically: (a) even minor changes to the pro-
gramming model of the DSS require a hardware redesign, as
the behavior of the instructions must be modified; (b) there
is no existing ecosystem, meaning tools such as compilers
must be developed alongside the radar chip; (c) the custom
ISA of the DSS lacks the computational expressiveness needed
for sequencer programs to react dynamically to environmental
changes; and (d) programming is less accessible, as it requires
writing low-level code in the DSS ISA.

In this paper, we present the RISC-V Sequencer (RVS),
a novel approach based on the RISC-V ISA [7], an open
standard known for its modularity, extensibility, and suitability
for custom hardware designs. The RVS extends a RISC-V pro-
cessor with custom Control and Status Registers (CSRs) [8]
specifically designed for radar operations, offering a flexible
and advanced alternative to the traditional DSS unit. Building
on the modularity and extensibility of the RISC-V architecture,
the RVS not only overcomes the inherent limitations of the

FIFOs HW Blocks

timestamp- -
RAM opcodes Decoder value pairs
¢ > > PLL
Sequencer Program > compute > > TX
> > RX

Fig. 1: DSS for generation of a ramp scenario; decoder implements the custom ISA

A ayload
bay flyback

wait

f start

N
»

t
Fig. 2: Simple ramp scenario

DSS but also opens up new possibilities. Our solution also
provides a software library to intuitively code ramp scenarios
at a high level. In our experiments, we show the simulation of
a standard ramp scenario using this library. For that, we have
integrated the proposed RVS into an industrial full radar chip
simulation to demonstrate that we achieve the same behavior in
comparison to the DSS while still maintaining timing require-
ments and area constraints. Furthermore, we have extended
the standard ramp scenario with event handling. This enables
the radar system to react to environmental events during ramp
generation, a capability we refer to as adaptive ramp scenarios
— a feature not possible with the DSS. Finally, the flexibility
of RVS is evidenced through a qualitative comparison of key
design characteristics with those of the DSS.

II. DOMAIN-SPECIFIC SEQUENCER

In this section the state-of-the-art DSS is reviewed. First,
the FMCW radar principle is described in more detail (Sec-
tion II-A). Thereafter, an overview on the DSS hardware
implementation (Section II-B) and the DSS ISA (Section II-C)
are provided, respectively. Finally, the benefits and drawbacks
of this DSS design are discussed (Section II-D).

A. Frequency-Modulated Continuous-Wave (FMCW)

The FMCW radar principle relies on modulating frequency
over time to perform ramps [9]. As shown in Fig. 2, a ramp
can usually be split into at least three parts, a payload segment,
in which the actual measurement is done, a flyback segment, to
ramp back to the right starting frequency and a wait segment
between two consecutive ramps. Typically, users define these
ramps by a start frequency, a duration and either a stop

frequency, a bandwidth or a slope. A ramp scenario usually
involves the concatenation of several hundred to several thou-
sand ramps. However, to address issues like interference [10],
integrating configurable parameters becomes essential. Rather
than simply repeating the same frequency ramp, parameters
such as the time delays between ramps, starting frequency,
output power, output phase offset, exact timing for initiating
sampling in the receiver chain, and the receiver chain’s settings
including the gain, filter configurations, and the sampling rate
should ideally be adjustable on a per-ramp basis [2], [6].

Central to FMCW radar systems is the sequencer, which
synchronizes hardware through precise control signals. Tra-
ditional solutions like the DSS rely on custom ISAs. Before
discussing programmability via the ISA, we first examine the
DSS hardware implementation.

B. DSS Hardware Implementation

We review the state-of-the-art DSS based on [2], [6]. The
architecture of the DSS is depicted in Fig. 1. The left side
features a memory block that stores the Sequencer Program,
which defines ramp profiles and parameter settings for all
hardware modules requiring cycle-accurate control. Next, there
is a Decoder (center of Fig. 1) which reads the sequencer
program from the memory and generates control values for all
hardware blocks (see right side of Fig. 1). Every control value
is paired with a timestamp and then pushed into a FIFO in
front of the particular hardware unit. The FIFOs are connected
to a global timer (7imer in Fig. 1), which acts as the heartbeat
by providing a cycle-accurate time base. Whenever the timer
value and a timestamp value of the FIFOs match, the particular
control value is provided to the hardware unit.

The decoder comes with a custom ISA, which is highly
optimized for radar operations. The instructions provided by
this ISA allow users do define ramp scenarios by creating
sequencer programs as described in the next section.

C. DSS Custom ISA

To write a sequencer program for the DSS, its custom ISA
provides opcodes — each opcode corresponds to a control
operation for components in the radar device [2], [6]. One
such opcode is SEG for creating a single ramp. In addition,

1| LOOP 1024
3| SEG f_start, f_diff, t_chirp ; payload segment
4| SEG f_stop, -f_diff, t_flyback ; flyback segment

5| SEG f_start, 0O, ARRAY1[t_idx] ; wait segment
MODIFY_IDX t_idx, 1

9| LOOP END

Listing 1: Sequencer program on DSS

there are also opcodes for performing loops and accessing
hardware arrays.

Example 1. Listing 1 shows a sequencer program for the DSS.
Line 1 uses the LOOP opcode to iterate over the enclosed
ramp 1024 times, while Line 9 marks the loop’s end. Lines 3—
5 show the SEG opcode for the payload segment, the flyback
segment and the wait segment, respectively. Using this opcode,
a ramp can be defined by a starting frequency, a bandwidth
and a duration. The parameters remain the same for all
1024 ramps, however the wait times between two consecutive
ramps are obtained from arrays (see Line 5). The opcode
MODIFY_IDX in Line 7 is used to increase the array index
by one in each loop iteration.

Defining ramp scenarios in this manner requires the user to
manually compose a sequencer program using the presented
low-level opcodes. This process is analogous to assembly
programming on a general-purpose CPU and demands signif-
icant expertise due to its inherent complexity. The following
section discusses the advantages and limitations from a general
perspective.

D. Advantages and Limitations

The main advantage of this DSS design is its fast execution
speed, which is achieved through the use of domain-specific
opcodes. However, this fast execution speed might not be uti-
lized whilst performing radar measurements due to a physical
limit. In theory the minimum duration of one ramp is given by
T = 2 x d;/co, where 7 is the round-trip delay time, which a
radar signal requires to travel from the radar sensor to an object
and back, d; is the distance between the radar sensor and the
object, and cg is the propagation speed of the radar signal,
which is the speed of light [11]. For automotive radar sensors
the maximum distance in which objects need to be detected is
up to 250 meters [12]. Therefore, radar measurements require
at least 1.67us, which marks a physical limit. In other words,
this means that the minimum duration of one payload segment
is 1.67ps. In practice the hardware blocks controlled by the
DSS are slower and not able to achieve this physical limit.
Therefore, it is assumed that one ramp requires around 25us.

As mentioned in the beginning of this section, the DSS
excels with its fast execution speed, which would allow ramps
even two magnitudes faster than the physical limit. However,
due to the fact, that the controlled hardware blocks are much
slower than the DSS, this execution speed can not be utilized
during radar operation.

The following discussion outlines several drawbacks of the
DSS that hinder radar sensor development and limit users
when creating ramp scenarios.

First, even minor modifications to the programming model
or signal structure require adjustments to the DSS, and due
to the tight coupling between opcode behavior and hardware,
these modifications often necessitate a hardware redesign.
Thus, reusing the DSS in future radar sensor generations is
challenging because anticipated changes in control signals will
likely require hardware modifications, thereby increasing both
development time and costs. Moreover, existing sequencer
programs may become incompatible with new opcode con-
figurations.

Second, the fully customized design of the DSS also means
that no supportive software ecosystem is available, and build-
ing one adds complexity and expense to the development
process. Furthermore, the specific nature of the DSS ISA
means that users may be unfamiliar with it, further extending
development time and expenses.

Third, the limited expressiveness of the custom ISA further
restrict flexibility and accessibility. Since the DSS is imple-
mented with highly specialized opcodes tailored for radar
operations, users cannot run custom algorithms. This limitation
makes it difficult to integrate additional functions, such as
random number generation for randomized wait times, without
adapting the ISA and modifying hardware.

Finally, the inability to use high-level programming lan-
guages compels the use of low-level code, which requires
special expertise, and delays the development of sequencer
programs.

III. RISC-V SEQUENCER

In this section, we present the proposed RVS. First, in
Section III-A a comparison of the DSS and RVS from an
architectural perspective is given. Next, Section III-B discusses
the extension of the RVS with custom CSRs, along with the
resulting hardware/software interface. Finally, in Section III-C
high-level functions for defining ramp scenarios are introduced
as well as an example to program an adaptive ramp scenario
is provided.

A. From DSS to RVS

To overcome the limitations of the DSS and support ad-
ditional functionality, we propose the RVS — an architecture
based on a RISC-V processor extended with custom CSRs.
A comparison of the block diagrams of the DSS (Fig. 1)
and the RVS (Fig. 3) reveals structural similarities, with
both architectures featuring a memory block on the left and
hardware units coupled with FIFOs on the right. However, in
the RVS we replace the domain-specific decoder and custom
instructions with a RISC-V and custom CSRs, denoted as
Sequencer Subsystem in Fig. 3. This marks a fundamental
shift in how ramp scenarios are programmed, transitioning
from low-level opcode-based control to the use of high-level
programming languages. Although this design serves as a
more general solution for cycle-accurate control, which is not
limited to radar, it still works as a drop-in replacement for
the DSS, because the interfaces to the FIFOs can be easily
constructed using the custom CSRs.

FIFOs HW Blocks
Sequencer Program
Sequencer Subsystem
o SR SR :
RAM E Timestamp : >
' . > PLL
H Value 1
. : m 1
set_payload_segment(...) > ™ RISC-V 8 Value 2 N
. T E Value 3 E > > X
set_flyback_segmenty(...) - : .
Compiler : A A ; g N RX
1]
Fig. 3: Proposed RVS for generation of ramp scenario
|| #define F_START ((uint32_t) 0x9C0) Fig. 3. This approach enables easy adaptation of the control
2| #define SLOPE ((uint32_t) 0x9C1) . . .
s| #define DURATION ((uint32_t) 0x9C2) signal structure, as all necessary control signals are wired
4| #define TIMESTAMP ((uint32_t) 0x9C3) : :
<| #define HW_READY ((uint32_t) §x9C4) to CSRs during hardware development, while subsequent

template <uint32_t address>

¢| inline void write_csr(uint32_t const value) {

9 __asm__ volatile ("csrw._%0,.%1" : : "i" (address), "r"
(value)); // input operand

0]}

2| template <uint32_t address>

13 inline uint32_t read_csr(){

14 uint32_t value;

15 __asm__ volatile ("csrr.%0,.%1"

16 : "=r" (value) // output operand
1 : "i" (address)); // input operand
18 return value;

Listing 2: Low-level CSR code

B. Control and Status Registers (CSRs)

Besides the base instruction set specified in the RISC-V
instruction set manual [7], also some extensions for various
tasks are defined. One extension specifies the CSRs [8].
This extension comes with an extra address space for 4096
registers, accessible through specialized instructions (e.g. csrw
for writing and csrr for reading a CSR). It is noted, that not
all registers for the whole address space must be present in
every implementation. The majority of the address space is
reserved for standard use like for the debug system, timers,
counters or other peripherals. However, there are also some
registers, which can be used for custom applications. For RVS,
we realize radar specific CSRs and demonstrate how to access
them in the following example.

Example 2. Listing 2 gives an example how to access CSRs
for defining a ramp in C++ code. In Lines 1-4, the addresses
of the starting frequency, the slope, the duration and the
timestamp are specified. The register defined in Line 5 contains
a signal, which tells whether the FIFOs are ready to receive
new control values or not. The two template functions shown
in Lines 7-19 wrap the CSRs instructions for reading and
writing those registers.

As already implied with the register names in Listing 2, the
RVS employs these registers and instructions as control values.
These CSRs are directly connected to the FIFOs as shown in

modifications can be handled entirely in software.

C. Software Library and High-Level Control

A key advantage of the software-based approach is that,
as long as the CSRs described in Section III-B are used, the
underlying implementation details remain abstracted and can
vary without affecting functionality. This means that we have
an additional level of abstraction here. In the following, we
present a simple yet illustrative example demonstrating this
abstraction for defining ramp scenario.

Example 3. Listing 3 contains a sequencer program, which
allows to perform a ramp scenario similar to the one shown in
Listing 1, however, this time completely written in C++. This
sequencer program utilizes the CSR functions and addresses
shown previously in Listing 2. Starting in Line 1, a struct is
defined to group the required control values in one combined
type. Next, in Line 3, the number of ramps is defined. In addi-
tion, the number of segments is defined in Line 4. Therefore,
the number of ramps is multiplied by 3, in order to execute
a payload segment, a flyback segment and a wait segment
for every ramp. Now in Line 5, an array containing all the
required ramp parameters is defined. As these parameters are
highly dependent on the hardware blocks which are controlled,
the initialization routine of this array is not shown here. The
execution of the ramps is done in the for loop in Lines 7-13.
This loop contains another while loop in Line 8, which stalls
until the hardware is ready to receive control values. Finally,
in Lines 9—12 the control values are written to the hardware,
using the functions and addresses shown in Listing 2.

A completely new feature, which is hard and costly to
achieve using the DSS are adaptive ramp scenarios. Therefore,
CSRs are used to report events from hardware units back to the
RISC-V processor as shown in Fig. 3 (cf. red and blue arrows
pointing from the hardware blocks to the sequencer subsys-
tem). The RVS allows to react on events like temperature
changes, drops in supply voltages or interference directly in
software and adapt the generation of ramps. In the following,
we give an example.

struct TRamp{uint32_t f_start; uint32_t slope; uint32_t
duration; uint32_t timestamp; };

constexpr size_t ramp_cnt = 1024;
constexpr size_t segment_cnt = ramp_cnt * 3; //

for payload, flyback and wait segment
5| constexpr TRamp ramp_params[segment_cnt] =

times 3
Loools

/| for (int i = 0; i < segment_cnt; ++i){

8 while(!read_csr<HW_READY>());

9 write_csr<F_START>(ramp_params[i].f_start);

10 write_csr<SLOPE>(ramp_params[i].slope);

11 write_csr<DURATION>(ramp_params[i].duration);

12 write_csr<TIMESTAMP>(ramp_params[i].timestamp);

Listing 3: Sequencer program in C++ on RVS

1| RampScenario rmp(f_start, f_diff, t_chirp);
2| constexpr size_t ramp_cnt = 1024;
4| for (int i = 0; i < ramp_cnt; ++i){

rmp.set_payload_segment (i);
6 rmp.set_flyback_segment (i);
rmp.set_wait_segment (i);

9 switch (rmp.get_event()){

10 case 0: break; // no event

1 case 1: rmp.frequency_hopping(); break;
12 case 2: rmp.additional_wait(); break;

13 case 3:
14 default:

// critical event
rmp . abort () ;

Listing 4: Adaptive sequencer program in C++ on RVS

Example 4. Listing 4 shows a sequencer program written in
C++, which uses a higher level of abstraction compared to
Listing 3 and also implements event handling for adaptivity.
In Line 1 of Listing 4, a class called RampScenario is
initialized. The implementation of this class is not provided
here, however, it may abstract the CSR functions from Listing 2
and allows to set ramp parameters at a higher level. Next, in
Line 2 the number of ramps is defined. Executing ramps is
also done within a for loop in Lines 4-16. Lines 5—7 show the
already mentioned high-level functions to set ramp segments.
In Lines 9-15, there is a switch statement, which is used to
check for events reported by the hardware and handle them.
This example handles four possible scenarios. First, shown
in Line 10, no event was detected and the execution of the
program is continued as planned. Second and third, shown
in Lines 11-12, an event occurs and is tackled with either
hopping to another starting frequency or adding an arbitrary
wait time between two ramps. Finally, shown in Lines 13—14, a
critical or unknown event was detected. This means continuing
is no longer reasonable, thus the ramp scenario is aborted
immediately.

A major advantage of RVS compared to the DSS is that late
changes to the programming model, even after tape out, are
now possible. This can be either used to fix bugs, but also to
add or adapt algorithms if required. Due to the fact, that now
all algorithms for generating ramps are written in software,
the RVS is much more flexible compared to the DSS. This
flexibility arises for both the user of the radar chip, because
high-level languages like C++ are already known and there
is no need to cope with a custom ISA, as well as for the
developer of the radar chip, because less hardware changes
are required in future for chip variants.

IV. RESULTS

In this section, we present our results and insights for the
RVS. First, in Section IV-A, we provide implementation details
and simulation results. Thereafter, in Section IV-B, we share
insights about the performance of the RVS as well as an area
estimation. Finally, in Section IV-C, we qualitatively assess
and compare the flexibility of DSS and the RVS.

A. Full Radar Chip Simulation

Our implementation of the RVS is based on a proprietary
RISC-V processor in Verilog, extended with integer multipli-
cation and division and CSRs (RV32IMC). In our industrial
flow, we perform the full radar chip simulation using a Virtual
Prototype (VP) [13], [14] implemented in SystemC [15]-[17].
For this, we lifted our RVS implementation using Verila-
tor [18] to a C++ model including SystemC interfaces. The
result was embedded into the VP. As an initial result, the
specification and simulation of various ramp scenarios using
the DSS and the RVS produced consistent and comparable
outcomes.

In addition to generating ramps by just executing a se-
quencer program from memory, the RVS allows to utilize
reporting events from the hardware units to the RISC-V
processor. These events are mapped to CSRs, as illustrated in
Fig. 3. By executing an adaptive sequencer program similar
to Listing 4, we achieved the simulation result depicted in
Fig. 4. We only show two signals here, the transmit frequency
and a signal which indicates events triggered by the hardware.
As can be seen, there are three more ramps executed after
the time point when the hardware event occurred (lowest
bit of HWEvent_rd_data is 1) until frequency hopping is
done and the ramp scenario is further executed at another
starting frequency. These three ramps are present due to the
fact, that the respective “old” control values, which were
generated before the event occurred, are already present in the
FIFOs. Overall, we have shown that the proposed RVS allows
frequency hopping on the basis of events. In the presence
of interference, this enables targeted exclusion of corrupted
ramps, eliminating the need to discard the entire measurement
and thereby preserving valuable data and execution time.

We now consider the impact on performance and area.

B. Performance and Area

In the software-based approach adopted by the RVS, ex-
ecution speed primarily depends on two factors. First, on
the number of control signals which need to be set and
second, whether control values are pre-calculated and stored
in the memory or calculated during radar operation. For a
performance estimation of the RVS, we operated it under its
worst operating conditions: always all control signals are set,
even signals which do not change and furthermore, the RVS
calculates all control values during radar operation.

At a clock speed of 200 MHz for the RISC-V processor, this
would allow ramps which require around 7.5us on average.
This means, that with no optimizations and the worst operating
conditions for the RVS, it is still fast enough to perform typical

Signals Waves

Time JP as

freq o

550 us
T

000000040

HWEvent_rd data[31:0] }(-j-JDD-J-J-JJ. }{-JDD-J-J-J-J-J

Fig. 4: Simulation showing frequency hopping after event occurs

ramps with a duration of around 25us. If faster ramping is
required in future, there is still a broad range of optimizations
possible which can be tuned for the particular application.
The DSS is already silicon proven, produced using a 28 nm
CMOS process, however the RVS does just exist as model'.
To obtain an approximate estimate regarding size difference,
the RISC-V processor was synthesized using the same 28
nm process. This showed, that the RVS requires around
20-30% more silicon area compared to the DSS. Considering,
the fact, that the RVS design is much more flexible which will
save costs at other points in the project, this is an acceptable
overhead. The flexibility aspect is detailed in the next section.

C. Flexibility

This section provides a qualitative assessment of carefully
selected flexibility characteristics, as inspired by Hennessy
and Patterson in [19], applied (and refined if necessary) to
both the DSS and the RVS. The result is summarized in
Table I. The first column gives the flexibility characteristic
while the remaining two columns provide a score from --, -,
0, +, ++ with ++ marking the highest for DSS and the RVS,
respectively. In the following, each characteristic is explained.

Compatibility is expressed as having a stable ISA across
generations of graphical processing units. The stability of the
ISA can also be projected on the sequencing units discussed
in this paper. The ISA of the DSS will most likely change for
a new generation of radar chips or even for a new radar chip
the current generation, because there is a high possibility that
the signal structure changes or new features are added, and
hence new instructions/opcodes are needed. In contrast, it is
very unlikely that the RISC-V ISA will change.

Very close to compatibility, is Reuseability, which means
reusing hardware or software in other products. For the DSS,
the same as for compatibility applies, due to changes in the
signal structure. The RVS allows reuse through abstracted
interfaces implemented with CSRs [20].

The term Scalability is used when it comes to parallel
computing, which means being able to expand memory and
number of processors. However, in our case scalability can
be described as the ability to extend the signal structure.
Although the DSS requires hardware modifications, it imposes

Verilog and verilated SystemC.

TABLE I: Flexibility Characteristics

Characteristic Domain-Specific Sequencer | RISC-V Sequencer
Compatibility - +
Reuseability + ++
Scalability + o
Reconfigurability -- ++

no limitations on the number of supported signals. As the
CSRs employed in the RVS have a limited address space
and even less registers can be used for custom applications,
there is a theoretical limit for the amount of control signals.
Nevertheless, the RVS only utilizes a small fraction of the
available CSRs, so this may not become a problem in future.

Reconfigurability is often referred to reconfiguring logic
in hardware implementations, like on Field-Programmable
Gate Arrays (FPGAs), to enhance flexibility. For our work,
reconfigurability means adding or changing features of the
sequencer. Unlike the DSS and its ISA, which cannot be
modified after tape-out, the RVS supports functional updates
even in the radar chip’s final application.

V. CONCLUSIONS

In this paper, we introduced the RISC-V Sequencer (RVS),
a new RISC-V-based sequencer for Frequency-Modulated
Continuous-Wave (FMCW) radar applications. With RVS, the
user can create sequencer programs at a much higher level
instead of using domain-specific low-level opcodes. In addi-
tion, adaptive ramp scenarios become possible, i.e. scenarios
can react dynamically to the environment, for instance to
mitigate interference. Overall, this shifts the whole paradigm
how ramp scenarios are programmed. From the technical side,
we integrate custom Control and Status Registers (CSRs) as
part of RVS to enable the generation and distribution of control
signals with precise timing for real-time radar sequencing.
Ultimately, the proposed solution scales effectively to future
radar systems, requiring only an extension of the CSR mapping
in hardware, with all other adaptations managed in software.

In future work, we plan to investigate novel verification
techniques [21], [22] and analysis techniques [23], [24].

ACKNOWLEDGMENT

This work has been partially supported by European Union’s Chips Joint Undertaking
(ChipsJU) under grant agreement No. 101139892 (EdgeAl-Trust), the Austrian Research
Promotion Agency (FFG) under grant No. 909770, and by the LIT Secure and Correct
Systems Lab funded by the State of Upper Austria.

[1]

[2]
[3]

[5]

[6]

[7]

[8]

[9]
[10]

(11]

REFERENCES

M. A. Richards, J. A. Scheer, and W. A. Holm, Principles of

Modern Radar: Basic principles. SciTech Publishing, 2010. [Online].
Available: https://digital-library.theiet.org/doi/abs/10.1049/SBRA021E
R. Findenig and B. Greslehner-Nimmervoll, “Modular sequencer for
radar applications,” U.S. Patent US12000952B2, 2024.

P. Ritter, M. Geyer, T. Gloekler, X. Gai, T. Schwarzenberger, G. Tretter,
Y. Yu, and G. Vogel, “A fully integrated 78 ghz automotive radar system-
an-chip in 22nm fd-soi cmos,” in 2020 17th European Radar Conference
(EuRAD), 2021, pp. 57-60.

B. P. Ginsburg, K. Subburaj, S. Samala, K. Ramasubramanian, J. Singh,
S. Bhatara, S. Murali, D. Breen, M. Moallem, K. Dandu, S. Jalan,
N. Nayak, R. Sachdev, I. Prathapan, K. Bhatia, T. Davis, E. Seok,
H. Parthasarathy, R. Chatterjee, V. Srinivasan, V. Giannini, A. Kumar,
R. Kulak, S. Ram, P. Gupta, Z. Parkar, S. Bhardwaj, Y. C. Rakesh,
K. A. Rajagopal, A. Shrimali, and V. Rentala, “A multimode 76-to-
81ghz automotive radar transceiver with autonomous monitoring,” in
IEEE International Solid-State Circuits Conference - (ISSCC), 2018,
pp. 158-160.

C. Kohlberger, R. Feger, R. Hiittner, A. Haderer, and A. Stelzer, “A
77-ghz quasi-monopulse tracking radar with metamaterial lens and
transceiver feeds,” in European Microwave Conference (EuMC), 2024,
pp- 1086-1089.

R. Findenig, B. Greslehner-Nimmervoll, G. Itkin, M. J. Lang,
U. Moeller, and M. Wiessflecker, “Efficient programming model for real-
time radar sequencing in a radar device,” U.S. Patent US12 248 088B2,
2025.

A. Waterman and K. Asanovié, The RISC-V Instruction Set Manual;
Volume I: Unprivileged ISA, SiFive Inc. and CS Division, EECS De-
partment, University of California, Berkeley, 2019.

——, The RISC-V Instruction Set Manual; Volume II: Privileged Archi-
tecture, SiFive Inc. and CS Division, EECS Department, University of
California, Berkeley, 2019.

M. Jankiraman, FMCW radar design. Artech House, 2018.

G. M. Brooker, “Mutual interference of millimeter-wave radar systems,”
IEEE Transactions on Electromagnetic Compatibility, vol. 49, no. 1, pp.
170-181, 2007.

M. Gerstmair, A. Melzer, A. Onic, and M. Huemer, “On the safe road
toward autonomous driving: Phase noise monitoring in radar sensors

[12]

[13]

[14]

[15]

[16]
[17]
(18]

[19]

[20]

[21]

[22]

[23]

[24]

for functional safety compliance,” IEEE Signal Processing Magazine,
vol. 36, no. 5, pp. 60-70, 2019.

E. NCAP, “Euro ncap assisted driving, highway & interurban assist
systems, test and assessment protocol v2.2,” https://www.euroncap.
com/media/83320/euro-ncap-ad-test-and-assessment-protocol-v22.pdf,

September 2024, accessed: 2025-06-25.

T. De Schutter, Better Software. Faster!: Best Practices in Virtual
Prototyping. Synopsys Press, March 2014.

R. Leupers, G. Martin, R. Plyaskin, A. Herkersdorf, F. Schirrmeister,
T. Kogel, and M. Vaupel, “Virtual platforms: Breaking new grounds,”
in Design, Automation and Test in Europe Conference, 2012, pp. 685—
690.

“IEEE 1666-2023 standard for standard SystemC language reference
manual.” [Online]. Available: https://doi.org/10.1109/IEEESTD.2023.
10246125

D. GroBe and R. Drechsler, Quality-Driven SystemC Design.
2010.

V. Herdt, D. GroBle, and R. Drechsler, Enhanced Virtual Prototyping:
Featuring RISC-V Case Studies. Springer, 2020.

W. Snyder, P. Wasson, D. Galbi, and et al, “Verilator.” [Online].
Available: https://github.com/verilator/verilator

J. Hennessy and D. Patterson, Computer Architecture: A Quantitative
Approach, ser. The Morgan Kaufmann Series in Computer Architecture
and Design. Elsevier Science, 2017.

M. Melik-Merkumians, M. Wenger, R. Hametner, and A. Zoitl, “In-
creasing portability and reuseability of distributed control programs by
i/o access abstraction,” in 2010 IEEE 15th Conference on Emerging
Technologies & Factory Automation (ETFA 2010), 2010, pp. 1-4.

C. Hazott, F. Stogmiiller, and D. Grof3e, “Verifying embedded graphics
libraries leveraging virtual prototypes and metamorphic testing,” in Asia
and South Pacific Design Automation Conference, 2024, pp. 275-281.

, “Using virtual prototypes and metamorphic testing to verify the
hardware/software-stack of embedded graphics libraries,” Integr, vol.
101, 2025.

L. Klemmer and D. GroBe, “WAL: a novel waveform analysis language
for advanced design understanding and debugging,” in Asia and South
Pacific Design Automation Conference, 2022, pp. 358-364.

——, “WAVING goodbye to manual waveform analysis in HDL design
with WAL,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 43, no. 10, pp. 3198-3211, 2024.

Springer,

https://digital-library.theiet.org/doi/abs/10.1049/SBRA021E
https://www.euroncap.com/media/83320/euro-ncap-ad-test-and-assessment-protocol-v22.pdf
https://www.euroncap.com/media/83320/euro-ncap-ad-test-and-assessment-protocol-v22.pdf
https://doi.org/10.1109/IEEESTD.2023.10246125
https://doi.org/10.1109/IEEESTD.2023.10246125
https://github.com/verilator/verilator

	Introduction
	Domain-Specific Sequencer
	Frequency-Modulated Continuous-Wave (FMCW)
	DSS Hardware Implementation
	DSS Custom ISA
	Advantages and Limitations

	RISC-V Sequencer
	From DSS to RVS
	Control and Status Registers (CSRs)
	Software Library and High-Level Control

	Results
	Full Radar Chip Simulation
	Performance and Area
	Flexibility

	Conclusions
	References

