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Abstract—Modern applications increasingly rely on embedded
systems that incorporate visual interfaces developed utilizing so-
called embedded graphics libraries. Verifying these embedded
graphics libraries is challenging due to hardware dependencies
and the lack of reference outputs. The lack of reference out-
puts is tackled in Metamorphic Testing (MT) by constructing
two Firmware (FW) versions with distinct implementations that
maintain the same input-output relationships. These relations are
known as Metamorphic Relations (MRs). However, the develop-
ment of these MRs remains a tedious and challenging task.

In this paper, we present a novel approach for generating MRs
for MT of embedded graphics libraries using Large Language
Models (LLMs). Because directly creating MRs with simple
prompts is too complex for the LLM, we employ proven prompt-
ing strategies to develop our LLM-assisted MR pipeline. Strate-
gies include role prompting, least-to-most prompting, zero-shot
prompting, constraint-based prompting, and style prompting. In
our experiments, we verify a widely used embedded graphics
library. We compare our results with an existing manual ap-
proach and demonstrate that LL.M-assisted MRs nearly doubles
coverage and identifies additional bugs.

I. INTRODUCTION

Embedded devices have become ubiquitous in todays ap-
plications, ranging from consumer electronics to industrial
control systems. To facilitate intuitive and efficient user access,
visual interfaces are provided. Embedded graphics libraries
are fundamental to the development of such visual interfaces.
These Software (SW) libraries enable developers to efficiently
render graphics within the limited computational and memory
resources of embedded environments [1]. Their performance
and capabilities are inherently dependent on the underlying
Hardware (HW), requiring tight integration with specific pro-
cessors, accelerators, and display technologies; therefore, em-
bedded graphics libraries are typically considered part of the
Firmware (FW). In addition, as the functionality of embedded
graphics libraries rapidly increases, so does their complexity.
As a consequence, the effort required for verification increases
considerably, necessitating early HW/SW integration.

To enable verification of embedded graphics libraries early
in the development process, the HW down to the display is
typically modeled using abstractions, such as emulators or
simulators. The latter replicate the behavior of the actual HW
and therefore enable the parallel SW and HW development [2].

An industry-proven approach for HW simulation are Virtual
Prototypes (VPs) which are high-level executable models
of HW platforms capable of running unmodified produc-
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tion SW [2]. The predominant language for creating VPs is
SystemC, a standardized C++ class library (IEEE 1666, [3]);
for more details on SystemC we refer to [4]-[6]. Leveraging
these VPs allows developers to test graphical functions without
the need for physical HW.

Looking at the different test levels, unit testing is first
employed to verify individual components or functions within
embedded graphics libraries. This ensures that each component
performs correctly in isolation. Then integration testing is used
to verify that the different components of the graphics library
interact correctly with each other and with the HW. In general,
integration testing allows us to identify issues that may arise
from component interplay or HW/SW integration [7], [8]. For
integration testing of embedded graphics libraries, the major
difficulty is establishing an effective and reliable method to
determine whether the graphical outputs produced are correct.
This is well known as oracle problem [9]. Therefore, in
practice, often manual visual inspection of the display output
is carried out.

Metamorphic Testing (MT), as presented in [10], [11],
mitigates the oracle problem by leveraging so-called Meta-
morphic Relations (MRs). These MRs express expected rela-
tionships between inputs and outputs rather than relying on
reference inputs and outputs. In recent works [12] and [13],
an open-source MT framework has been introduced for the
purpose of verifying embedded graphics libraries. The authors
manually developed 21 MRs. One of these MRs is called
DrawRectangle MR and verifies whether two different meth-
ods, capable of drawing rectangles, render the same output
when the parameters are set accordingly: drawRect () draws
a rectangle with sharp corners whereas drawRoundRect ()
draws a rectangle with rounded corners; by disabling the
rounded corners via a parameter, both methods are expected to
render identical rectangles. The MT framework then generates
two FW versions: the source FW which calls drawRect ()
and the follow-up FW which calls drawRoundRect(). The
source and follow-up FW versions are executed separately on
a RISC-V VP using a virtual HW display. This complete im-
plementation of the SW-to-HW stack' enables the framework
to capture screenshots of the resulting display output, which
are then compared to determine whether the test has passed
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or failed. As reported in [13], the MT approach has found
15 novel bugs in the widely used graphics library TFT_eSPI.
However, manually developing MRs, which includes identi-
fying non-obvious relationships — such as drawing a line by
drawing multiple filled circles — can be a time-consuming and
challenging process.

Contribution: Motivated by these observations, this paper
introduces a novel approach that uses Large Language Models
(LLMs) to generate MRs for MT of embedded graphics
libraries. Our MT approach extends [13] such that domain-
specific and effective MRs are produced. While simple
prompting techniques are sufficient to select an appropriate
LLM model for MR generation, these types of prompts are
insufficient to directly address the complexity of generating
MRs for embedded graphics libraries. We solve this by em-
ploying well-established prompt engineering strategies, such
as those surveyed in [14]. This includes Role Prompting,
which assigns a developer persona to the LLM, and Least-
to-Most Prompting to decompose the complex problem
of generating an MR into simpler subproblems. Finally, the
subproblems are integrated as steps into an LLM-assisted MR
pipeline.

For evaluation, we apply the proposed LLM-assisted MT
approach to verify the widely used TFT_eSPI library. We
used Meta Llama 3.1 [15] via the Huggingface Transformers
toolkit [16]. This local execution of the LLM, combined with
setting a constant seed and disabling sampling, ensures the full
reproducibility of the generated results. Executing the pipeline
in this setup easily generated 160 unique MRs, an almost
eightfold increase over 21 manually developed MRs of [13].
Additionally, the generated MRs uncover 14 novel bugs and
they nearly double coverage.

The key contributions of this work include:

o Novel LLM-assisted MT approach tailored for embedded
graphics libraries,

o Comprehensive LLM-assisted MR generation pipeline,
systematically addressing subproblems employing estab-
lished prompt engineering strategies,

« Extension to the existing open-source MT framework [17]
available open-source on GitHub?,

« Fully reproducible LLM generation and MT results, and

« Thorough evaluation of the effectiveness of our approach,
including the analysis of structural coverage metrics and
the detection of previously unknown bugs.

The paper is structured as follows: Section II discusses
related work. Section III provides background on the targeted
embedded graphics library and the VP used for simulation.
In Section IV, we present our LLM-assisted MT approach.
Section V illustrates each step of the LLM-assisted MR
generation pipeline, including example prompts and LLM
responses. Section VI presents the experimental evaluation.
Finally, a general discussion of using LLMs and the introduced
LLM-assisted MR pipeline is done in Section VII. Section VIII
concludes the paper.

Zhttps://github.com/ics-jku/lim-assisted-mt

II. RELATED WORK

Recently, a systematic study on the application of LLMs for
Electronic Design Automation (EDA) was presented in [18].
The different tasks along the EDA flow are considered, includ-
ing the application of LLMs for verification and analysis. For
example, [19] incorporates feedback from commercial-grade
EDA tools into LLMs to enhance testbench generation. [20]
splits the task of generating and evaluating HW verification
assertions into three steps, which are solved by different
LLMs.

Parallel to these works, the application of LLMs for MT
has been investigated. In an exhaustive case study on nine
software systems, [21] asks whether ChatGPT can be used
for SW tests with a particular focus on MT. The MRs in this
work are generated using the zero-shot prompting strategy. The
resulting MRs are then verified by domain experts who found
that ChatGPT proposed MR candidates that can be adopted
for implementing SW tests. The work [22] also explores the
use of ChatGPT to automatically generate MRs. The idea
is to use few-shot prompting to provide API specifications
and requirements to the LLM. The study generated MRs
for four software applications and for a web application.
The quality of the resulting MRs was evaluated through a
questionnaire-based survey and showed that this approach was
able to generate comprehensible and pertinent MRs for testing
purposes. The third study, which is relevant for this paper, is
[23]. It generates MRs for autonomous driving systems. This
study was also conducted using ChatGPT and the zero-shot
prompting strategy. The evaluation of the generated MRs was
also carried out by domain experts, who found ChatGPT to
be a promising tool for MR generation in SW testing.

In contrast to these studies, our approach focuses on em-
bedded graphics libraries, meaning our MRs target the full
SW-to-HW stack. In addition, the evaluated studies conclude
with a manual evaluation of the generated MRs by MT
specialists without executing the tests. Within this paper, we
also execute the generated MRs and evaluate the test results
according to the identified bugs and the achieved structural
coverage. Finally, our findings can be reproduced, as we
make the necessary artifacts (including the implementation)
open-source on GitHub. Furthermore, using the Huggingface
Transformers toolkit and the Meta Llama 3.1 model, our
approach runs locally with deterministic results.

III. BACKGROUND

Before we introduce the LLM-assisted MT approach, we
provide some background information on the TFT_eSPI li-
brary and the utilized VP.

A. TFT_eSPI Library

A simple example of the embedded graphics librarys draw-
ing capabilities is presented in Fig. 1. The library is ranging
within the 98th percentile of stars on GitHub (tracked by [24]),
has about 1,200 forks, and has the seventh rank out of 7,597
libraries in the Arduino Library List of the most starred
libraries [25].
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Fig. 1: Analog clock rendered using the TFT_eSPI library.
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Fig. 2: RISC-V VP++ architecture showing ISS, the TLM-2.0 bus, memories,
interrupts units and peripherals.

The main part of the library contains about 5,115 lines of
code contained within 163 functions, whereas about 1,380
are responsible for drawing outputs on the display (the rest of
the lines contains e.g. touch input, Serial Peripheral Interface
(SPI) interactions, etc...). As one can imagine, filtering the
drawing capabilities to generate meaningful MRs poses a large
manual effort.

B. RISC-V VP++

In general VPs are commonly used for advanced verification
approaches like [26]-[33]. The RISC-V VP++ [34] used in
this paper is an open-source SystemC/TLM-2.0-based VP
supporting 32- and 64-bit RISC-V cores (RV32/RV64), as
shown in Fig. 2. The Instruction Set Simulator (ISS) includes
Decode, Interpret, Execute units, Instruction Set Architecture
(ISA)-defined registers (incl. Control and Status Registers
(CSRs)), and an Memory Management Unit (MMU) for virtual
memory support. Instruction and data memory access is solved
via Direct Memory Interface (DMI) or the TLM-2.0 bus, which
also connects peripherals and interrupt controllers (Core Lo-
cal Interruptor (CLINT)/Platform-Level Interrupt Controller
(PLIC)). Peripherals like Universal Asynchronous Receiver-
Transmitter (UART), storage, or input devices connected
via Memory-Mapped Input/Output (MMIO), allowing seam-
less ISS access via standard load/store instructions. The VP
supports configurations from bare-metal microcontrollers to
Linux-capable systems complemented with interactive graph-
ical applications [35]. Recently the RISC-V vector extension
has been added to RISC-V VP++ [36], [37] and significant

ISS optimizations have been devised to increase the simulation
performance [38].

IV. LLM-ASSISTED MT

Developing good MRs is a key element for the effectiveness
of MT [10], [39]. In this work, we assist the developer by
generating MRs using LLMs. We start with the necessary
terminology and notation (Section IV-A) before we assess
the current knowledge and capabilities of LLMs using simple
prompts (Section IV-B). The assessment determines whether
there is an LLM that is able to generate and implement MRs
for embedded graphics libraries. Furthermore, having such an
LLM eliminates the need for costly, complex, and potentially
unnecessary fine-tuning. Despite having an LLM with the
appropriate knowledge and capabilities, generating MRs for
embedded graphics libraries is a complex task that cannot be
accomplished merely by using simple prompts. The reasons
are twofold: First, simple prompts may not provide LLMs
with enough context or specificity to generate meaningful
and effective MRs. Second, simple prompts often produce
superficial outputs, inadequate for generating MRs which
demand a detailed understanding and precise articulation of
FW behaviors and properties. Therefore, we employ well-
established prompt engineering strategies [14]. First, we set the
context for the LLM to our problem domain (Section IV-C).
Then, we want to break down the MR generation problem into
individual steps using the LLM (Section IV-D). Remarkably,
the LLM proposes 7 steps which we can directly use to
structure an MR pipeline for MR generation. We implemented
each of these steps (Section IV-E) and again used the LLM to
find domain-specific graphical relations among API methods
of the embedded graphics library.

Before we further detail our approach, we begin with
introducing the terminology and notation used.

A. Terminology and Notation

As already outlined in the introduction, MT for embedded
graphics libraries requires the separate execution of two FW
versions — the source FW and the follow-up FW — as well as
the subsequent comparison of their graphical outputs. More-
over, both FW versions together with the expected relation
of the graphical results produced (here visual equivalence)
constitute an MR.

In the following, we approach the MR generation problem
starting from an abstract perspective, i.e. we consider MRs on
different levels:

o Abstract: The terms source test and follow-up test are
used to reflect that they contain variables, i.e. the input
to the methods used may depend on symbolic values.
The assignment of concrete values yields the source test
case and follow-up test case, collectively referred to as a
Metamorphic Test Case (MTC).

« Executable: Finally, the executable versions of the source
test case and the follow-up test case correspond to our
source FW and follow-up FW, respectively.
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Fig. 3: LLM-assisted MR pipeline. Dark blue boxes indicate input and output to and from the pipeline. Green and light blue boxes indicate that these steps
are fully automated. Green boxes indicate additionally that these steps are executed using the LLM. Light blue boxes additionally indicate that these steps
are executed by the testing framework, independently of the LLM. Purple boxes indicate manually executed steps.

Prompt 1: Assigning a role

You are the developer of the [X] embedded graphics library.

B. Assessing LLMs via Simple Prompts

We evaluated the current knowledge and capabilities of
LLMs, by performing an assessment on a variety of pre-
trained LLMs, including OpenAl’s GPT-40 [40], Mistral AI’s
Mistral v0.3 [41], and Meta’s Llama 3.1 [15]. Each of the
mentioned LLMs had knowledge of multiple graphics libraries
(including the one used in Section V). When prompting for ex-
ample implementations, the top results came from GPT-40 and
Llama 3.1. Moreover, all of the mentioned LLMs demonstrated
an understanding of MT and were able to propose alternative
implementations for specific functionalities, once again with
Llama 3.1 and GPT-4o delivering the best responses.

Based on the assessment, Llama 3.1 was chosen due to
its open-source availability, advanced coding capabilities, and
strong library skills, which made additional fine-tuning un-
necessary and allowed us to focus on solving the task with
advanced prompting strategies.

C. Assigning a Role to the LLM

To further improve the results of Llama 3.1, the first prompt
engineering strategy we employ is called Role Prompting
and assigns a persona to the LLM. Each interaction with the
LLM is preceded by Prompt 1. In this prompt, [X] should be
replaced by the name of the embedded graphics library. The
assignment of the role of library developer helped to exclude
the cases where the LLM generated responses that targeted
other graphics libraries.

D. Decomposing the Problem: LLM-assisted MR Pipeline

To break down the complexity of the MR generation, we
decompose the problem with the assistance of the LLM.
The Least-to-Most Prompting strategy contained within
the pool of Decomposition strategies [14] is applicable in
our case. The idea is to ask the LLM to decompose the
problem into subproblems without solving them, as seen in
Prompt 2. The LLM response to this prompt suggests splitting
the problem into 7 subproblems ? as can be seen in Response 1,

3We shortened the response by removing the textual explanation per step.

Prompt 2: Decompose MR generation

For your library, Metamorphic Testing will be implemented. Give
me a step-by-step manual to do this without implementing the steps.

Response 1: LLM steps in response to Prompt 2

. Understand the Library

. Identify Metamorphic Relations
. Create Test Cases

. Implement Test Cases

. Run Test Cases

. Analyze Results

. Repeat and Refine

which we found remarkable. Furthermore, the LLM suggested
using a testing framework and visualization tools.

Building on the “7 steps answer” provided by the LLM,
we designed and assembled the MR pipeline illustrated in
Fig. 3. The figure is organized in two rows. The top row
shows the 7 pipeline steps identical to the LLM response
with two minor exceptions: As can be seen, the LLM uses the
term Test Cases in Steps 3-5. To fit the abstraction levels
introduced in Section IV-A, we labeled Step 3 Create MRs
instead of Create Test Cases. This is done because the
values are kept symbolic until Step 4. Starting from Step 4,
the values become concrete. For this reason, we add the prefix
Metamorphic to the term Test Cases of Step 4 and Step 5
(leading to the abbreviation MTC).

The LLM-assisted pipeline steps (green) are designed to
generate LLM prompts, and subsequently post-process the
LLM response. The colored cyan boxes indicate that these
steps do not interact with the LLM. The lower row shows
the input and output files for each step. The dark blue files
represent the input and output of the pipeline. In the following
section, we detail each step.

E. LLM-assisted MR Pipeline Steps

Step 1 - Analyze Library Methods: The goal of our MT
approach is to verify the library’s capabilities to generate
graphic objects on an embedded display. To do this, first, all
library methods need to be analyzed to identify the methods
with such capabilities. Asking the LLM to output a list of



Prompt 3: Step 1 - Analyze library methods

There are multiple methods within your library. Take a closer look
at the definition of the [SIGNATURE] method. For the following
questions answer only with "Yes’ or 'No’.

Q: Calling the [SIGNATURE] method generates a graphical object
on the display?

A:

Prompt 4: Step 2 - Identify MRs

For all possible parameters, can a working alternative of the
following source code be generated: [SOURCE]

Follow the hard requirements:

- the functionality should be implemented using the [FOLLOWUP]
API method

- the same geometrical properties and the colors need to be kept
for the generated display output

- make sure not only the outline of the objects matches, but also
the infill

Answer only with *Yes’ or "No’

such methods was not successful. So we designed this pipeline
step LLM-assisted. The idea is to use a code parser and
extract all methods with a public interface from the library.
After this, each method is classified by the LLM with Yes,
if the method can generate graphic objects or No, if not.
The appropriate prompt employs the Zero-Shot Prompting
strategy, which means that only one prompt is necessary to
solve the task. Informing the LLM that it is participating
in a question-and-answer exchange enhanced the results of
this prompt. To do this, we used Q: to explicitly indicate
our question and A: to explicitly tell the LLM to answer
the question. Furthermore, we discovered that encouraging the
LLM to thoroughly analyze the definition of methods led to an
improvement in the number of accurate classifications. * With
this, we devised Prompt 3 ([SIGNATURE] denotes method
signature).

Step 2 - Identify MRs: In this step, the method signatures,
classified with "Yes’, are used to identify potential MRs. Since
prompting the LLM to directly generate MRs for each method
was not successful, we came up with a different approach.
The idea is to identify an alternative realization for a given
method. Specifically, for a method classified with "Yes’, our
objective is to find an alternative method, from the pool of
methods classified with ’Yes’, that can produce an identical
graphical output . For all possible alternatives, Prompt 4 is
executed, with [SOURCE] and [FOLLOWUP] replaced by
the corresponding method signatures. In addition to Zero-
Shot Prompting, the Constrained-Based Prompting
strategy was applied by adding requirements for the LLM
such as: the same geometric properties and the
colors need to be kept for the generated display
output. This was done to improve classification reliability.

4Using ‘specification’ reduced the number of correct classifications.
3 Alternative here also includes to use the same method, but switching/ad-
justing parameters.

Prompt 5: Step 3 - Create MRs

Generate an alternative implementation of the source code:
[SOURCE]

Follow the hard requirement:

- use the [FOLLOWUP] method for your implementation
- make sure the same geometrical properties are kept

- the image created on the display stays the same

- output only the C++ code

Step 3 - Create MRs: Having a list of possible pairs
of methods, the pipeline continues to create the MRs. For
the source tests, the call to the method is taken directly. To
create the code for the follow-up tests, we reformulate Prompt
4 into Prompt 5 so that the LLM generates the alternative
implementation using the Style Prompting strategy to gen-
erate C++ code. Please note that although at this step we
already have C++ code for the source and follow-up tests, the
implementation is still abstract, as it still contains variables
for the method calls.

Step 4 - Implement MTCs: This is the first step that works
independently of LLMs and will be executed by the suggested
testing framework from Section IV-D. The step assigns con-
crete values to the variables while satisfying the relation and
translates the previously created MRs into executable MTCs.

Step 5 - Run MTCs: The purpose of Step 5 is to execute
each MTC at least once. This is done (1) to find out which
MTCs are genuinely executable and (2) to generate display
outputs for further analysis.

Step 6 - Analyze Results: The results of Step 5 are
manually inspected for correctness by analyzing the display
outputs. An execution of an MTC that results in accurate dis-
play outputs, where both FW versions yield identical outputs,
is considered as a Well-Formed MR. Otherwise, the MR is
labeled as Mal-Formed.

Step 7 - Refine and Repeat: This step is again a manual
step where the Mal-Formed MRs are evaluated. The goal is
to modify additional MRs to be Well-Formed.

In the following section, we outline the implementation
aspects and present our approach using examples.

V. DEMONSTRATION OF LLM-ASSISTED MT

In this section, we demonstrate our LLM-assisted MT
approach for embedded graphics libraries. Following the sug-
gestions as given by the LLM in Section IV-D, we need a
testing framework and visualization tools. The MT frame-
work for embedded graphics libraries from [13], available on
GitHub [17], fulfills this request. Moreover, the framework
verifies the drawing capabilities of the embedded graphics
library TFT_eSPI by manually creating the MRs. Hence,
we also consider the verification of the TFT_eSPI library to
compare our approach against manually creating MRs.

To execute the steps of the MR pipeline (see Fig. 3 and
Section IV-E), we use Python and Huggingface Transformers.
The latter serves as a LLM toolkit, linking to the PyTorch
library [42]. To guarantee reproducibility of the results, the



TABLE I: LLM-assisted MR pipeline results showing possible, rejected and
selected candidates for each step (cf. Fig. 3) in rows. The columns contain
the single steps according to the pipeline. The second row header indicates
the type of the candidates, used for the corresponding steps.

VIRS
Possible 163 3,481 2,357 2,245 1,199 908 847
Rejected 104 1,124 112 1,046 291 847 722
Selected 59 2,357 2,245 1,199 908 61 125

PyTorch seed was set to a constant value of 42 and the
Transformers toolkit sampling was turned off. Table I shows
the results for each step. Each step starts with a list of
candidates as indicated by the column headers (e.g. Step
1 starts with 163 method candidates) from which a subset
is selected to proceed to the next step while the remaining
candidates are rejected.

Step 1 - Analyzing the Library: Our goal here is to cover
the main drawing capabilities provided via the TFT_eSPI
interface. Therefore, a code parser extracts possible method
candidates, i.e. public methods. This extraction led to 163
methods®. For each of these methods, the LLM was asked
to classify if the method is capable of rendering content
on the display. Of these 163 method candidates, the LLM
successfully identified 59 drawing candidates.

Step 2 - Identify MRs: The LLM pipeline continues in
this step with 59 drawing candidate methods. Considering that
each of the 59 selected drawing candidate methods can be
used as a substitute for any other method, there are a total
of 5959 = 3,481 possible combinations. Our implementation
evaluates all these combinations via the LLM Prompt 4.
2,357 combinations received the answer ’Yes’; therefore, they
proceed to the next step as possible MR candidates.

Step 3 - Create MRs: Source test and a follow-up test
versions are created for each of the 2,357 MR candidates.
Furthermore, due to the optimization of the LLM for con-
textual reasoning and comprehensive response generation, it
additionally provides an explanation of how the follow-up test
is derived from the source test, even if not explicitly requested
in the prompt. An example is shown in Listing 1. We can
see the source test call in Line 4-5 of Listing 1. In this
example, it is drawFastHLine() with parameters = and y
for the origin and w for the width of the horizontal line. The
parameter color sets the color of the line. In Line 10-18 of
Listing 1, we can see the follow-up test. As an alternative
implementation to drawFastHLine(), the LLM generated
code to draw the line using a rectangle. Furthermore, the LLM
generated an explanation as can be seen in Line 22-26 of
Listing 1. Transforming a one-dimensional line into a two-
dimensional rectangle with a height of 1, by recognizing its
attributes, highlights the advanced inference capabilities of
modern LLMs to handle geometric concepts.

Such transformations require a high amount of memory on
the graphics card. Due to the 16 GB video memory capacity
in our setup, the LLM was not able to carry out this step for

6We excluded the methods for touch and sprites.

I Source
°9° G
4 drawFastHLine (int32_t x, int32_t vy,
5 int32_t w, uint32_t color)
6
7 Follow —up
8
s B
10 void drawFastHLine (int32_t x, int32_t y, {
1 int32_t w, uint32_t color)

12 // Calculate the height of the line
13 // which is 1 pixel in this case
14 int32_t h = 1;

16 // Call the drawRect method to draw the line

17 drawRect(x, y, w, h, color);

18}

20 MR

“drawRect”

22 This alternative implementation uses the

23 method to draw a horizontal line. The height of the

24 rectangle is set to 1 pixel, effectively drawing a line.
25 The width of the rectangle is set to the width of the

26 line , and the color is set to the specified color. ...

Listing 1: Excerpt of markdown result for generated code pairs containing
the C++ code for the generated source and follow-up implementations.
Additionally the result contains the MR description as generated by the LLM.

112 MR candidates. This leads to a final number of 2,245
MR candidates (see column Step 3 in Table I).

Step 4 - Implement MTCs: This is the first step performed
independently of the LLM. The used MT framework is built
on so-called MTC generators between the MR and executable
MTC. An MTC generator contains templates of a source
test and the corresponding follow-up test where the symbolic
values are replaced with concrete values when the MTC
generator is executed. If the MTC generator is executed several
times per MR, different concrete values are determined for the
symbolic values. To fit this design, the implementation within
this step parses the MR candidates selected in Step 3 and
translates them into MTC generators. To gain further insight
into the implementation of MTC generators and their role in
producing the source and follow-up FW versions, please see
Appendix A.

From the original 2,245 MR candidates, 1,199 MTC gen-
erators could be translated and compiled successfully. The
1,049 rejected MTC generators contained tests that failed
compilation or missed additional behavior that would have
to be implemented. For example, the pushImage() method
pushes an array of pixels (the image) onto the display. This
array is given as an input parameter to the source test case. An
example follow-up test case required that the parameters given
to the drawCircle() method generate the same image as the
one encoded within the array of pixels. This highlights the
limitations of current LLMs as none of the MTC generators
contained the appropriate code 7.

Step 5 - Execute MTCs: Next, the MT framework exe-
cuted all MTC generators at least once, meaning that at least
one MTC is generated per MTC generator. The MT frame-
work builds on the RISC-V VP++ introduced in Section III,

7Even for humans, this problem is non-trivial due to its complexity and the
cognitive effort involved.



extending it with a virtual display to visualize the output
of both source and follow-up test cases. The framework is
implemented in Python and handles MTC generator selection,
MTC generation, test execution, and result comparison.

Out of the 1,199 MTC generators, 291 needed to be
discarded since executing the source and follow-up test cases
caused either an infinite loop or a memory allocation error.
Because of this, only the results of the 908 MTC generators
were selected to proceed to the next step.

Step 6 - Analyze Results: For the remaining 908 MTC
generators, 61 of them generated reasonable MTC results.
Thus, 61 are well-formed MRs and the remaining 847 MTC
generators are moved to Step 7 for refinement.

Step 7 - Refine and Repeat: At this step, we manually
review each of the 847 MTC generators that were previously
dismissed, in order to identify mistakes in the related MR. We
have identified two common cases for such errors:

o Dimensional offsets; e.g. for rectangles, the width is
specified, whereas for lines, the start and end coordinates
are used. This discrepancy leads to a one-pixel offset.

e Missing method calls; e.g. pushColor() requires an
additional call to setAddr() to set the coordinates. The
LLM did not consider this requirement.

Modifying these MRs and executing the corresponding
MTC generators again gave another 125 well-formed MRs.
This brings up the final result to 186 MRs generated by the
proposed LLM-assisted approach.

It is worth noting that while the last two steps — analyzing
and refining the results — were performed manually, they
required only a few hours of effort. In contrast, without this
approach, the process of generating MRs, implementing and
testing them, and subsequently analyzing and refining the
results, typically spans several days to weeks.

VI. LLM-ASSISTED MT RESULTS

In this section, we evaluate the MRs generated by our
LLM-assisted MT approach for embedded graphics libraries
in comparison to the manually crafted MRs for the MT
framework from [13]. First, we compare the bug detection ca-
pabilities. Then, we compare the structural coverage achieved.

A. Comparing Bug Detection Capabilities

Table II provides an overview of the detected bugs. The
methods in which the bugs occurred are given in column
Method. The number of bugs identified for the correspond-
ing method is given in column Bugs. The following two
columns show whether the bug has been detected (v') or
not (x) with the MT framework from [13] and our proposed
LIM-assisted MT approach. As can be seen in the table,
12 of the bugs have been identified by the MT framework
from [13] and our approach. The first difference are two bugs
in the drawWedgeLine() method that are not identified by
our approach. The reason for this is that the LLM was not
able to recognize that changing the starting and end points
leads to a valuable MR when drawing a wedge line. As
drawWedgeLine() is a highly specific functionality of the

TABLE II: Comparison of detected bugs. The first column contains the method
name as defined in the TFT_eSPI library. The second column indicates the
number of bugs identified for each method. The last two columns indicate if
the single bugs were identified (v') or not (x) for the MT framework and the
LLM-assisted MT.

drawWedgeLine v,V X, X
frameViewport
fillSprite
drawRoundRect
fillRoundRect
drawEllipse
fillEllipse
drawCircle
fillCircle
drawArc
fillSmoothCircle
drawRect
fillRect
drawLine
drawSmoothRoundRect
drawWideLine
pushImage
drawBitmap
drawXBitmap
drawSpot
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TFT_eSPI library, an additional interaction with the LLM
showed that only limited “knowledge” is available on wedge
lines. The next difference is for the fillSprite() method.
The reason for this is that we did not generate MRs for
extensions as we focus only on the core functionality of the
TFT_eSPI library.

Next, for the fillSmoothCircle() method, our LLM-
assisted MT approach found 2 new bugs. One of the newly
identified bugs in fillSmoothCircle() appears when the
circle size is set to 1 pixel. In this case, no circle is drawn.
For drawRect (), we also found a new corner-case bug. When
the line size is set to 0, two pixels are drawn instead of none.

Finally, our proposed approach identified 11 bugs in meth-
ods that the MT framework from [13] did not find, leading to
a total of 14 previously unknown bugs. One of these bugs was
found in the drawBitmap () method. When generating a filled
rectangle using drawBitmap (), some segments of pixels were
missing within the rectangle. Another bug was found in the
drawSpot () method, which showed that when a small radius
was given to the method, no spot was drawn.

The newly found bugs are occurring under certain con-
ditions. The criticality is therefore context-dependent and
requires further evaluation in consultation with the library
developers.

B. Structural Coverage Results

To further evaluate the effectiveness of the proposed ap-
proach, the structural coverage was measured based on the
59 methods identified in Step 1. The full function cover-
age (100%) is therefore achieved when all 59 methods are
covered. Note that our approach identified more methods
with drawing capabilities than the MT framework from [13].
Therefore, in our measurement, the absolute number of func-
tions as well as lines and branches, which can be covered,
has increased. This leads to different coverage results in our
measurement and those presented in [13]. Table III shows



TABLE III: The tables contains the structural coverage results. The first
column indicates the coverage type. The second and third column indicate
how much coverage for the single types was achieved for the MT framework
and the LLM-assisted MT.

MT framework [13] | LLM-assisted MT

Function 47.46% 89.83%
Line 44.93% 73.70%
Branch 45.74% 77.60%

the results for function, line, and branch coverage, comparing
the 21 manually created MRs from the MT framework [13]
with the 186 MRs generated by our LLM-assisted MT. Af-
ter executing 1,000 MTCs per MR, no further increase in
coverage was observed. In terms of function coverage, the
MT framework reached 47.46%, while the LLM-assisted MT
achieved 89.83%, nearly doubling the coverage. This result
can be attributed to the significant manual effort required to
find all the methods with drawing capabilities of the library,
which we automated in Step 1 using the LLM. Although
manual evaluation identified 28 methods from 163 public
methods, our approach automatically identified 59 methods
capable of drawing objects on the display. However, the table
also shows that our LLM-assisted approach does not reach
100% function coverage since our pipeline approach was
unable to generate well-formed MRs for 6 methods. Here, a
thorough analysis is left for future work. The increase from
around 45% to around 75% for line coverage and branch
coverage further shows the effectiveness of our approach. This
is also strengthened by finding 14 new bugs as described in
the previous section.

We carried out an additional analysis to identify MRs that
achieve equivalent function, line, and branch coverages, but
do not uncover additional bugs. This analysis identified 26
duplicated MRs. By removing these MRs, we found a total
of 160 unique MRs generated with the help of our LLM-
assisted approach. These are almost 8 times more MRs than
the carefully handcrafted MRs defined in [13].

VII. DISCUSSION

LLMs are transforming the way developers approach tasks,
offering powerful capabilities out of the box. As a result, using
off-the-shelf LLMs has emerged, simplifying adaptation but
introducing trade-offs. Next to the resource demands, a trade-
off lies in the lack of factual reliability (e.g. hallucinations).

Fine-tuning can address reliability issues but requires ex-
pertise in machine learning. Many verification engineers have
yet to acquire this expertise, given the relatively short time
since LLMs advanced to a stage where they can be applied
across various domains. Furthermore, fine-tuning can be disad-
vantageous in this context because the LLM already entails an
exhaustive understanding of the problem domain. For our case,
fine-tuning the unique wedge line function of the TFT_eSPI
library would require a large amount of specialized training
data. Given that it would only enhance reliability for this
specific case, the result does not justify the effort to further
fine-tune the LLM.

An alternative approach to fine-tuning is the application of
prompt engineering strategies combined with classical pro-
gramming. This approach allowed us to use the unmodified
Meta Llama 3.1 model, using its pre-existing data in graphics
libraries, including TFT_eSPI. This generalization also makes
our method applicable to other embedded graphics libraries.
Moreover, combining prompt engineering with classical pro-
gramming enables easy adaptation to alternative LLMs. If the
model contains knowledge on the desired library and MT,
minimal prompt adjustments, such as rephrasing terms, are
sufficient. An example of such a rephrasing was given in
Footnote 4 where replacing "specification" with "definition"
improved the classifications for Llama 3.1.

Furthermore, we want to discuss the LLM-assisted MR
pipeline. Within the pipeline, only the first three steps have
been executed using the LLM for certain sub-tasks. Although
these steps could potentially be condensed into a single
step with the advancement of reasoning-capable models, we
observed that current LLMs struggle to produce a large number
of diverse MRs (output of Step 3). In practice, only around
five unique MRs were generated before the models began to
hallucinate exhaustively when tasked with generating more.

Step 4, which involves translating the generated MRs, was
implemented purely with classical programming, as relying on
LLMs for this step introduced a significant risk of mistransla-
tion. Step 5, which involves parameter injection and executing
the resulting MTCs on a VP-based framework, likewise does
not require LLM support.

Despite the growing capabilities of LLMs, human oversight
remains essential, as shown in Steps 6 and 7. While the model
generated 61 MRs, manual review and refinement yielded an
additional 125. One might argue that these steps could be
automated using visual models, but further research is required
to reliably distinguish between valid failures due to actual bugs
and those caused by malformed MRs.

VIII. CONCLUSIONS

In this paper, we introduce a novel approach that uses LLMs
to generate Metamorphic Relations (MRs) for Metamorphic
Testing (MT) of embedded graphics libraries. After assessing
the LLM capabilities and assigning the developer role to the
LLM, it was able to decompose the MR generation problem
into 7 steps. Based on these steps, we structured and created
an LL.M-assisted MR pipeline, where we found that carefully
selecting the right prompting strategy is crucial. For evaluation
of our approach, we extended an existing MT framework with
our LLM-assisted MR pipeline. We found that our approach
was able to easily generate 8 times more unique MRs in
comparison to the existing manual MT framework. Through
a comprehensive assessment, we demonstrated that our MRs
produced by the LLM identified 14 novel bugs and nearly
doubled coverage.

Finally, we discussed that our prompt-engineering-based ap-
proach balances accessibility, adaptability, and generalization,
tailoring it for verification engineers working on embedded
graphics libraries. However, while our approach leverages



LLMs to generate effective MRs, it still requires human
expertise. In future work, to further reduce the human effort
necessary for Steps 6 and 7, an approach to include a visual
model will be evaluated. Additionally, the methodologies
presented in [43]-[46] will be incorporated to enable a more
comprehensive system analysis.

APPENDIX

This appendix provides further implementation specifics
concerning the MTC generators and the produced FW codes.
The listings expand on the example presented in Listing 1.

A. MTC generator core

Listing 2 contains the Python script that generates the
surrounding C++ code for the source and follow-up test
cases. The setup code, including necessary libraries, the main
function interface and initialization for the TFT_eSPI library,
is defined in Line 3-10.

I def generate_file(self, src_path, testcase_fn):

2 cpp = Generators. Util. file_gen.CppFile(src_path)

; cpp( '#include "TFT_eSPI.h"')

4 cpp( '#include <cstdlib>")

5 cpp( '#include <algorithm>")
6 cpp('using namespace std; ')

8 with cpp.block("int main()"):
9 cpp("TFT_eSPI tft = TFT_eSPI();")
10 cpp("tft.init ();")

12 testcase_fn (cpp)

14 cpp("tft.writecommand (OxFF) ;")

15 cpp(f"tft.writedatal6 ({screenshot_num});")
16 cpp("std::exit(0);:")

.

18 cpp.close ()

Listing 2: MTC generator core generating surrounding C++ code for test
cases, including the library initialization and the screenshot generation.

The call to testcase_fn in Line 12 generates source or
follow-up specific code. Line 14-16 include the necessary
instructions to take a screenshot (using TFT write commands)
and to shut down the VP.

B. MR specific MTC generator

Listing 3 contains the class responsible for generating the
specific codes for the source (Line 3-6) and the follow-up
(Line 9-14) test cases. The functions are called accordingly
when Line 12 from Listing 2 is called. In Line 9, the code
initializes h to 1 as specified by the MR from Listing 1.
Line 10-14 then calls drawRect, replacing all parameters
except h with dynamically generated Python variables during
MTC execution.

C. Source FW

Listing 4 contains the generated source FW. Line 10 con-
tains the call to drawFastHLine with filled-in parameters.
Line 11 contains the initialization of parameter h, as well as
the call to the drawRect function with, except h, the same
parameters as Line 10 from Line 3.

1 class drawFastHLinedrawRect (MTCGenerator) :
2 def source_testcase (self ,cpp):

3 cpp(f"tft.drawFastHLine({self.args['x ']},

4 {self.args['y']},

5 {self.args['w']},

. {self.args['color']});")
8 def follow_up_testcase (self, cpp):

9 cpp(f"int32_t h = 1;")
10 cpp(f"tft.drawRect({self.args['x"]

b o
1 {self.args['y ']},
12 {self.args['w']},
13 h,
14 {self.args["'color ']});")

Listing 3: MTC generator class for DrawFastHLineDrawRect MR translated
from LLM response into Python. The first function contains the code to
generate the source testcase and the second function contains the code to
generate the follow-up testcase.

#include "TFT_eSPI.h"
> #include <cstdlib >

3 #include <algorithm>
4 using namespace std;

5 int main ()
6 |
TFT_eSPI tft = TFT_eSPI();
8 tft.init();
9
10 tft.drawFastHLine (168, 156, 68, 10158409);

12 tft . writecommand (0xFF) ;
13 tft.writedatal6 (1)
14 std::exit(0);

Listing 4: Generated source FW for DrawFastHLineDrawRect MR including
library initialization and screenshot generation as well as the concrete source
testcase.

D. Follow-up FW

The generated follow-up FW is provided in Listing 5.
Parameter h is initialized in Line 10 and set to 1 as specified
for this MR. The call to drawRect with the generated concrete
values, matching the parameters from the source FW, is located
in Line 11.

I #include "TFT_eSPI.h"
> #include <cstdlib >

3 #include <algorithm >
using namespace std;
int main ()

6 {

7 TFT_eSPI tft =
8 tft.init();

TFT_eSPI() ;

10 int32_t h = 1;

1 tft.drawRect (168, 156, 68, h, 10158409);

13 tft.writecommand (0XxFF) ;

14 tft.writedatal6(2);

15 std::exit(0);

16}
Listing 5: Generated follow-up FW for DrawFastHLineDrawRect MR
including library initialization and screenshot generation as well as the
concrete source testcase.
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