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Abstract—Transaction-level debugging in Virtual Prototypes
(VPs) remains challenging due to the sheer number and intricate
nature of interactions between software and hardware compo-
nents. This paper presents ProtoLens, the first open-source tool
for dynamic visualization of Transaction Level Modeling (TLM)
transactions in SystemC-based VPs. Integrated with the open-
source RISC-V VP++, ProtoLens provides an interactive web
front-end that displays architecture-aware transaction flows in
real-time. It captures transaction data via a lightweight extension
of the TLM bus and enriches it with peripheral-specific views
through user-defined modules, so-called Transaction View Mod-
ules (TVMs). Additionally, ProtoLens supports integration with
software debuggers, allowing synchronized transaction inspection
and control of the simulation flow. This enables developers to
efficiently analyze issues such as incorrect memory mappings,
unexpected peripheral behavior, and to better understand the
overall system architecture.

Two case studies highlight the capabilities of ProtoLens: one
demonstrates how it complements classical debugging in a bare-
metal software example, and the other showcases its ability to
reconstruct real-time graphics output from a Linux-based game.

I. INTRODUCTION

Virtual Prototypes (VPs) are abstract, executable models
of embedded systems used to support early Software (SW)
development, system validation, and architectural exploration
before the underlying Hardware (HW) — starting from RTL
— is developed or available. To enable these use cases effec-
tively, VPs offer significantly faster simulation speed com-
pared to cycle-accurate models, allowing developers to run
complex SW scenarios and system tests efficiently [1]. To
realize VPs, industry commonly employs virtual platforms
— system-level models constructed using SystemC [2]-[6]
and Transaction Level Modeling (TLM) [7] that accurately
represent HW components and their interactions. To create a
virtual platform, a set of key components must be modeled
and integrated at a high level of abstraction. This includes
developing SystemC/TLM models for processing elements
(e.g. CPUs, accelerators), memories (volatile/non-volatile),
peripheral devices, and interconnects such as buses. Each
component must expose standardized TLM interfaces to enable
transaction-based communication, allowing fast and accurate
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simulation of SW. However, there are two major challenges:
First, SW execution may trigger a series of HW events —
such as memory accesses, peripheral operations, or interrupts
— that are difficult to follow and analyze without a clear rep-
resentation of the underlying transactions. As a representative
case, booting a lightweight Linux system on a VP up to the
login prompt already results in approximately 2.5 million TLM
transactions (excluding memory accesses)!. Second, many HW
components in a virtual platform are accessed via memory-
mapped I/O, making correct definition and interpretation of the
memory map critical [8]. Errors such as overlapping address
regions, incorrect peripheral offsets, or misaligned access sizes
can lead to subtle and hard-to-detect bugs during SW execution
which in the worst case crash the system unpredictably.

To tackle these challenges, this paper presents the open-
source tool ProtoLens, available on GitHub?: For the modern,
highly-configurable RISC-V VP++ [9], ProtoLens enables in-
tuitive visualization and debugging of TLM transactions via an
interactive web front-end. To achieve this, ProtoLens extracts
memory maps from the virtual platform, and automatically
generates an architecture graph from that information. Besides
a generic transaction log, ProtoLens supports user-defined
Transaction View Modules (TVMs) to enable peripheral-
specific data visualization, and integrates with existing SW
debuggers. Additionally, it enables users to control the simu-
lation flow. At its core, ProtoLens hooks into the TLM bus of
the virtual platform to capture the TLM transactions as they
occur. The transactions are then visualized in the architecture
graph using annotations and are then processed by the TVMs
to produce user-defined output. Two case studies are presented
to highlight the capabilities and advantages of ProtoLens. The
first case study illustrates how ProtoLens complements classi-
cal debugging techniques by analyzing the behavior of a basic
bare-metal SW example. The second case study shows that
ProtoLens can handle data-intensive applications, such as the
real-time reconstruction of graphics output from a VP running
Linux and a 3D game, using transaction traces. Although the
initial design of ProtoLens and the case studies are based on

ILinux-6.10 measured on RISC-V VP++
Zhttps://github.com/ics-jku/ProtoLens
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RISC-V VP++, the modular architecture of ProtoLens allows
it to be applied to other SystemC/TLM-based VPs that provide
similar interfaces.

The paper is structured as follows: Section II reviews related
work. Section III introduces relevant preliminaries, including
SystemC/TLM, its transactions concept and RISC-V VP++,
the current basis of ProtoLens. Section IV presents ProtoLens,
followed by Section V, which demonstrates its application
through case studies. The paper is concluded in Section VI.

II. RELATED WORK

Visualization of SystemC designs was already targeted in
it’s early days. One of the first approaches was presented
in [10]. However, this work modified the SystemC kernel,
and considers low-level SystemC and not VPs using TLM
communication. The approach has been later improved in [11],
but still suffers from the second limitation.

In [12], further extended in [13], advanced HW/SW co-
visualization techniques utilizing 3D rendering and virtual
reality, have been proposed. The focus was on visualization
of instantiated SystemC modules and their interconnections,
the visualization of TLM transactions is not considered.

The paper [14] proposed the tool SycView for visualization
and profiling of SystemC simulations, i.e. simulation timing
diagrams on the level of SystemC processes are generated.
Again TLM transactions are not supported.

More closely related to our work are methods towards
the visualization of transactions streams created from TLM
simulations. The SystemC Verification Library (SCV) [15]
as well as the Lightweight Transaction Recording for
SystemC (LWTR4SC) [16] provide implementations for
recording TLM transactions into a text-based and binary
format, respectively. SCViewer [17] and Surfer [18], [19]
are open-source waveform viewers, that allow for visualizing
transaction recordings. Recently, an approach leveraging dy-
namic runtime instrumentation of VPs to determine so-called
function lifetime diagrams for visualizing HW/SW interactions
in Surfer has been proposed [20]. However, no interaction with
the SystemC simulation, debugging of SW running on a core,
or user-defined visualizations of TLM data as provided by the
proposed TVMs is possible.

Finally, there are also commercial virtual prototyping en-
vironments (e.g. Synopsys Virtualizer, Siemens EDA Vista,
Cadence Helium Studio) which also offer visualization of
TLM transactions, including transaction history, initiator/target
relationships etc. However, these tools are proprietary and thus
not freely available.

III. PRELIMINARIES

This section provides essential background for the paper.
Section III-A introduces VPs and SystemC/TLM with its
concept of transactions. Section III-B presents RISC-V VP++,
the current basis of ProtoLens, and key features used in our
case studies.
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Fig. 1: Example: VP with TLM Read Transaction

A. VPs and SystemC/TLM

In general, VP are commonly used for sophisticated mod-
eling and verification approaches like [21]-[28]. Today, VPs
are predominantly created in SystemC/TLM, a standardized
C++ class library that provides common building blocks and
an event-driven simulation kernel to support the development
and execution of HW simulations. HW system components,
such as processors, buses and peripherals are called modules
and implemented as C++ classes derived from the SystemC
sc_module class. The two important aspects of such modules
are behavior and communication. The behavior (e.g., the
functionality of a peripheral) is described using SystemC
processes and threads invoked by the simulation kernel, as
well as methods triggered by communication. Communication
is abstracted in SystemC/TLM using sockets and transactions.
Sockets can either be configured as initiator of transactions
(e.g. processor accessing a peripheral), or as target for trans-
actions (e.g. peripheral accessed by a processor). Transactions
are the data structures exchanged via sockets and describe the
access itself. The most important attributes of a transaction
are: (i) the command, which can be either a read or write; (ii)
the start address of the access; (iii) a pointer to the data to be
transferred (payload); and (iv) the data access length. Modules
typically act as either initiator (e.g. processor modules), or
as target (e.g. peripheral module). However, modules can
also have multiple sockets configured in different roles. For
example, a TLM bus module may have multiple target sockets
to connect multiple processor core modules, and multiple
initiator sockets to connect multiple peripheral modules. In
a bus module, transaction routing is typically done based on
the transaction’s start address and a memory map that defines
the start and end addresses of each peripheral in the address
space. Within a SystemC simulation, transactions are executed
as function calls with a reference to a transaction object.

Fig. 1 shows an example of a simple VP with one processor
core, a memory and a peripheral module, where the processor
intends to load one byte from address 0x20010010. To achieve
this, the processor module first constructs a read transaction
object with the start address 0x20010010, a data access length
of one byte, and a pointer to the location where the loaded
byte should be stored. It then calls the transport method
(e.g. b_transport(...) in SystemC TLM-2.0) of its initiator
socket, which is connected to the target socket of the TLM
bus module — thereby invoking the bus module’s transport
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Fig. 2: RISC-V VP++ Architecture

method. The bus module uses the transaction’s start address
and the memory map to determine the addressed peripheral
module. The bus adjusts the transaction’s start address to a
target module-relative address (0Ox10), then calls the transport
method of the initiator socket connected to the peripheral,
thereby invoking the peripheral module’s transport method.
The peripheral receives the transaction and interprets it as a
request to read one byte from its internal memory at address
Ox10. Tt writes the retrieved value to the destination pointer
provided in the transaction, then returns control to the bus,
which in turn returns control to the processor. At this point,
the transaction is complete, and the processor has the requested
value available at the specified location.

B. RISC-V VP++

In this paper, we consider the versatile open-source
SystemC/TLM-based RISC-V VP++ introduced in [9]. This
VP was selected for its extensive capabilities and flexibility,
which are briefly outlined below.

A key component of any hardware platform is the pro-
cessor. The RISC-V Instruction Set Architecture (ISA) [29],
[30] has gained significant traction in both academia and
industry, thanks to its open standard and highly modular
design. RISC-V VP++ supports the RISC-V ISA in 32-bit
(RV32) and 64-bit (RV64) configurations. The architecture
of the VP is outlined in Fig. 2. The VP includes fast
interpreter-based [Instruction Set Simulators (ISSs) [31] for
RISC-V, capable of simulating multiple cores, as indicated by
the stacked ISS components in Fig. 2. The ISSs also include
optional support for an Memory Management Unit (MMU) to
realize Virtual Memory Management (VMM). A TLM-based
bus links the ISSs, memory, and peripherals. A CLINT and
PLIC provide timer and interrupt functionality. The VP comes
with support for the RISC-V "V" Vector Extension (RVV) [32],
and is used for advanced verification approaches [33]-[35].
RISC-V VP++ provides a variety of pre-built platform mod-
els which range from from basic bare-metal microcontroller
systems to complex application processor platforms with an
MMU, capable of running Linux with interactive graphical
applications [36].

Two particularly relevant features of the RISC-V VP++
for this paper are its debugging and graphics output ca-
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Fig. 3: Architecture of ProtoLens consisting of three components

pabilities. For debugging, the VP includes a built-in GDB
server that enables source-level debugging of SW executed
within the VP. When activated, this server exposes a TCP-
based interface conforming to the widely adopted GDB
Remote Serial Protocol (RSP), which serves as a de facto
standard for remote debugging. This compatibility allows the
use of a broad range of debugger front-ends, including nearly
all modern Integrated Development Environments (IDEs).

The second feature, graphics output, is provided by a pe-
ripheral module called VNCSimpleFB. On the TLM side, this
module exposes a memory-mapped region that functions as a
framebuffer. SW running within the VP can generate graphical
output by writing pixel data directly to this framebuffer. On
the host system side, the VP offers a TCP-based interface
compatible with the Virtual Network Computing (VNC) pro-
tocol. This allows any standard VNC client to display the
graphics rendered by the SW running within the VP. With
GUI-VP Kit [36], a fast-to-deploy and easy-to-use SW ex-
perimentation environment for Linux and interactive graphical
applications is also available for RISC-V VP++.

IV. PROTOLENS

In this section, we introduce our tool ProtoLens. First
in Section IV-A, we present the architecture of ProtoLens,
which consists of three components: the VP (in our case
RISC-V VP++), the server and the web application. There-
after, Section IV-B provides an in-depth look into the gen-
eration and content of the TLM transaction trace visualized
by ProtoLens. Finally, Section IV-C outlines how ProtoLens
enhances the classical debugging workflow by seamlessly
integrating with traditional source-level debuggers.

A. Architecture

Fig. 3 depicts the architecture of ProtoLens. The ex-
tended RISC-V VP++ transmits TLM transaction data to the
ProtoLens Server (PLS) via the NetTrace module, as illustrated
in Fig. 3 (left and center, respectively). Additional processing
of the transaction data is done by the PLS and the result
is provided to the ProtoLens Webapp (PLW) via Websockets
(abbreviated as WS in Fig. 3). The PLW provides users with
application configuration, VP control capabilities, and with
visualization of transaction data.

ProtoLens can run either in trace or in debug mode which
is configurable through the PLW. In trace mode, the user can
passively observe the transaction traces visualized in the PLW.
During this mode, only the trace path (upper half of Fig. 3),
including the VP NetTrace interface, the WS and the PLW is



active. In debug mode, the user can actively control execution
both through the PLW and via a traditional debugger front-
end. During this mode, both the trace path and the debug path
(lower half of Fig. 3) are active, including the VP GDB RSP
interface, the PLS Proxy, and gdbgui [37]. While ProtoLens
supports any GDB front-end, it defaults to using the GDB
front-end gdbgui, selected for its browser-based interface.

We will now give further insights into each of the three
major components of ProtoLens:

a) RISC-V VP++: As mentioned above, transaction data
is passed to ProtoLens via the NetTrace module, which extends
RISC-V VP++ by providing a lightweight interface for trace
capture. The NetTrace module uses a CSV-based data format
(more details in Section IV-B) carried over TCP, to enable tool-
agnostic data processing. At first, during the initialization of
the VP, the memory map is sent to the PLS to enable dynamic
visualization in the PLW. During SystemC simulation, the
TLM bus, responsible for routing transaction-level communi-
cations between components, extracts the necessary data from
a TLM transaction object and passes it to the NetTrace module.
This passing of transaction data can be activated or deactivated
via a command-line parameter given to the VP. If deactivated
(i.e. the VP is used stand-alone / without ProtoLens), only a
single conditional branch is introduced, resulting in virtually
no performance degradation. An additional command-line flag
halts the transaction initiator, triggering behavior equivalent to
hitting a breakpoint in SW. This will discussed in more detail
in Section I'V-C.

b) ProtoLens Server: The Rust-based PLS functions as
a central hub for data and control. The PLS connects to the
NetTrace module and the GDB interface of the VP via TCP.
The PLS further manages the launch and termination of the
VP, executed as a sub-process of the operating system. More-
over, the PLS handles most of the computationally intensive
tasks, to keep the user interface as lightweight as possible. For
example, the PLS converts transaction payload to pixel data
for transactions targeting the VP’s graphics output. We will
elaborate this functionality in more detail in the case study in
Section V-B.

c) ProtoLens Webapp: The PLW receives data from the
PLS via a Websocket connection. To visualize the transaction
data obtained from the VP, the user interface generates a
dynamic architecture graph. An example architecture graph,
generated by ProtoLens connected to the basic microcontroller
VP platform model included in RISC-V VP++, is shown
in Fig. 4. The graph includes a generic core complex at
the top (denoted Core in Fig. 4) and all memory mapped
peripherals. Each peripheral is annotated with its start and end
addresses. As the memory map of the VP is dumped on every
startup, this graph can visualize changes of the memory map
without any additional manual configuration. Transactions are
visualized by green arrows drawn from the core complex to
the target peripheral. The arrow direction indicates a read or
write operation. The data access length and payload of the
transaction are visualized along the arrow. This is shown in
the center of Fig. 4, where a write transaction is currently

I R;Core0;1;2004608;100;2;0000
2 W;Core0;8;8000000;120;2;FA09

Listing 1: Example transaction traces

being executed from the Core to the SimpleTerminal, with a
length of I and carrying the hexadecimal byte 7A. Transactions
are also visible in the generic Transaction Log TVM (lower
right corner in Fig. 4). The previously discussed transaction
appears as the first entry in the Transaction Log table.

TVMs are also used to provide peripheral-specific data
visualization. One such TVM, the Terminal TVM can be seen
in the bottom left corner of Fig. 4. The Terminal TVM filters
all transactions directed to the SimpleTerminal peripheral,
which handles character output on the VP console. The TVM
interprets the transaction payload as printable characters and
displays them accordingly — mirroring the output one would
see on the VP console. In the example shown in Fig. 4, the
character z is displayed, as it is the ASCII representation of
the byte 7A. Another example is the Framebuffer TVM which
displays transaction payload directed to the VP’s graphics
output as pixels on a canvas, therefore reconstructing the
displayed image. The Framebuffer TVM is discussed in detail
in our case studies in Section V-B.

B. Transaction Tracing

Transaction tracing serves as the foundation for both the
trace mode and debug mode described earlier. As outlined in
Section III-A, during routing, the TLM bus first identifies the
appropriate target and then invokes the corresponding method
of that target peripheral. The TLM bus routing mechanism
is extended to also forward transaction data to the NetTrace
module (top left of Fig. 3), which subsequently transmits
the data to the PLS. To enable a complete visualization, we
extract most of the information carried by a TLM transaction.
Listing 1 shows the transaction data format transmitted to
the PLS. Each line in Listing 1 contains the following data
elements: (i) the operation type (read or write), (ii) the initiator,
(iii) the target peripheral id, (iv) the target memory address,
(v) the simulation time [ns], (vi) the number of payload bytes,
and the (vii) the transaction payload in hex.

All data elements except the initiator are part of the stan-
dard TLM-2.0 transaction object. However, to visualize the
transaction from start to end, we also need the initiator of
a transaction. To obtain the initiator, we utilize the TLM
extension mechanism defined in the SystemC standard. We
modified the transaction initiators — such as processor cores
and DMA controllers — to append pointers to themselves
in each generated transaction. This enables the TLM bus to
identify the initiator. Since transaction objects are typically
reused after creation, this mechanism introduces no significant
overhead. As noted in Section IV-A, the data format presented
in Listing 1 enables tool-agnostic processing. For instance,
saving the received data to a file produces a TLM trace that
can be utilized by other tools for further analysis of the VP
simulation.
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Fig. 4: ProtoLens Webapp user-interface. RISC-V VP++ running a Bare-metal SW accessing a sensor and terminal peripheral in debug mode

C. Debug Mode

In debug mode, ProtoLens provides interactive control over
the VP by integrating transaction tracing with traditional
source-level debugging. This mode supports a unified debug-
ging workflow, allowing users to issue debugger commands
through a traditional debugger front-end, while observing the
system’s behavior through transaction trace data visualized in
the PLW. It builds on existing GDB RSP capabilities of the VP
and enhances them with additional functionality for improved
integration and control.

The VP already supports GDB-based debugging via its
built-in GDB RSP interface, which can be enabled through
a dedicated command-line argument. To further support fine-
grained interaction, we extended the VP to provide an ad-
ditional command-line option that halts the TLM transaction
initiators after each routed transaction. From the debugger’s
perspective, this emulates hitting a breakpoint, enabling in-
spection of the system state after each transaction.

To bridge the gap between transaction visualization and
traditional debugging, we introduced the PLS proxy (middle
of Fig. 3). This component intercepts the GDB RSP commu-
nication between the debugger front-end and the VP, enabling
ProtoLens to inject or interpret debugging commands. For
example, the continue command can be dispatched directly
from the PLW via the dedicated step and steps buttons (top of
Fig. 4), reducing the need to switch between user interfaces.

While ProtoLens is compatible with any GDB RSP-
compatible debugger front-end, it defaults to gdbgui [37],
chosen for its browser-based design that enables seamless
integration with the PLW. During debug mode, both the

trace path and debug path are active, combining transaction
monitoring with full-featured interactive debugging in a single
environment.

V. CASE STUDIES

To show the capabilities and advantages of ProtoLens we
present two case studies. The first case study in Section V-A
demonstrates how ProtoLens’s debug mode complements clas-
sical debugging techniques by analyzing the behavior of a
basic bare-metal SW example. The second case study in
Section V-B demonstrates that ProtoLens can handle data-
intensive applications, such as the real-time reconstruction of
graphics output from a VP running Linux and a 3D game,
using transaction traces.

A. Debugging Sensor Peripheral

In this case study, we demonstrate how ProtoLens’s debug
mode complements the classical debugging workflow by an-
alyzing the behavior of a basic bare-metal SW example. For
this, we utilize the basic microcontroller VP platform model
included in RISC-V VP++, whose architecture graph is shown
in Fig. 4.

Our example SW reads data from a sensor and prints the
data via a terminal peripheral. The sensor peripheral is mapped
onto the memory area from 0x50000000 to 0x50001000. The
sensor peripheral can be seen in the middle of Fig. 4, with the
corresponding memory addresses displayed to the left of the
module. The peripheral has two configuration registers named
scaler and filter. These registers are located at 0x50000080
and 0x50000084 respectively. A 64 byte data frame is located
at 0x50000000. The sensor module periodically fills the data



| // memory mapped register/inputs

9 void sensor_irq_handler() { 22

2 static volatile char* const TERMINAL_ADDR = 10 has_sensor_data = 1; 23 int main() {
(char* const)0x20000000; 11 3} 24 register_interrupt_handler(2,
3 static volatile char* const SENSOR_INPUT_ADDR 12 void dump_sensor_data() { sensor_irq_handler);
= (char* const)0x50000000; 13 while (!has_sensor_data) { 25
4 static volatile uint32_t* const 14 asm volatile("wfi"); 26 *SENSOR_SCALER_REG_ADDR = 5;
SENSOR_SCALER_REG_ADDR = (uint32_t* 15 27 *SENSOR_FILTER_REG_ADDR = 2;
const)0x50000080; 16 has_sensor_data = 0; 28
5 static volatile uint32_t* const 17 for (int i = 0; i < 64; ++i) { 29 dump_sensor_data();
SENSOR_FILTER_REG_ADDR = (uint32_t* 18 *TERMINAL_ADDR = *(SENSOR_INPUT_ADDR + i) 30
const)0x50000084; % 92 + 32; 31 return 0;

6 19
7 // access/process sensor data 20
8 volatile _Bool has_sensor_data = 0; 21 3

}
*TERMINAL_ADDR = ’'\n’;

Fig. 5: Example: Bare-metal SW accessing a sensor and terminal peripheral

frame with new values and signals completion by triggering
an interrupt. The update frequency is configurable through the
scaler register, while the specific content written to the data
frame is influenced by the filter register.

Fig. 5 shows the SW example. First an interrupt handler
(Line 24) is installed, which sets a flag for the main SW
(Line 10). After the interrupt handler was registered, the
SW configures the scaler (Line 26) and filter (Line 27)
registers. The SW then enters a Wait for Interrupt (WFI) loop
(Line 14), and waits until an interrupt is triggered by the sensor
peripheral. After the interrupt is handled, the sensor’s data
frame is read, converted into an ASCII character, and written
to the terminal peripheral (Line 18) for console output.

To investigate the SW behavior, we configure the VP into
the debug mode introduced in Section IV-C and start the
VP from the PLW user-interface. When configured, gdbgui
automatically starts and auto-connects to the VP via the PLS
Proxy introduced in Section IV-C. We set a breakpoint in
Line 19 of Fig. 5 and continue until the SW has hit the
breakpoint. During execution the architecture graph shown
in Fig. 4, automatically updates when new transactions are
dispatched from the VP. When the breakpoint is hit, the VP
has read the first element of the sensors data frame and wrote
it to the terminal.

The Transaction Log TVM, located at the bottom right of
Fig. 4, accurately displays this behavior. The second log entry
records a read operation at the address of the sensor’s data
frame. The first entry indicates a write operation into the
terminal’s address space. This write operation is also visible in
the graph visualization in the top half of Fig. 4. In the bottom
left corner of Fig. 4, the Terminal TVM shows the character
written to the terminal peripheral.

In summary, the integration of gdbgui and ProtoLens shown
in this case study, provides a robust framework for step-by-
step analysis, offering accurate and detailed visualizations that
enhance the debugging process.

B. Tracing Linux Graphics Output

In this section we demonstrate the real-time reconstruction
of the VP’s graphics output using the transaction traces in-
troduced in Section IV-B. We mirror the graphics output to a
new TVM to display the image in the PLW.

In this case study, we utilize the application-processor
RV64 VP platform model capable of running Linux sys-
tems with interactive graphical applications, included in the

RISC-V VP++. An architecture graph of the complex model
is shown in Fig. 6. Compared to the simple model depicted in
Fig. 4, the application-class model features a greater number
of peripherals and, consequently, enhanced capabilities. One
of these peripherals is the VNCSimpleFB, which is considered
in this case study. The peripheral is shown as the last element
in the third branch of the architecture graph in Fig. 6. The
application-class VP runs a Linux operating system generated
by GUI-VP Kit, presented in Section III-B. The executed OS
image includes PrBoom, a port of a classic 3D game, which
we use to demonstrate the capabilities of ProtoLens. All of
our experiments are conducted on an Intel i7-8565U (4C/8T)
with 16 GB of RAM.

To reconstruct the graphics output in the PLW, we introduce
a new Framebuffer TVM. The Framebuffer TVM filters all
transactions directed to the VNCSimpleFB peripheral, which
handles the graphics output of the VP. The VNCSimpleFB
is a memory-mapped peripheral that stores an image in the
RGB565 pixel format (2 bytes/pixel). The size of the image is
800x480 (WVGA). All pixel modifications of the framebuffer
are done via TLM write transactions. This means that the
transaction payload contains the pixel data written into the
VNCSimpleFB. To determine the x and y coordinates where
the pixels need to be drawn, we calculate the coordinate
values from the transaction target address and the peripheral’s
start address. The coordinates are calculated by the PLS and
combined with the pixel data into a custom data format which
is then sent to the PLW. Doing the coordinate calculation
in the PLS keeps the PLW as lightweight as possible. The
Framebuffer TVM converts the RGB565 pixel data to the
RGB888 format used by the HTML Canvas and draws the
resulting pixels at the specified x and y coordinates.

Fig. 6 shows PrBoom [38] running on the VP in 640x480.
The bottom left of Fig. 6 shows the graphics output of the VP
accessed via a VNC viewer. The bottom right of Fig. 6 shows
the graphics output reconstructed by the Framebuffer TVM.

To reconstruct the VNCSimpleFB in real-time, ProtoLens
has to handle a large volume of data every second. PrBoom re-
draws the whole game screen for every rendered frame which
in our case contains 307,200 pixels. In our experiments we
observe average PrBoom framerates of 5 Frames Per Second
(FPS). This corresponds to 1.536 million pixels per second
which need to be processed. A transaction on RV64 can carry
at most 8 bytes. Since two bytes are used per pixel this leads
to a capacity of four pixels per transaction. By dividing the
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Fig. 6: PrBoom running on the RISC-V VP++. Bottom left: Graphics output of the VP, accessed via a VNC viewer. Bottom right: Graphics output reconstructed

from transaction traces by the Framebuffer TVM.

pixels per second by the capacity of a transaction we receive
384k transactions per second. Therefore ProtoLens handles
384k transactions per second to refresh PrBoom with 5 FPS.
This shows that ProtoLens provides useful real-time insight
even in data-intensive applications.

VI. CONCLUSIONS

In this paper we introduced ProtoLens, a tool that provides
a novel and robust approach of dynamic TLM transaction
visualization. The integration with the highly-configurable,
open-source RISC-V VP++, allows ProtoLens to be leveraged
in a wide area of applications.

We have shown how ProtoLens can be used during debug-
ging to support the developer with real-time transaction and
architecture visualization. Additionally ProtoLens can be eas-
ily extended via the introduced TVMs, to provide peripheral-
specific data visualization. With the real-time reconstruction of
the VP’s graphics output by a TVM we showed that ProtoLens
is capable of handling data-intensive applications.

Although the initial design of ProtoLens and the case
studies are based on RISC-V VP++, the modular architecture
of ProtoLens allows it to be applied to other SystemC/TLM-
based VPs that provide similar interfaces. ProtoLens, as well
as the NetTrace extension for RISC-V VP++ are available as
open-source on GitHub.

Future work will focus on integrating transaction-enhanced
waveform viewers, further complemented by programmable
waveform analysis techniques, as proposed in [39], but lifted
to TLM.
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