
Refined Notions of QBF Equivalences⋆

Peter Pfeiffer1,2[0009−0008−8414−1463], Daniel Große2[0000−0002−1490−6175], and
Martina Seidl1[0000−0002−3267−4494]

1 Institute for Symbolic Artifial Intelligence, JKU Linz, Austria
2 Institute for Complex Systems, JKU Linz, Austria

{peter.pfeiffer, daniel.grosse, martina.seidl}@jku.at

Abstract. Usually, two quantified Boolean formulas (QBFs) are said to
be equivalent if they have the same truth value for every assignment to
the free variables. This notion of equivalence is very coarse-grained in the
sense that it considers only assignments to the free variables, but it does
not take the models or counter-models of the two QBFs into account. In
this paper, we investigate refined notions of equivalences on the solution
level to obtain a more fine-grained comparison of two formulas. We show
that the problem of checking solution equivalence is PSPACE complete.

Keywords: QBF · QBF Solutions · Equivalence Checking

1 Introduction

Quantified Boolean formulas (QBFs) [1, 3] extend propositional logic by quan-
tifiers, enabling the compact representation of PSPACE-hard problems, which
have numerous practical applications [7]. In such applications not only the truth
values of the QBFs but also their solutions are of interest. These solutions en-
code the found plans in planning, error traces in formal verification, or a winning
strategy in a two-player game. Solutions of QBFs are represented either as trees
of a certain structure or, in practical solving, usually more compactly as Skolem
functions for true QBFs and, dually, as Herbrand functions for false QBFs.

Classically, two QBFs are said to be equivalent if they evaluate to the same
truth value for every assignment to their free variables, i.e., variables that are
not bound by a quantifier [4]. Notably, this notion of equivalence neither requires
the two QBFs to be defined over the same set of quantified variables nor takes
the quantifier structure into account. When developing and optimizing QBF
encodings, however, it is more usefull to compare not only the truth values of
different formulas but also their solutions. The notion of equivalence models
presented in [5] ultimately focus on the free variables as well while considering
one specific solution only. Shaik et al. [6] presented a debugging tool that allows
for user-guided exploration of whether two QBFs have matching solutions w.r.t.
their quantified variables. However, this approach generates solutions for one
encoding and checks if they are solutions for the other encoding as well.

⋆ Supported by the LIT AI Lab and the LIT Secure Systems Lab funded by the state
of Upper Austria and by the Austrian Science Fund (FWF) [10.55776/COE12].

2 P. Pfeiffer et al.

In this paper, we investigate the notion of solution equivalence for check-
ing if two given QBFs with the same quantifier prefix have the same set of
models/counter-models. To this end, we first focus on true formulas and intro-
duce the notion of Skolem entailment that allows to define the notion of Skolem
equivalence. For Skolem entailment checking, we present a compact QBF encod-
ing that can be directly employed for solution equivalence checking. Finally, we
show that solution equivalence checking is PSPACE-complete.

2 Preliminaries

We consider Boolean formulas built from a given set of variables V , truth con-
stants ⊤ (true) and ⊥ (false), and the logical connectives {¬,∧,∨,→,↔}. By
var(ϕ) we denote the set of variables occuring in a formula ϕ. An assignment
σ : V ′ → {⊤,⊥} is a function that maps propositional variables V ′ ⊆ V to ⊤ and
⊥. By [ϕ]σ we denote the formula obtained when the variables in ϕ are replaced
according to σ and the resulting formula is simplified under standard semantics.
If [ϕ]σ = ⊤, then σ is a model of ϕ, if [ϕ]σ = ⊥, then σ is a counter-model.

A quantified Boolean formula (QBF) Φ = P.ϕ consists of a quantifier prefix
P = Q1v1 . . . Qnvn (Qi ∈ {∀,∃}, vi ∈ V , vi ̸= vj for i ̸= j) and a Boolean
formula ϕ, which is also called matrix. With var(P) = {vi | Qivi occurs in P}
we denote the set of variables bound in prefix P . Free variables free(Φ) = var(ϕ)\
var(P) are not bound by a quantifier. If free(Φ) = ∅ then Φ is a closed formula.
We sometimes write successive quantifiers Qx1 . . . Qxn of the same type more
compactly as QX where X = {x1, . . . , xn}. If the variables in X do not occur
in a prefix P , QX : P denotes the prefix obtained by prepending QX to P .
For a QBF Φ = P.ϕ, the negation ¬Φ is the QBF P ′.(¬ϕ) where P ′ is obtained
from P by flipping the quantifiers. The semantics of QBFs is follows: A QBF
∀vP.ϕ is true iff (P.[ϕ]{v=⊤}) and (P.[ϕ]{v=⊥}) are true. Dually, a QBF ∃vP.ϕ is
true iff (P.[ϕ]{v=⊤}) or (P.[ϕ]{v=⊥}) is true. A QBF Φ = P.ϕ with free variables
V ′ is true iff there exists an assignment σ : V ′ → {⊤,⊥} such that the closed
QBF [Φ]σ = P.[ϕ]σ is true. Models and counter-models of closed QBFs are
expressed in terms of binary trees of a certain structure. Consider a true QBF
Φ = Q1v1 . . . Qnvn.ϕ with n variables. Then a model S of Φ is a tree of height
n + 1 such that each leaf node is labeled with ⊤ and each node at level i of
the tree corresponds to variable vi of Φ. Each node at level i has two children if
Qi = ∀ and one child otherwise. One edge from a node with a universal variable
is labeled with ⊥, the other edge is labeled with ⊤. For existential nodes, the
label on the edge to the child has to be set in such a manner that the full variable
assignment on each path from the root to a leaf over the respective edge satisfies
ϕ. We write σ ∈ S, if there is a path in S that corresponds to assignment σ.
The set of all models of a closed QBF Φ is denoted by S∃(Φ). Obviously, if Φ is
false, then S∃(Φ) = ∅. Counter-models of false QBFs Φ = Q1v1 . . . Qnvn.ϕ are
defined dually: nodes with existential variables have two children, nodes with
universal variables have one child, and the leaves of the tree contain ⊥. Each
full assignment on a path from the root to a leaf is a counter-model of ϕ. The

Refined Notions of QBF Equivalences 3

set of all counter-models of a closed QBF Φ is denoted by S∀(Φ). Obviously, if Φ
is true, then S∀(Φ) = ∅. Given a closed QBF Φ, by S(Φ) we denote the set of all
models and counter-models, i.e., S(Φ) = S∃(Φ)∪S∀(Φ). QBF models can also be
represented as Skolem functions and QBF counter-models can be represented as
Herbrand functions, but for this work the tree-representation is more convenient.

3 Notions of Equivalences

In propositional logic, two Boolean formulas ϕ and ψ which are defined over
the same variables are said to be equivalent (written as ϕ ⇔ ψ) if for every
assignment σ : V → {⊤,⊥} it holds that [ϕ]σ = [ψ]σ. The more relaxed notion
of satisfiability equivalence only requires that both formulas are satisfiable or
that both formulas are unsatisfiable. For many purposes like efficient normal form
transformation [8] or formula simplification through preprocessing [2], preserving
satisfiability equivalence is sufficient. The notions of (satisfiability) equivalence
have also been transfered to QBFs with free variables [4, 5].

Definition 1. Let Φ and Ψ be QBFs with free variables V ′. Then Φ and Ψ are
equivalent (resp. satisfiability equivalent) iff [Φ]σ and [Ψ]σ have the same truth
values for all assignments (resp. for some assignment) σ : V ′ → {⊤,⊥}.

In this definition, equivalence and satisfiability equivalence have the free vari-
ables as discriminator. Quantified variables are not considered at all, hence equiv-
alence and satisfiability equivalence are the same for closed QBFs.

Example 1. The two quantifier-free formulas ϕ1 = (((a ↔ b) ∨ c) ∧ d) and ϕ2 =
(((a↔ b) ∨ ¬c) ∧ d) are not equivalent, but satisfiability equivalent. The closed
QBFs Φ1 = P.ϕ1 and Φ2 = P.ϕ2 with prefix P = ∀a∃b∀c∃d are equivalent in the
sense of Definition 1 and so are Φ1 and Φ3 = P.d, but P.ϕ1 and P.(ϕ1 ∧ c) are
not, because the former formula is true and the latter is false.

In the example above, the equivalent QBFs Φ1 and Φ2 even have the same
solutions, i.e., S(Φ1) = S(Φ2). Note that their matrices ϕ1 and ϕ2 are not equiv-
alent. In contrast, Φ1 and Φ3 have different solutions, i.e., S(Φ1) ̸= S(Φ3) despite
being equivalent according to Definition 1: any assignment in which variable d is
set to ⊤ satisfies the matrix of Φ3. However, setting d to ⊤ is not enough for sat-
isfying the matrix of Φ1. In the following, we present a more fine-grained notion
of QBF equivalence that also takes the solutions of the formulas into account. As
indicated by the example above, requiring that the matrices of the two QBFs are
equivalent is not a necessary creterion. For simplicity, we consider only closed
QBFs, but the introduced notions naturally extend to QBFs with free variables.
To relate two QBFs, we first start with the notion of Skolem entailment.

Definition 2 (Skolem Entailment). Let Φ = P.ϕ and Ψ = P.ψ be two closed
QBFs. Then Φ Skolem entails Ψ (written as Φ |=Sk Ψ) iff S∃(Φ) ⊆ S∃(Ψ).

4 P. Pfeiffer et al.

In the definition of Skolem entailment, not only the truth values of the given
QBFs are considered, but also their models. The definition requires that the two
QBFs have the same quantifier prefix to ensure that the tree models have the
same structure. A false formula trivially Skolem entails every formula, while a
false formula is only Skolem entailed by a false formula. This is consistent with
the definition of entailment as commonly found in the literature (e.g., [4]).

Example 2. Consider the QBFs Φ1 = P.(((a ↔ b) ∨ c) ∧ d), Φ2 = P.(((a ↔
b)∨¬c)∧d), and Φ3 = P.d with prefix P = ∀a∃b∀c∃d from the previous example.
It holds that Φ1 |=Sk Φ2 and Φ2 |=Sk Φ1. Further, Φ1 |=Sk Φ3, but Φ3 ̸|=Sk Φ1.

Next, we use Skolem entailment to define the notion of Skolem equivalence
which holds if two formulas with the same prefix have the same set of models.

Definition 3 (Skolem Equivalence). Two closed QBFs Φ and Ψ are Skolem
equivalent (written as Φ⇔Sk Ψ) iff Φ |=Sk Ψ and Ψ |=Sk Φ, i.e., S∃(Φ) = S∃(Ψ).

Example 3. The QBFs Φ1 and Φ2 from the previous example are Skolem equiv-
alent (Φ1 ⇔Sk Φ2), but Φ1 and Φ3 are not (Φ1 ̸⇔Sk Φ3).

Two false formulas Φ and Ψ with the same prefix are always Skolem equiv-
alent, because S∃(Φ) = S∃(Ψ) = ∅. To consider counter-models as well, we
introduce the notion of solution equivalence as follows.

Definition 4 (Solution Equivalence). Two closed QBFs Φ and Ψ are solu-
tion equivalent (written as Φ⇔Sol Ψ) iff S(Φ) = S(Ψ).

Obviously, a true QBF Φ and a false QBF Ψ can never be solution equivalent,
because S∀(Φ) = ∅, S∃(Ψ) = ∅, and the intersection of the non-empty sets S∃(Φ)
and S∀(Ψ) is empty. Since the models of a true QBF Φ are the counter-models
of the false QBF ¬Φ and, dually, since the counter-models of a false QBF Ψ are
the models of the true QBF ¬Ψ , solution equivalence can be expressed in terms
of Skolem equivalence.

Lemma 1. Two closed QBFs Φ and Ψ which have the same prefix are solution
equivalent (Φ⇔Sol Ψ) iff Φ⇔Sk Ψ and ¬Φ⇔Sk ¬Ψ .
This lemma allows us to express solution equivalence checking in terms of Skolem
equivalence checking, which, in turn, can be expressed in terms of Skolem en-
tailment checking. Next, we present a QBF encoding for this reasoning task.

4 Equivalence Checking

Two propositional formulas ϕ and ψ over variables V are equivalent if the QBF
∀V.(ϕ↔ ψ) is true. In the previous section, an example showed that the equiv-
alence of their propositional matrices is not a criterion for solution equivalence
of QBFs. To obtain a QBF encoding for solution equivalence checking, we first
introduce a QBF ∆(Φ, Ψ) which has the same prefix as Φ and Ψ plus some
prepended existential variables and is false iff Φ |=Sk Ψ .

Refined Notions of QBF Equivalences 5

Lemma 2. Let Φ = P.ϕ and Ψ = P.ψ be two true closed QBFs with the same
prefix P . Then Φ |=Sk Ψ iff the QBF

∆(Φ, Ψ) = ∃X ′ : P.(ϕ ∧ ((X ′ ↔ X) → ¬ψ))

is false where X ′ = {ux | ∀x occurs in P} and (X ′ ↔ X) :=
∧

ux∈X′(ux ↔ x).

Proof. ⇒: Assume that Φ |=Sk Ψ . By definition, every model S ∈ S(Φ) is also a
model of Ψ . Further assume that ∆(Φ, Ψ) is true. As the QBFs Φ and [∆(Φ, Ψ)]σ
have the same prefix P , and as the matrix of ∆(Φ, Ψ) strengthens the matrix ϕ
of Φ, it holds that S([∆(Φ, Ψ)]σ) ⊆ S(Φ) for any assignment σ : X ′ → {⊤,⊥}.

Let τ1 : X ′ → {⊤,⊥} be an assignment such that [∆(Φ, Ψ)]τ1 = ⊤ and let
S ∈ S([∆(Φ, Ψ)]τ1). Now we pick a path from the root to a leaf in S such that for
the corresponding variable assignment τ2 ∈ S it holds that τ2(x) = τ1(ux) for all
ux ∈ X ′, x ∈ X. Let τ = τ1 ∪ τ2. Then [ϕ]τ = ⊤ and [X ↔ X ′]τ = ⊤. Because
of Φ |=Sk Ψ , [¬ψ]τ = ⊥, hence [δ]τ = ⊥ where δ is the matrix of ∆(Φ, Ψ). This
contradicts the assumption that S is a model of [∆(Φ, Ψ)]τ1 .
⇐: Assume that ∆(Φ, Ψ) is false, but Φ |=Sk Ψ does not hold, i. e., there is a
model S ∈ S(Φ) of Φ that is not a model of Ψ , i. e., S ̸∈ S(Ψ). Hence, there is
an assignment σ ∈ S with [ϕ]σ = ⊤, but [ψ]σ = ⊥. Let τ : X ′ → {⊤,⊥} be an
assignment such that τ(ux) = σ(x) for all ux ∈ X ′, x ∈ X. For all assignments
τ ′ ∈ S with τ ′ ̸= σ, (1) [ϕ]τ ′ = ⊤, because S is a model of ϕ and (2) [(X ′ ↔
X) → ¬ψ]τ∪τ ′ = ⊤. The latter holds, because τ(uX) ̸= τ ′(x) for some ux ∈
X ′, x ∈ X and the left-hand side of the implication is false. But also [(X ′ ↔
X) → ¬ψ]τ∪σ = ⊤, because τ(x′) = σ(x) for all x′ ∈ X ′, x ∈ X and [¬ψ]σ = ⊤.
Hence, S is a model for P.[δ]τ with δ being the matrix of ∆(Φ, Ψ). This means
that ∆(Φ, Ψ) has a model, contradicting the assumption that ∆(Φ, Ψ) is false. It
follows that Φ |=Sk Ψ .

⊓⊔
The ∆ formula introduces a set of existentially quantified variables X ′ at

the beginning of its prefix such that X ′ contains one variable for each universal
variable of P . Then ∆ is true if there is an assignment to the universal variables
such that there is an assignment to the existential variables satisfying matrix ϕ,
but falsifying matrix ψ. This is illustrated in the following example.

Example 4. Consider the QBFs Φ3 = P.d and Φ2 = P.(((a↔ b) ∨ ¬c) ∧ d) with
P = ∀a∃b∀c∃d from the previous examples. Then

∆(Φ3, Φ2) = ∃a′∃c′∀a∃b∀c∃d : d∧(((a′ ↔ a)∧(c′ ↔ c)) → ¬(((a↔ b)∨¬c)∧d))

is true if a′ is set to ⊥ and c′ is set to ⊤. The reason can be seen in the assignment
tree shown in Figure 1. The yellow subtree is a model of Φ3, but not of Φ2, because
of the assignment on the red path on which a and c have the same values as a′

and c′ that make ∆(Φ3, Φ2) true.

Since Skolem entailment can be reduced to a QBF, Skolem equivalence check-
ing can also be reduced to a QBF. Consequently, by Lemma 1, solution equiva-
lence checking can be reduced to a QBF as well. It follows that all three problems

6 P. Pfeiffer et al.

∀a

∃b ∃b

∀c ∀c ∀c ∀c

∃d ∃d ∃d ∃d ∃d ∃d ∃d ∃d

⊥/⊥ ⊤/⊤ ⊥/⊥ ⊤/⊤ ⊥/⊥ ⊤/⊤ ⊥/⊥ ⊤/⊥ ⊥/⊥ ⊤/⊤ ⊥/⊥ ⊤/⊥ ⊥/⊥ ⊤/⊤ ⊥/⊥ ⊤/⊤

⊥ ⊤

⊥ ⊤ ⊥ ⊤

⊥ ⊤ ⊥ ⊤ ⊥ ⊤ ⊥ ⊤

⊥ ⊤ ⊥ ⊤ ⊥ ⊤ ⊥ ⊤ ⊥ ⊤ ⊥ ⊤ ⊥ ⊤ ⊥ ⊤

Fig. 1. Full assignment tree for QBFs Φ3/Φ2 from Example 4. The leaves contain truth
values of ϕ3/ϕ2 under the assignment on the path to the root (different results are in
red circles). The yellow subtree is a model of Φ3, but not of Φ2 because of the red path.

lie in PSPACE. Furthermore, PSPACE-hardness is derived from the following
lemma.

Lemma 3. A closed QBF Φ is true iff Φ |=Sk ⊥ does not hold.

Proof. On the one hand, if Φ is true, then S∃(Φ) ̸= ∅, but S∃(⊥) = ∅. Hence,
S∃(Φ) ̸⊆ S∃(⊤) and Φ |=Sk ⊥ cannot hold. On the other hand, if Φ |=Sk ⊥ does
not hold, then S∃(Φ) ̸= ∅. Hence, Φ is true. ⊓⊔
Proposition 1. The problems of Skolem entailment checking, Skolem equiva-
lence checking, and solution equivalence checking are PSPACE complete.

The notions and the results discussed above can be directly extended to
formulas with free variables. For example, solution equivalence checking with
free variables is defined as follows.

Definition 5. Let Φ and Ψ be QBFs with free variables V ′. Then Φ and Ψ are
solution equivalent iff [Φ]σ ⇔Sol [Ψ]σ for all assignments σ : V ′ → {⊤,⊥}.

It follows that solution equivalence checking for QBFs with free variables is
PSPACE complete as well.

5 Conclusion

In this work, we introduced the notion of solution equivalences for QBFs. So-
lution equivalence does not consider only truth values and assignments of free
variables to compare two formulas, but models and counter-models. We showed
that solution equivalence checking is PSPACE-complete.

The QBF encoding we presented in this paper has the potential for practical
applications in future work. On the basis of this encoding, a QBF solver can
be used to check solution equivalence of two formulas. The current approach is
limited to compare QBFs with the same prefix. In the future, we plan to explore
more general notions of equivance that are more relaxed with respect to prefix
structures.

Refined Notions of QBF Equivalences 7

References

1. Beyersdorff, O., Janota, M., Lonsing, F., Seidl, M.: Quantified boolean formulas. In:
Handbook of Satisfiability - Second Edition, Frontiers in Artificial Intelligence and
Applications, vol. 336, pp. 1177–1221. IOS Press (2021)

2. Heule, M., Järvisalo, M., Lonsing, F., Seidl, M., Biere, A.: Clause elimination for
SAT and QSAT. J. Artif. Intell. Res. 53, 127–168 (2015)

3. Kleine Büning, H., Bubeck, U.: Theory of quantified boolean formulas. In: Hand-
book of Satisfiability - Second Edition, Frontiers in Artificial Intelligence and Ap-
plications, vol. 336, pp. 1131–1156. IOS Press (2021)

4. Kleine Büning, H., Lettmann, T.: Aussagenlogik – Deduktion und Algorithmen.
Teubner (1994)

5. Kleine Büning, H., Zhao, X.: Equivalence models for quantified boolean formulas.
In: Proc. of the 7th Int. Conf. on Theory and Applications of Satisfiability Testing
(SAT). Lecture Notes in Computer Science, vol. 3542, pp. 224–234. Springer (2004)

6. Shaik, I., Heisinger, M., Seidl, M., van de Pol, J.: Validation of QBF Encodings
with Winning Strategies. In: Proc. of the 26th Int. Conf. on Theory and Appli-
cations of Satisfiability Testing (SAT). Leibniz International Proceedings in Infor-
matics (LIPIcs), vol. 271, pp. 24:1–24:10. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik (2023)

7. Shukla, A., Biere, A., Pulina, L., Seidl, M.: A Survey on Applications of Quantified
Boolean Formulas. In: Proc. of the 2019 IEEE 31st Int. Conf. on Tools with Artificial
Intelligence (ICTAI). pp. 78–84. IEEE (2019)

8. Tseitin, G.S.: On the Complexity of Derivation in Propositional Calculus, pp. 466–
483. Springer Berlin Heidelberg, Berlin, Heidelberg (1983)

