
RVVTS: A Modular, Open-Source Framework for Positive and
Negative Testing of the RISC-V "V" Vector Extension (RVV)
Manfred Schlägl, Daniel Große
Institute for Complex Systems, Johannes Kepler University, Linz, Austria
manfred.schlaegl@jku.at, daniel.grosse@jku.at

Abstract

In this extended abstract, we summarize the work from [1], where we presented the modular, open-source framework
RVVTS for positive and negative testing of the RISC-V "V" Vector Extension (RVV) with its 600+ highly configurable
instructions. The framework comes with a grammar-based, coverage-guided Instruction Sequence Generator (ISG),
automation for instrumentation, build and run of test-cases, and the ability to detect differences in architectural states
after runs. At the heart of the framework is our novel Single Instruction Isolation with Code Minimization technique
which allows to reduce manual result analysis of failing test cases significantly. By applying RVVTS to the RISC-V VP++
Virtual Prototype and the QEMU emulator, we confirmed 3 new bugs in the RISC-V VP++ and 2 in QEMU (and 7 more
are to be analyzed). RVVTS, as well as the pre-generated test sets are available as open-source on GitHub*.

1 Extended Abstract

RISC-V [2, 3], an open standard
Instruction Set Architecture (ISA), embodies flexibility
and scalability, enabling the precise tailoring of processor
capabilities to meet diverse application needs without
the constraints of unnecessary features inherent in
proprietary ISAs. RISC-V supports a range of optional
extensions, such as those for floating-point operations,
atomic instructions and vector processing, enabling
further customization and optimization. Each of these
extensions adds a layer of functionality that must be
thoroughly tested. The verification process typically
involves creating specific test sets that can handle the
complexities introduced by these extensions. Although
still challenging, testing of simple instruction sets, for
example RISC-V base integer, is a well understood
problem. For example, the behavior of a simple integer
add instruction may only depend on the parameters
directly passed to the instruction. The parameter space is
manageable and it may be even feasible to hand-craft tests
for such instruction sets. The RISC-V compliance test
suite also exemplified this, being crafted by hand when
it came out [4]. However, this approach is not feasible
any more for two reasons: (i) more comprehensive tests
are needed, and (ii) the complexity of the instruction sets
increases. Consequently, there has been a push towards
the development of automated test generation techniques,
also referred as ISGs, to facilitate exhaustive verification
processes.
Let us now specially look on the complexity challenge
introduced by the RVV with its 600+ instructions. RVV
brings extensive Single Instruction, Multiple Data (SIMD)
capabilities to RISC-V, enabling it to efficiently handle
data-heavy and parallel processing tasks, making it highly
adaptable for advanced applications in machine learning,

*https://github.com/ics-jku/RVVTS

multimedia, and scientific computing. In contrast to the
simple integer add example from above, the behavior of
an RVV instruction depends not only on directly passed
parameters, but also upon the dynamic configuration
and, thus, the architectural state. For example, a RVV
add instruction may behave differently not only wrt. the
directly passed parameters, but also wrt. the previously
set vector length, dynamic type (8, 16, 32, 64 bit), etc.
Thus, the parameter space becomes high dimensional,
which makes manual test creation no longer efficient. For
this reason, dedicated ISGs and pre-generated test sets
have been developed over the last years. One example is
RISCV-DV , which was originally developed by Google [5].
However, this ISG does not support the ratified version 1.0
of RVV. Another example, which overcomes this problem,
is FORCE-RISCV , maintained by the OpenHW Group [6].
It provides an ISG for generating extensive tests and the
reference simulator Handcar which generates execution
traces for these tests. The obtained execution traces can
then be compared with traces generated by a comparative
run on a Device Under Test (DUT). However, a significant
portion of work, the analysis of the trace differences, is
left to the user. This analysis is largely manual work and
involves finding differences, eliminating irrelevant details
and isolating instructions, errors and states in a vast amount
of traces.
Thus far, we focused on testing with the emphasis
on checking that instructions work as expected, called
positive testing. However, we must also consider possibly
unexpected/undesired behavior when the DUT is exposed
to invalid instructions. This kind of testing is referred
to as negative testing [7]. Let us now examine the
Instruction Register (IR) of a processor which stores the
current instruction word to be executed. Then, for negative
testing, it is necessary to distinguish between the following
cases:

• Invalid instruction word: The instruction word is not

https://github.com/ics-jku/RVVTS


defined by any (custom) RISC-V extension.

• Invalid instruction because of unsupported extension:
The instruction is specified but not supported by the
RISC-V core at hand.

• Invalid instruction because of temporarily
disabled extension: For example, the
instruction considers floating-point, but floating-
point is temporarily disabled (done via the
Control and Status Register (CSR) mstatus).

• Invalid instruction because of dynamic configuration:
A good example is the RVV element type set to 8 bit
and the current instruction performs a RVV floating-
point operation (there is no support for 8 bit floating-
point elements).

• Invalid because of parameter(-values): Consider for
instance a RISC-V load instruction that is issued with
a invalid load address.

As we can see, the number of dimensions in the parameter
space increases further, which makes the process of testing
even more complex. This has two major implications:
(i) the ISGs must be able to generate also invalid state,
instruction and parameter combinations in a systematic
way, and (ii) the already challenging analysis of the test
results becomes much harder due to increased number of
parameters and combinations to be considered.
In this work, we present the modular, open-source
framework RVVTS for positive and negative testing of
RVV, where at the heart is our novel Single Instruction
Isolation with Code Minimization technique. Besides
efficient test generation, RVVTS allows to reduce manual
result analysis of failing tests significantly. The framework
supports automation of the full verification chain:

1. grammar-based, coverage-guided ISG,

2. instrumentation and build,

3. measurement of functional coverage,

4. execution on reference simulator and DUT,

5. detection of differences in architectural states (fails),

6. isolation of the failing instruction (Single Instruction
Isolation) and,

7. creation of minimized failing test case (Code
Minimization).

In addition, the framework can be used interactively in
Jupyter notebooks to support the user in tracing causes of
detected fails.
RVVTS comes with a grammar-based ISG for 32 bit
(RV32) and 64 bit (RV64) RISC-V configurations. The
ISG provides support for the base integer (I) and the
RVV extensions, which is the focus in this work.
Furthermore the generator partially supports floating-
point (F/D) as far as necessary to handle RVV floating-
point. The ISG uses a context-free grammar to create

syntactically valid instruction sequences very efficiently.
The grammar consists of non-terminal and terminal
symbols. When invoked, the generator randomly selects
expansion candidates for non-terminal symbols until only
terminal symbols remain. However, the expressiveness
of such grammars is too limited when it comes to
more complex sequences. One example of this is the
generation of bounded values, possibly even dynamically
parameterized, such as the generation of an address in a
specific range. To handle such cases efficiently, we extend
the context-free grammar with special function symbols
associated with Python functions. The ISG expands such
function symbols by calling the associated function, which
can provide context-sensitive expressiveness. In our ISG,
functions are for example used to generate immediate
values, register allocations, valid values for CSRs and
bounded load/stores.
The RVVTS framework is designed in modular, object
oriented design paradigm with expandability in mind.
Central elements of the framework are the so called
Runners. All Runners are controlled via central
configuration data structure, that contains target definitions
(e.g. RISC-V configuration, memory map) and other
Runner specific settings. Simple examples for Runners
are the BuildRunner, which handles instrumentation and
build, and the Execution Runners, which handle execution
on target platforms. A more complex example is the
aggregated CodeCompareRunner, which runs a program
on a reference simulator (Spike [8]) and a DUT, and
provides a comparison of the resulting architectural states
and also functional coverage values.
When the framework detects a difference in the
architectural state after the run of a test case with
CodeCompareRunner, the framework considers this a
potential fail. As discussed above, investigating many such
potential fails manually is very labor intensive. RVVTS
solves this problem by using our novel Single Instruction
Isolation with Code Minimisation technique, which is
divided into two phases. First, the potential failing test-
case is fed into Delta Code Reduction, where a binary
search technique is used to identify the first instruction
causing a deviation in architectural state. The resulting
reduced test-case contains a cutout of the original test-case
ranging from the first instruction, up to and including the
identified potentially failing instruction. This reduced test-
case is fed into the second phase, the Code Minimization.
Here, the test-code is split before the last (potentially
failing) instruction. The first part contains only instructions
that cause no differences in architectural state. The second
part contains only the potential failing instruction identified
before. The first part is run on a reference simulator and the
resulting architectural state is extracted. This state is then
converted to initialization code, which brings a machine
to exactly the extracted state when executed. Finally, the
initialization code is combined with the second part (single,
potentially failing instruction). The resulting minimized
test-case contains only the initialization code and a single
potentially failing instruction, and is therefore much easier
to inspect.
In our case studies, we demonstrate the effectiveness of



RVVTS and the novel Single Instruction Isolation with
Code Minimization technique. We use use the framework
to generate ready-to-use test sets for positive and negative
testing of RVV implementations with a VLEN of 512
bits for RV32 and RV64, respectively. In total we have
four test sets: For both RV32 and RV64 we have one
containing only Valid Sequences (VS) for pure positive
testing and one containing Invalid+Valid Sequences (IVS)
for positive/negative testing. The merged test set with
Merged Sequences (MS) (i.e. VS + IVS) for RV32 contains
2.56 million RVV instruction with a functional coverage
of 96.95%. The MS test set for RV64 contains 2.47 million
RVV instruction with a functional coverage of 96.60%.
The tests sets are applied on two DUTs implementing
RVV for RV32 and RV64 in its ratified version 1.0,
namely the open-source SystemC [9, 10] TLM based
RISC-V VP++ [11, 12, 13] Virtual Prototype (VP) and the
open-source QEMU emulator [14]. The MS test set on
RISC-V VP++ detects 1,849 fails for RV32 and 1,484
fails for RV64. Applying Single Instruction Isolation
with Code Minimization leads to significant reduction to
10 and 9 potential failing instructions, respectively. A
systematic analysis of the minimized test cases confirms
3 new bugs in RISC-V VP++. On QEMU, the MS
test set detects 19,242 fails for RV32 and 15,011 fails
for RV64. Applying Single Instruction Isolation with
Code Minimization isolates 168 and 166 potential failing
instructions, respectively. Here, the systematic analysis
confirms 2 new bugs and 7 additional potential bugs in
QEMU that need to be investigated further.
For future work, we plan to analyze the 7 potential bugs
in QEMU, where we will consider the formal RISC-V
Sail specification model [15] to finally clarify potential
ambiguities in the RVV specification. Furthermore, we
plan to demonstrate the application of RVVTS and the pre-
generated test sets on RTL models and on real hardware.
The generated test sets and the RVVTS framework
are available as open-source on GitHub. Moreover,
our findings are reported to the respective open-source
projects.

Acknowledgments

This work has partially been supported by the LIT Secure
and Correct Systems Lab funded by the State of Upper
Austria.

2 Literature

[1] M. Schlägl and D. Große, “Single instruction
isolation for RISC-V vector test failures,” in
International Conference on Computer-Aided
Design, 2024.

[2] A. Waterman and K. Asanović, The RISC-V
Instruction Set Manual; Volume I: Unprivileged ISA,
SiFive Inc. and UC Berkeley, 2019.

[3] ——, The RISC-V Instruction Set Manual; Volume II:
Privileged Architecture, SiFive Inc. and UC Berkeley,
2019.

[4] “RISC-V compliance task group,” https://github.com/
riscv/riscv-compliance, 2021.

[5] “RISCV-DV,” https://github.com/google/riscv-dv,
2024.

[6] “FORCE-RISCV RISC-V instruction sequence
generator (isg),” https://github.com/openhwgroup/
force-riscv, 2024.

[7] V. Herdt, D. Große, and R. Drechsler, “Closing the
RISC-V compliance gap: Looking from the negative
testing side,” in Design Automation Conf., 2020, pp.
1–6.

[8] “Spike RISC-V ISA simulator,” https://github.com/
riscv/riscv-isa-sim, 2024.

[9] “IEEE standard for standard SystemC language
reference manual,” 2023. [Online]. Available: https:
//doi.org/10.1109/IEEESTD.2023.10246125

[10] V. Herdt, D. Große, and R. Drechsler, Enhanced
Virtual Prototyping: Featuring RISC-V Case Studies.
Springer, 2020.

[11] M. Schlägl and D. Große, “GUI-VP Kit: A RISC-
V VP meets Linux graphics - enabling interactive
graphical application development,” in ACM Great
Lakes Symposium on VLSI, 2023, pp. 599–605.

[12] M. Schlägl, M. Stockinger, and D. Große, “A RISC-V
“V” VP: Unlocking vector processing for evaluation
at the system level,” in Design, Automation and Test
in Europe, 2024, pp. 1–6.

[13] M. Schlägl, C. Hazott, and D. Große, “RISC-
V VP++: Next generation open-source virtual
prototype,” in Workshop on Open-Source Design
Automation, 2024.

[14] “QEMU a generic and open source machine emulator
and virtualizer,” https://www.qemu.org, 2024.

[15] “Riscv sail model,” https://github.com/rems-project/
sail-riscv, 2024.

https://github.com/riscv/riscv-compliance
https://github.com/riscv/riscv-compliance
https://github.com/google/riscv-dv
https://github.com/openhwgroup/force-riscv
https://github.com/openhwgroup/force-riscv
https://github.com/riscv/riscv-isa-sim
https://github.com/riscv/riscv-isa-sim
https://doi.org/10.1109/IEEESTD.2023.10246125
https://doi.org/10.1109/IEEESTD.2023.10246125
https://www.qemu.org
https://github.com/rems-project/sail-riscv
https://github.com/rems-project/sail-riscv

	Extended Abstract
	Literature

