
Towards Non-Intrusive SystemC Checkpointing for Digital Virtual
Prototypes
Deepak Ravibabu1, Muhammad Hassan1, 3, Thilo Vörtler2, Karsten Einwich2, Rolf Drechsler1, 3, and Daniel Große1, 4

1Cyber-Physical Systems, DFKI GmbH, 28359 Bremen, Germany
Email: {deepak.ravibabu, muhammad.hassan}@dfki.de

2COSEDA Technologies GmbH, 01099 Dresden, Germany
Email: {thilo.voertler,karsten.einwich}@coseda-tech.com

3Institute of Computer Science, Bremen University, 28359 Bremen, Germany
Email: drechsler@informatik.uni-bremen.de

4Institute for Complex Systems, Johannes Kepler University, 4040 Linz, Austria
Email: daniel.grosse@jku.at

Abstract

Checkpointing enables the storage and restoration of the simulation state of Virtual Protypes (VPs), significantly reducing
the debugging and testing cycle times, thereby accelerating the overall development process. In this work, we present a
novel methodology for checkpointing digital SystemC VPs, with a particular focus on storing and restoring SC_THREAD
processes, which are integral to SystemC models. The proposed checkpointing methodology is non-intrusive to the
SystemC kernel and is implemented as a SystemC library, which integrates seamlessly with existing digital VPs with
minimal effort. The effectiveness of the proposed methodology is demonstrated through a case study on a digital Finite
Impulse Response (FIR) filter. The filter’s state was successfully restored from a checkpoint, and its execution was
validated to be consistent with the filter’s expected behavior. The results confirm that the proposed checkpointing library
reliably restores the simulation state of digital VPs, enabling faster design iterations.

1 Introduction

The automotive industry is undergoing a significant
transformation, driven by the increasing complexity
of systems from advancements in autonomous driving
and electrification. As modern vehicles become more
reliant on a sophisticated interplay between hardware and
software components, automotive manufacturers face the
challenge of integrating vast amounts of sensor data and
managing high computing demands. Addressing these
complexities requires a holistic approach that models
the interactions between all system components, rather
than analyzing subsystems like Electronic Control Units
(ECUs) in isolation [1].

Virtual Protypes (VPs) [2] have emerged as a key
technology in addressing these challenges. VPs enable
the simulation of complex automotive systems prior to the
availability of physical hardware, offering a cost-effective
and efficient means to develop, test, and validate system
designs. They are particularly valuable during early-stage
software development, as they facilitate the integration of
hardware and software components at multiple abstraction
levels. The software executed on a VP is identical
to that on real hardware, ensuring consistency across
the development process. The adoption of the shift-
left methodology, which emphasizes early testing and
validation during the development life cycle, has further
reinforced the value of VPs in automotive design. This

approach minimizes costs and ensures correctness by
identifying potential issues at the earliest possible stage.
SystemC [3], a system description language, is heavily
used in industrial practice to serve as a foundation for
modeling VPs. Its C++-based class library supports
the efficient simulation of heterogeneous components,
providing the flexibility required to meet the diverse
demands of modern automotive electronics [4, 5].
Despite their advantages, VPs face challenges in managing
intricate simulation scenarios. Some of the key bottlenecks
include prolonged simulation times for complex tasks
such as device initialization to specific internal states
(e.g., booting an Operating System (OS)), failure recovery,
and running extended test scenarios. Addressing these
challenges is crucial to maximizing the potential of VPs in
modern automotive development.

Checkpointing [6] offers a promising solution to these
challenges. This technique involves storing and restoring
the state of a simulated system, enabling simulation to
resume from a specific point. This capability is especially
valuable for developers needing to revert to a checkpointed
state prior to an error or fast-forward to a specific point
in time without executing the entire simulation from the
beginning.

In this paper, we present a methodology for checkpointing
SystemC digital VPs, focusing on SC_THREAD
processes, given their extensive use in VPs to simulate

concurrent behavior. Our methodology leverages the
Accellera SystemC kernel [7] and the QuickThreads [8]
package, to store and restore the execution state of
a system. It enables efficient checkpointing without
requiring any modifications to the SystemC kernel. The
proposed checkpointing methodology is implemented as
a SystemC library and its simulation run time benefit
is demonstrated using a SystemC VP that implements
a Finite Impulse Response (FIR) filter, provided by our
industrial partner.

The paper is structured as follows. It discusses briefly
existing works related to checkpointing SystemC VPs in
Section 2. Then, a short description of the preliminaries
along with a running example is given in Section 3. Then,
an overview of the proposed methodology is presented in
Section 4. Later the implementation of the checkpointing
methodology along with its working on the running
example is explained in Section 5. A case study to show
the applicability of the proposed methodology is given in
Section 6. Finally, the limitations of our methodology and
the future work are presented in Section 7, and the paper is
concluded in Section 8.

2 Related Works

The concept of checkpointing initially involved storing the
entire system state, including the state of the OS with all its
running applications. With the advent of Virtual Machine
(VM) [9], system-level checkpointing is made possible. In
the checkpointing solution provided in [10], the entire state
of a system, including its heap memory, stack memory, and
OS resources, is checkpointed. To enable checkpointing of
OS resources, the framework relies on a kernel module.
This module integrates with the Linux kernel to capture
and restore low-level system details that are inaccessible
from user space. While this framework itself does not
inherently support SystemC VPs, with modifications or
patches to the SystemC kernel it might be possible to
enable checkpointing.
In contrast, the work presented in [11] introduces a
user level checkpointing library, Libckpt, designed to
provide portable checkpointing without requiring kernel
modifications. Developers can link their applications
with the library to enable checkpointing functionality
without needing any custom implementation. Some of its
useful features are smaller checkpoint size, incremental
checkpointing and forked checkpointing (simulation
executed parallel to checkpointing). The library is highly
efficient for single-process scenarios, but its primary
limitation is the lack of support for checkpointing parallel
processes.

The previous checkpointing techniques were applied on
VM level, later such techniques were adopted to the
domain of SystemC VPs. The work in [12], based on
the Virtutech Simics [13] simulator, introduces a technique
for checkpointing SystemC VPs by manually marking the
system states to be checkpointed. In this technique, only

the essential information which constitutes the system state
is stored and restored by serialization and deserialization.
This work targets SystemC SC_METHOD processes but
excludes restoring stack-based state of SC_THREAD
processes.
A checkpointing framework for SystemC simulations was
proposed in [14] for automating the handling of most
SystemC VPs. Even though host OS resources are not
checkpointed, this method provides hooks for developers
to manage them. It enables periodic checkpointing,
simulation state transfer, and debugging workflows with
minimal code modifications. In the extended work [15],
they build to provide support for checkpointing external
applications, such as debuggers and graphical interfaces,
re-establishing connections seamlessly after a restore, but
the gap in handling SC_THREAD processes remains
unaddressed.
In the thesis work [16], a standardized framework is
developed for snapshotting SystemC Transaction Level
Modeling (TLM) based VPs, ensuring compatibility
with SystemC standards and tools. The framework
introduces lightweight and portable snapshots, enabling
seamless restoration across platforms and updated models.
A snapshot manager class is introduced to handle
simulation state serialization and restoration, automating
the checkpointing process for most SystemC VPs.
The framework supports integration with the Universal
Verification Methodology (UVM) [17], enhancing test
automation and CI workflows. The case studies
demonstrate reduced testing time and overhead, improving
productivity in pre-silicon validation workflows. In the
work [18], time decoupling method is used to roll back
the simulation with the usage of UNIX fork() system call,
which result in performance overhead. While the approach
is innovative, it is less portable and difficult for debugging
purposes.
Existing checkpointing solutions have demonstrated
effective mechanisms for saving and restoring simulation
states in certain contexts, showcasing their utility in
improving simulation efficiency and debugging workflows.
However, these existing checkpointing solutions fail to
support SC_THREAD processes, essential for modeling
stateful and event-driven behaviors, making them integral
to many VPs. In this work, we addresses this key
limitation, enabling state restoration for SystemC-based
digital VPs.

3 Preliminaries

This section provides relevant background and a
motivating example to explain the proposed methodology.

3.1 SystemC
SystemC is a widely adopted system-level modeling
language that facilitates the simulation and design of
hardware and software components. A SystemC VP is
composed of interconnected modules, each representing
various parts of the system. These modules encapsulate

1 SC_MODULE(counter_mod){
2 sc_out <double > outp; //port declaration
3 void count_process (); // thread process
4 SC_THREAD(count_process);
5 private:
6 sc_time wait_time = 1_SC_US;
7 void trigger(unsigned long int cnt1);
8 int target_cnt = 20;
9 };

10

11 void counter_mod :: count_process ()
12 {
13 unsigned long int cnt1 = 0;
14 while (cnt1 < target_cnt) {
15 sc_core ::wait(wait_time);
16 cnt1 ++;
17 std::cout << "cnt1: " << cnt1 << std::endl;
18 }
19 trigger(cnt1); // calls trigger function after

reaching target count value
20 outp.write(cnt1);
21 }
22

23 void counter_mod :: trigger(unsigned long int cnt1){
24 // generate the trigger
25 }

Listing 1 SystemC Counter Module

ports for communication, processes for functionality,
and internal variables to store system state, enabling a
modular and hierarchical design approach. In SystemC
modules, parameters and processes play distinct roles
in defining its structure and behavior. Parameters
govern the module’s configurable properties, such as
internal variables and constants. Processes define the
functional logic of a module, including computations
and interactions with other modules, while coordinating
with the SystemC kernel for event-driven execution and
simulation scheduling.
Processes in SystemC are sensitive to specific events
and are triggered accordingly. The two primary types
of processes are the SC_METHOD and SC_THREAD.
SC_METHOD processes are event-driven and execute
fully once triggered, without the ability to suspend during
execution. These processes are placed back in the queue
until their triggering event occurs again. SC_THREAD
process can be suspended and resumed during execution.
This is typically achieved using wait() statements, making
them suitable for complex behaviors that require control
over execution flow. To schedule the module processes
during a simulation run, the SystemC kernel utilizes a
scheduler queue.

3.2 Running Example
To illustrate the proposed checkpointing methodology, we
present a basic SystemC module that implements a counter,
as shown in Listing 1.
The counter module declares its ports, parameters
and processes between Line 1 and Line 10. The
module parameters include the variables target_cnt, which
specifies the target count value, and wait_time, which
represents the time interval for incrementing the counter.
The module process count_process() represents the core
functionality of the module. The implementation detail
of count_process() spans Line 11 to Line 21. The

process initializes a local variable cnt1 and increments it
at an interval of wait_time (set to 1 µs in this example).
The process continues until cnt1 reaches the specified
target_cnt (set to 20 in this example). Upon reaching the
target count, the process invokes the trigger() function and
writes the final count value to the output port outp.

3.3 QuickThreads
QuickThreads [8], a user thread package used by the
SystemC kernel, manages thread initialization and context-
switching, facilitating transfer of control between threads
during execution. During a context switch, it enables
thread context to be saved, allowing the thread to later
resume execution from its saved state when invoked.
The proposed methodology leverages the QuickThreads
library for accessing the thread context of each instantiated
SC_THREAD module processes, enabling checkpointing.
The application of QuickThreads package and a
comparison with other available thread packages is
presented in [19]. An example of a context switch with
two user threads and a scheduler queue is shown in
Figure 1.

Q T1 T2

(a) Queue for
Scheduling User
Thread

Saved
RegisterStack

Pointer

Stack
Pointer

T1 T2

(b) Stack Memory of User Threads

Figure 1 Stack Layout during Thread Context Switching
Q: Scheduler Queue

T1: User Thread1
T2: User Thread2

The threads are tracked using the scheduler queue Q
(depicted in Figure 1a), maintained by the simulation
kernel. The user thread T1 is first scheduled for execution
followed by T2. Each user thread is allocated a unique
stack memory during its execution.
An example for a context switch scenario, where thread T1
is blocked and the next thread T2 is executed is illustrated
in Figure 1b (the stack grows down). The context switch is
performed by QuickThreads before the execution of T2.
First, along with the existing local variables of the old
thread T1, the current host register values (representing its
current simulation state) are stored in its stack, adjusting
the stack pointer accordingly. A helper function is then
invoked to update the scheduler queue, placing the blocked
thread T1 back with its updated stack pointer. Next, the
stack pointer is switched to the stack of the new thread T2
and old thread T1 is suspended. Once the execution of T2
is complete, T1 is scheduled to resume execution. At this
point, the helper function retrieves the stored host register
values from the stack of T1 and restores its execution state,
allowing T1 to continue from where it was suspended.

1 SC_MODULE(counter_mod){
2 sc_out <double > outp; //port declaration
3 void count_process (); // thread process
4 SC_THREAD(count_process);
5 private:
6 sc_time wait_time = 1_SC_US;
7 void trigger(unsigned long int cnt1);
8 int target_cnt = 20;
9 // marked for checkpointing

10 cos_sc_variable_handle <int > target_cnt_vh = {
target_cnt , "target_cnt_handle"};

11 };
12

13 void counter_mod :: count_process ()
14 {
15 unsigned long int cnt1 = 0;
16 while (cnt1 < target_cnt) {
17 sc_core ::wait(wait_time);
18 cnt1 ++;
19 std::cout << "cnt1: " << cnt1 << std::endl;
20 }
21 trigger(cnt1); // calls trigger function after

reaching target count value
22 outp.write(cnt1);
23 }
24

25 void counter_mod :: trigger(unsigned long int cnt1){
26 // generate the trigger
27 }

Listing 2 SystemC Counter Module - Checkpointed

4 Proposed Methodology

In this section, the method to enable checkpointing of the
running example and the execution flow of the proposed
checkpointing methodology are discussed.

4.1 Concept
The proposed methodology focuses on checkpointing
two key aspects which determine the functionality of a
module: (i) the values of module parameters, and (ii) the
simulation state of module processes. To checkpoint the
module parameters, developers should explicitly mark
them by defining corresponding objects using a wrapper
class. In contrast, checkpointing the simulation state of
module processes requires no additional user module
modifications, as the proposed checkpointing library
handles this automatically.

For demonstration, we apply the proposed methodology
to the running example (Listing 1). This enables the
simulation to save its state at a checkpoint and later
resume execution from the saved point. By eliminating
the need to re-execute computations performed before
the checkpoint, it significantly improves efficiency in
simulation workflows. The checkpointed version of the
running example is shown in Listing 2.

To track module parameters, the proposed library uses
a wrapper class (cos_sc_variable_handle, available in
COSIDE [20]). In the example, the module parameter
target_cnt is tracked by defining an object handle
target_cnt_vh, as shown in Line 10 in Listing 2.
To checkpoint the simulation state of the process
(count_process), there is no additional modification
required to the user module. When the checkpoint

condition is met, the library automatically stores the
simulation state of the thread which is accessible using
QuickThreads.

4.2 Overview of the Execution Flow
The proposed checkpointing methodology for storing and
restoring the counter module parameters is outlined as
follows. At the start of the simulation, the modules are
instantiated, along with their module parameters and the
corresponding object handles that track these parameters.
During simulation execution, when the checkpoint
condition is met, the checkpointing library iterates through
all instantiated objects to identify the object handles
tracking the module parameters. The methods defined
within this wrapper class are then invoked to save the
values of the tracked module parameters to a checkpoint
file.
Similarly, during execution in restore mode, the
checkpointing library identifies the object handles
referencing the module parameters. Using the internal
methods of the wrapper class, the module parameter values
are restored to match the values saved in the checkpoint
file, ensuring consistency with the checkpointed state.

The overview of the proposed checkpointing methodology
for storing and restoring the counter module process is
depicted in Figure 2.

Module
Initialization

End of
Simulation

Checkpoint
Library

Checkpoint
File

(cnt1 = 10)

count_process()

while (cnt1 < target) trigger()

cnt1 (0 => 20)

Module
Initialization

End of
Simulation

count_process()

while (cnt1 < target) trigger()

cnt1 (10 => 20)

Checkpoint
Library

Resume
Simulation

STORE

RESTORE

cnt1++

cnt1++

Figure 2 Visualizing Checkpointing of count_process()
from Listing 2

The top section of Figure 2 illustrates the workflow
for checkpointing the module process (count_process(),
depicted in gray). The counter module is compiled with
the checkpoint library and executed in store mode, with
the checkpoint set at a simulation time of 10 µs. The
count_process() thread begins incrementing the variable
cnt1 at intervals of 1 µs. When the simulation time reaches
the specified checkpoint time (10 µs), the checkpoint
library (depicted in pink) is invoked to store the simulation
state of the process. The checkpoint condition is checked
at the sc_core::wait() statement, where the simulation
kernel is involved. At this point, the simulation state of the
process, including the value of cnt1 (cnt1 = 10) present in
the thread stack region, is stored in a local checkpoint file
(depicted in green).

The workflow for restoring the module process
(count_process()) is depicted in the bottom section
of Figure 2. At the beginning of the simulation run in

restore mode afterwards, the modules are instantiated, and
the local variable cnt1 inside the process is instantiated
to 0 since execution has not yet begun. The checkpointing
library (depicted in pink) is then invoked before process
execution, to restore the simulation state of the process.
The checkpoint file (depicted in green) is analyzed, and
the saved simulation state data is used to update the newly
instantiated count_process thread. After restoring, the
simulation resumes, and count_process executes with
cnt1 = 10 rather than starting from 0 (depicted in red).

5 Implementation of Checkpointing
Methodology

In this section the implementation details of the proposed
checkpointing methodology applied to the illustrative
example are explained in detail.

5.1 SystemC Module Parameters
SystemC modules are instantiated dynamically, with
their module parameters allocated in heap memory (a
dynamically managed memory region used for runtime
object allocation). The memory addresses of these
parameters typically remain unchanged during their
lifetime, facilitating efficient memory management and
ensuring consistent access during the simulation.

The custom wrapper class (cos_sc_variable_handle)
available in the COSIDE Electronic Design Automation
(EDA) tool allows efficient tracking, serialization, and
deserialization of the variable being referenced. It does
not directly enable checkpointing but, the wrapper class is
leveraged in the checkpointing library to implement the
store/restore functionality for module parameters. In our
prototype implementation, the wrapper class provides the
following key methods:

Store: The serialize() method converts the value of
a tracked parameter into a string representation using
std::ostringstream. This serialized data is saved to a
checkpoint file.
Restore: The deserialize() method parses the saved string
representation from the checkpoint file and updates the
parameter value accordingly, thereby restoring the module
parameter’s value with the same value in the stored
checkpoint.

For storage of module parameters in the
checkpoint file, a hierarchical naming system
(topmodule.submodule.variable) is used, making it
easier to identify and access them. During restoration, the
instantiated object handle for the module parameter in the
current simulation is matched with the hierarchical name
in the checkpoint file. If they are identical, the value of the
module parameter is updated with the value stored in the
checkpoint file.

5.2 SystemC Module Process
The simulation state of an SC_THREAD module process,
or thread context, consists of values stored in the
thread’s stack memory and the host processor registers.
Checkpointing an SC_THREAD process involves
capturing this thread context and carefully restoring it.
The process for checkpointing the SC_THREAD process
is illustrated in Figure 3, which outlines both store and
restore modes.

Checkpoint
Library
(restore)

Checkpoint
Library
(store)

Checkpoint
File

Start of
Simulation

Module
Instantiation

ModuleThread
Process

Address

Value

Elaboration
Phase

Execution
Phase

End of
Simulation

Start of
Simulation

Module
Instantiation

ModuleThread
Process

Address

Value

Elaboration
Phase

End of
Simulation

ModuleThread
Process
Address

Value

Execution
Phase

Checkpoint
Restoring
Phase

Checkpoint
Storing
Phase

STORE RESTORE

Figure 3 Checkpointing SystemC Thread Process

Checkpointing - Store: The left section of the Figure 3
depicts the execution flow of a SystemC module compiled
with the checkpoint library and executed in store mode.
During the elaboration phase, all modules are instantiated
and their thread processes are instantiated, with each
thread allocated a dedicated stack memory region (stack
addresses shown in blue, values in green). When a thread
process is suspended at a wait() statement, the SystemC
kernel switches execution based on the scheduler queue. If
the current simulation time matches the given checkpoint
time (default: end of simulation), control is passed to
the checkpointing library (depicted in pink). During
the context switch, the checkpoint library accesses the
thread’s simulation state (stack memory region) using
QuickThreads and stores it onto the checkpoint file
(depicted in green). Then, the SystemC kernel resumes
control and the simulation concludes.

Checkpointing - File Analysis: From the execution in
store mode, the checkpoint file containing the stored thread
context (stack memory region) is analyzed. Consider a
thread process with a main function func1, which makes
a nested function call to func2. When the checkpoint
condition is reached, if the thread process was executing
func2, then its thread context layout at that point is
illustrated in Figure 4. It is important to note that the stored
thread context includes both the stack memory addresses
and their corresponding values, which are critical for
analysis.

high address

addr A

addr B

low address

thread_ptr
rbp - func1

ret addr
rbp - func2

ret addr
rbp - quickthread

queue_ptr

loc_var1
loc_var2

addr A
loc_var1

addr B
saved regs frame - func1()

 frame - func2()
 frame - quickthread

~~

~ ~

~ ~

Figure 4 Layout of Stored Thread Context

The stored thread stack at the wait() statement is observed
to follow a consistent pattern, enabling the identification
of individual stack frames for each function call and
their local variables. During context switch, the stack
is updated first by pushing the value of its own thread
pointer (depicted in gray). The subsequent next position in
the stack consistently opens a new stack frame (depicted
in blue) for the thread process (func1). Since the stored
thread context also contains the memory addresses, the
current base pointer address (rbp = addr A) is recorded.
After a few memory addresses, the previously identified
base pointer (rbp = addr A) was pushed onto the stack,
indicating that a new stack frame (denoted in orange) was
created. Now, the memory address corresponding to this
position becomes the new base pointer (rbp = addr B).
Likewise, by identifying the chain of base pointers (rbp) it
is possible to locate individual stack frames. The position
one above the base pointer (rbp) pertains to the function
return address (ret). The memory addresses in stack
excluding this metadata (rbp and ret) gives the positions
where the local variables of the functions are located.
The last stack frame corresponds to QuickThreads, which
stores the host register values and the pointer to the
scheduler queue.

Checkpointing - Restore: The execution flow of the
checkpoint library in restore mode is shown in Figure 3
(right). The same SystemC module is executed again
with the checkpointing library in restore mode. Due to
dynamic memory allocation, the memory regions of the
newly instantiated module processes (stack addresses
depicted in red, values in yellow) differ from those in
the prior execution during store mode. After module
instantiation, the SystemC kernel transfers control to the
checkpointing library, which analyzes the checkpoint file
to retrieve the thread simulation state (stack metadata and
local variable positions) within each stack frame. The
current thread simulation state (depicted in yellow) is
updated with the simulation state from the checkpoint file
(depicted in green). To maintain the integrity of the new
stack region during restoration, only the stack memory
region of the local variables are updated with the value
from the checkpoint file and the thread specific data such
as its stack pointer (rsp), stack base pointer (rbp), and
function return address (ret) remain unaltered. Altering

these could lead to memory corruption and failure of the
SystemC kernel to manage threads. Once restoration is
complete, control returns to the SystemC kernel, and the
simulation resumes directly from the restored checkpoint
state, ensuring continuity.

5.3 Checkpointing Illustration of the
Running Example

This subsection describes the application of the proposed
checkpointing methodology to the running example
(shown in Listing 2).

5.3.1 Store
The SystemC counter module, compiled with the
checkpointing library, is executed in store mode with
a checkpoint simulation time of 10 µs. During the
simulation, when the checkpoint condition is reached,
the checkpoint library iterates through all instantiated
objects of the wrapper class datatype and locates the
target_cnt_vh tracking the module parameter target_cnt.
Using the serialize() function defined within the wrapper
class, the parameter’s value is serialized and stored in
the checkpoint file along with its hierarchical name
(top.counter.target_cnt = 20).

After storing the module parameter, the state of the
SC_THREAD process instantiated in the module is also
stored. The checkpointing library iterates through all
instantiated thread objects of type SC_THREAD process
and identifies the count_process() thread object. Using
QuickThreads function calls, details of the thread’s stack
memory (such as stack pointer, stack size, stack start
address) are retrieved. The stack region of count_process()
(illustrated in Figure 5) is then stored.

1A85010

A

1A85FD0

6031C0

0x1A85FF0

0x1A85FD0

0x1A85FB0

0x1A85F30

thread_ptr
rbp
cnt1

ret
rbp

queue_ptr

rsp
 frame - count_process()
 frame - trigger()

~~

~

~

~~

~ ~

Figure 5 Counter Module Process Stack Layout - Store

The utilized stack region starts at the stack top
address (0x1A85FF0) and extends to the stack pointer
(0x1A85F30), with the stack growing from higher to lower
memory addresses. This stack memory region, along with
the memory addresses and the values held in them, is
stored in the checkpoint file.

cnt1: 0
cnt1: 1
cnt1: 2
...
cnt1: 10
STORE THREAD:i_counter_mod1.count_process

Listing 3 Output of counter example with
checkpointoing (save)

The console output of the counter module with
checkpointing library executed in store mode is shown in
Listing 3. The cnt1 local variable starts counting until it
reaches 10 and the checkpoint library is invoked to store
the module state.

5.3.2 Restore
The SystemC counter module is executed with the
checkpointing library in restore mode.
After the elaboration phase of the simulation (module
instantiation), the checkpoint library is invoked to
restore the counter module state. The checkpoint file is
analyzed to retrieve the hierarchical module parameter
name (top.counter_mod.target_cnt = 20), which is used to
search for a matching parameter with the same hierarchical
name in the current simulation. To locate the same module
parameter in the checkpoint file, the library iterates
through all instantiated module parameters. Since the
same module is executed, an exact match for target_cnt is
guaranteed, and its value is updated using the deserialize()
function of the wrapper class. For instance, assigning a
new value to target_cnt would adjust the counter to match
the updated target. In this case, the target_cnt remains
unchanged at 20.

The checkpoint file is further analyzed for restoring the
simulation state of thread processes. Analyzing the stored
stack memory region (illustrated in Figure 5) reveals two
stack frame base pointers (0x1A85FD0 and 0x1A85FB0),
corresponding to count_process() function (depicted in
blue), and trigger() function (depicted in orange). After
identifying the stack frame metadata, the memory region
containing the local variable cnt1 = 10 (depicted in red) is
determined.

The simulation state of the thread processes before and
after restore is illustrated in Figure 6. With the module
process (count_process) being instantiated, its stack
memory region is retrieved using QuickThreads (depicted
in Figure 6a). In this simulation run, the stack memory
region allotted for the thread process is different. The
thread pointer is 0x604010 and its stack memory region
starts from 0x604FF0 and its updated stack pointer is
0x604F30. The simulation execution has not yet begun,
so the value of internal local variable cnt1 is 0 (denoted
in red). Then, the identified memory regions of the local
variables in the stored checkpoint file are copied to the
stack memory of the current process count_process()
(depicted in Figure 6b). The cnt1 local variable in

604010

0

604FD0

405A80

0x604FF0

0x604FD0

0x604FB0

0x604F30

thread_ptr
rbp
cnt1

ret
rbp

queue_ptr

rsp

 frame - count_process()
 frame - trigger()

~~

~~

~~

~ ~

(a) Before Restore

604010

A

604FD0

405A80

0x604FF0

0x604FD0

0x604FB0

0x604F30

thread_ptr
rbp
cnt1

ret
rbp

queue_ptr

rsp

 frame - count_process()
 frame - trigger()

~~

~~

~~

~ ~

(b) After Restore

Figure 6 Counter Modue Process Stack Layout - Restore

the new thread stack memory that holds the value 0 is
updated to the value of 10 (value of cnt1 in checkpoint file).

After restoring the thread’s stack memory, the SystemC
kernel resumes simulation by referencing the scheduler
queue to schedule the next thread for execution. The
scheduler queue maintained by the kernel for the counter
module simulation (restore mode) is depicted in Figure 7.

t
*tail

*sp *sto *next

*sp *sto *next

0x405A80

queue

0x604010 0x604010

count_process

0x604010 0x604F30 0x405A800x604030

Figure 7 Data Structure of Scheduler Queue - Illustration
for Counter Module

*sp: Pointer to Stack Top
*sto: Pointer to Base Stack Address

*next: Pointer to Next Execution Thread

QuickThreads, as previously discussed, facilitates context
switching by transferring control to the next thread. It
pushes the register values, switches thread and stores
thread specific details, including the thread stack pointer
of the old thread onto the new thread. When QuickThreads
transfers control back to the old thread, this updated
stack pointer is passed to it, so that it can retrieve the
updated stack contents and resume its execution. This
thread specific information is stored on a thread stack
itself and the checkpointing library operates on the thread
stack memory region which contain these addresses
during the restore process. Hence, it is critical not to
tamper with the addresses in the stack that hold these
thread-specific values, such as the thread stack pointer
(0x604F30). These values are subsequently passed to the
scheduler queue to indicate the stack pointer of the next
thread to execute. Similar to the thread stack pointer,
other simulation-specific details such as the thread pointer
(0x604010) and queue pointer are dynamically assigned
and should be unchanged.

cnt1: 0
RESTORE THREAD: i_counter_mod1.count_process
cnt1: 10
cnt1: 11
...
cnt1: 20
execute trigger function

Listing 4 Output of counter example with
checkpointoing (restore)

1 // System (DUV) Initialization
2

3 if (restore) { // RESTORE
4 thread_restore(chkpt_file_name);
5 sc_core :: sc_start ();
6 }
7 else { // STORE
8 sc_core :: sc_start(chkpt_sim_time);
9 thread_store(chkpt_file_name);

10 }
11

12 SC_REPORT_INFO("sc_main", "simulation complete");

Listing 5 Checkpoint Library API

In this simulation run, the scheduler queue (0x405A80)
(depicted in yellow) points to the next thread for execution
in the queue, which is thread count_process (0x604010)
(depicted in blue). The thread specific details such as its
stack pointer (*sp), base stack address (*sto) and the next
thread to be executed (*next) are stored in a data structure
to facilitate proper scheduling. Altering these addresses
during restoration can result in the scheduler queue
retrieving incorrect data, causing it to fail in invoking
the intended thread for execution, thereby disrupting the
simulation.

The console output of the simulation run in restore mode
is shown in Listing 4. Initially, the modules are initialized
and cnt1 value is equal to 0. Then, checkpoint library
restores the state of the module. Later, the simulation
resumes with cnt1 starting at 10 and incrementing to 20. In
restore mode, the counter module executes for only half the
simulation duration, before invoking the trigger() function.

5.4 Integration of Checkpoint Library with
VP

The checkpoint library provides a minimal Application
Programming Interface (API) for seamless integration
with existing SystemC-based VP. The library abstracts
the complexities of the checkpointing mechanism while
enabling developers to store and restore the state of
the simulation efficiently. The code snippet (Listing 5)
demonstrates the additional lines of code needed for
integrating the checkpointing library into an existing
VP simulation. Developers only need to include the
checkpointing library during compilation and invoke the
provided API from the top module of the simulation.

thread_store(): This function (Line 9 in Listing 5) is
responsible for saving the state of the simulation at a given

checkpoint time. Developer provides the name of the
checkpoint file where the current state (module parameter
and module process) will be stored. In this example,
after the simulation has executed, the checkpoint library
is invoked to store the simulation state.
thread_restore(): This function (Line 4 in Listing 5) is
responsible for restoring the state of the simulation from
a given checkpoint file. It must be invoked before the start
of the simulation run. The function reads the checkpoint
file and restores the values of the module parameter and
state of the module process to match the saved state.

6 Case Study

This section presents a case study showcasing the
effectiveness of the proposed checkpointing methodology
for a SystemC VP. The case study utilizes a digital
SystemC model of a FIR filter, provided by our
industrial partner (COSEDA [20]), to validate the proposed
methodology.

6.1 Digital FIR Filter
Filters are the fundamental components of Digital
Signal Processing (DSP) architectures, used to extract
useful information from signals by removing undesired
components such as noise. They play a crucial role
in design of electronic components in the automotive
sector, including radar systems, engine control and
driver-assistance systems. An FIR filter operates on
discrete input samples, applying a set of coefficients to
compute a weighted sum of the input values. This process
ensures linear phase response and stability, making FIR
filters suitable for a wide range of applications in signal
processing.

The SystemC FIR filter module is presented in Listing 6.
The module includes member variable taps, an internal
buffer for storing input signal data, and coeff, which holds
the constant filter coefficients. The number of individual
coefficients or weights of the filter, FIR_TAPS is equal
to 32. The thread process fir_filter_proc() implements
the FIR algorithm. Its primary task is to perform a
multiply-accumulate operation on the input signal and the
filter coefficients (illustrated from Line 30 to Line 32 in
Listing 6). The fir_filter module operates as follows:
Input Signal Storage and Buffer Update: The input
signal data_in is stored in the internal buffer and the buffer
is shifted on every rising edge of clock signal.
Output Signal Calculation: The output signal data_out
is calculated by fir_filter_proc() process as the weighted
sum of internal buffer and the filter coefficients.
Continuous Processing: At each rising edge of the
clock signal, the internal buffer is updated with the
current input signal data_in and the data_out signal is
recalculated. Thus, the output signal value is influenced
by both the current and previous input signal values stored
in the buffer, enabling the FIR filter to process the signal
continuously and effectively.

1 SC_MODULE(fir_filter){
2 sc_core ::sc_in <double > data_i;
3 sc_core ::sc_out <double > data_o;
4 sc_core ::sc_in <bool > clk_i;
5 sc_core ::sc_in <bool > rst_i;
6 void fir_filter_proc ();
7 SC_THREAD(fir_filter_proc);
8 sensitive << clk_i.pos();
9 private:

10 double taps[FIR_TAPS]; // input signal buffer
11 double coeffs[FIR_TAPS] = {};
12 cos_sc_variable_handle <double[FIR_TAPS]>

taps_vh = {taps , "taps_handle"}; //
marked for checkpointing

13 };
14

15 void fir_filter :: fir_filter_proc (){
16 double data_i_tmp;
17 while (1){
18 wait(); // clock edge
19 if (rst_i.read()) {
20 for (int i = 0; i < FIR_TAPS; i++) {
21 taps[i] = 0.0;
22 }
23 } else {
24 double acc = 0.0;
25 data_i_tmp = data_i.read();
26 SHIFT: for (int i = (FIR_TAPS - 1); i >= 0;

i--) {
27 taps[i] = (i == 0) ? data_i_tmp : taps[i -

1];
28 }
29 acc = 0;
30 MAC: for (int i = 0; i < FIR_TAPS; i++) {
31 acc += coeffs[i] * taps[i];
32 }
33 data_o.write(acc);
34 }
35 }
36 }

Listing 6 FIR Filter SystemC Module

Figure 8 FIR Filter Output
Input signal (depicted in blue); Output signal (depicted in
orange)

To illustrate the behavior of the FIR SystemC module,
its output for a representative input signal is shown in
Figure 8. The input signal (depicted in blue) is shown in
the top section and the filtered output signal (depicted in
orange) is shown in lower section. It can be inferred that
the FIR module effectively removes the high frequency
noise present in the input signal, with the output exhibiting
a slight delay relative to the input.

With our proposed checkpointing library, the FIR module
is restored from a saved state (result shown in Figure 9).
Initially, the FIR module executes normally (denoted by
orange graph) and is checkpointed at time 5 ms (indicated
by the green dashed line). Subsequently, the module
is executed with the same input signal in restore mode
(denoted by blue graph), resuming execution from the

saved checkpointed state. The sudden transition in the
output signal (denoted by blue graph), indicates the instant
when the restore operation occurred.

At the module elaboration phase of the simulation, the
module parameter (taps) value is equal to 0. Its value
only gets updated at the module execution phase after the
checkpoint restore. Until then, the output signal holds the
previous value and updates upon the first invocation of the
module, resulting in a sudden spike at the beginning of
the simulation. This updated module parameter ensures
that the input buffer contains the same previous input
signal values it would have held if the simulation had
been executed continuously from the beginning. The
simulation state of the thread process (fir_filter_proc())
is also restored during the checkpointing process. This
ensures that the thread resumes execution exactly from
the point where the checkpoint was created, with the
next instruction of the process executed seamlessly after
restoration. When the thread calculates the next output
signal using the restored buffer, the resulting output value
aligns with the expected output. This is because the
output calculation inherently depends on the previous
input values, which are accurately restored during the
checkpointing process.

The results demonstrate that after restoring the state of
the FIR module, it produces an output consistent with
the expected behavior, as if the simulation had been
executed uninterrupted from the beginning. This outcome
highlights the reliability and effectiveness of the proposed
checkpointing methodology in accurately restoring the
simulation state of a SystemC digital VP.

7 Limitation and Future Work

A notable limitation is the handling of dynamically
allocated memory inside SC_THREAD processes,
due to its inherently complex non-deterministic address
allocation, pointer dependencies, and potential mismatches
during restoration. Similarly, checkpointing OS handles
(e.g., file descriptors) pose challenges, as these handles
often refer to external resources that cannot be easily
recreated or restored in their original state, potentially
leading to inconsistencies or resource conflicts. In highly
optimized builds,the creation of frame pointers may be
disabled, potentially impacting the checkpointing process.
The stored checkpoint files are machine architecture-
specific, requiring an initial simulation run on new
machines to generate compatible files—a manageable step
given the substantial advantages of checkpointing.

Future work will extend the proposed methodology to
SystemC Analog/Mixed-Signal (AMS) models, addressing
the challenges of mixed-signal designs to ensure reliable
restoration. Currently, the methodology caters only to
SC_THREAD process with a single wait() statement, and
future efforts will focus on extending this capability to
threads with multiple wait() statements.

2

1
Checkpoint

stored at 5 ms

Checkpoint
restored at 0 ms

Figure 9 FIR Filter Restored using Checkpoint Library
1: Simulation run for 10 ms and FIR state stored at 5 ms
2: FIR state is restored and simulation run for 5 ms

Additionally, plans include enabling the checkpointing
of SystemC signals to enhance the completeness and
versatility of the methodology for complex simulation
scenarios.

8 Conclusion

In this paper we presented a novel checkpointing
methodology for SystemC digital VPs, with a particular
focus on SC_THREAD processes. The methodology
leverages the QuickThreads library to store and restore
the simulation state of individual threads, without
requiring any modifications to the SystemC kernel.
The checkpointing methodology has been implemented
as a SystemC library, ensuring seamless integration
with existing VPs. The proposed methodology was
demonstrated using a real-world SystemC module
implementing FIR filter, showcasing its ease of
applicability and simulation runtime benefits.

9 Acknowledgment

This work was supported by the German Federal Ministry
of Education and Research (BMBF) within the project
PaSVer under grant no. 16ME0855, the project ECXL
under grant no. 01IW22002 and the project Scale4Edge
under grant no. 16ME0127 and no. 16ME0135. Support
from the LIT Secure and Correct Systems Lab funded by
the State of Upper Austria is gratefully acknowledged.

10 Literature

[1] Industrial Task Force of edacentrum e.V.,
“Arbeitskreis automotive, working group virtual
platforms, – white paper,” 10 2019.

[2] T. De Schutter, Better Software. Faster!: Best
Practices in Virtual Prototyping. Synopsys Press,
March 2014.

[3] “IEEE 1666-2023 standard for standard SystemC
language reference manual.” [Online]. Available:
https://doi.org/10.1109/IEEESTD.2023.10246125

[4] M. Hassan, D. Große, and R. Drechsler, Enhanced
Virtual Prototyping for Heterogeneous Systems.
Springer, 2022.

[5] V. Herdt, D. Große, and R. Drechsler, Enhanced
Virtual Prototyping: Featuring RISC-V Case Studies.
Springer, 2020.

[6] E. Roman et al., “A survey of checkpoint/restart
implementations,” Lawrence Berkeley National
Laboratory, Tech. Citeseer, vol. 5, 2002.

[7] “SystemC language working group (LWG)
Accellera.” [Online]. Available: https://www.
accellera.org/downloads/standards/systemc

[8] D. Keppel, “Tools and techniques for building
fast portable threads packages,” 1993. [Online].
Available: https://api.semanticscholar.org/CorpusID:
60785411

[9] J. Smith and R. Nair, “The architecture of virtual
machines,” Computer, vol. 38, no. 5, pp. 32–38,
2005.

[10] P. H. Hargrove and J. C. Duell, “Berkeley lab
checkpoint/restart (blcr) for Linux clusters,” in
Journal of Physics: Conference Series, vol. 46, no. 1.
IOP Publishing, 2006, p. 494.

[11] J. S. Plank, M. Beck, G. Kingsley, and K. Li, Libckpt:
Transparent checkpointing under UNIX. Computer
Science Department, 1994.

[12] M. Montón, J. Engblom, C. Schröder, J. Carrabina,
and M. Burton, Checkpoint and Restore for SystemC
Models. Dordrecht: Springer Netherlands, 2010, pp.
41–57.

[13] P. Magnusson, M. Christensson, J. Eskilson,
D. Forsgren, G. Hallberg, J. Hogberg, F. Larsson,
A. Moestedt, and B. Werner, “Simics: A full system
simulation platform,” Computer, vol. 35, no. 2, pp.
50–58, 2002.

[14] S. Kraemer, R. Leupers, D. Petras, T. Philipp,
and A. Hoffmann, “Checkpointing SystemC-based
virtual platforms,” IJERTCS, vol. 2, pp. 21–37, 10
2011.

https://doi.org/10.1109/IEEESTD.2023.10246125
https://www.accellera.org/downloads/standards/systemc
https://www.accellera.org/downloads/standards/systemc
https://api.semanticscholar.org/CorpusID:60785411
https://api.semanticscholar.org/CorpusID:60785411

[15] S. Kraemer, R. Leupers, D. Petras, and T. Philipp,
“A checkpoint/restore framework for SystemC-based
virtual platforms,” in 2009 International Symposium
on System-on-Chip.

[16] B. Farkas, “Standard compliant snapshotting for
SystemC virtual platforms,” Ph.D. dissertation,
Technische Universität Braunschweig, 2020.

[17] “Accellera SystemC initiative, universal verification
methodology (uvm) 1.2 user’s guide,” Oct 2015.
[Online]. Available: https://www.accellera.org/
downloads/standards/uvm

[18] M. Jung, F. Schnicke, M. Damm, T. Kuhn, and
N. Wehn, “Speculative temporal decoupling using
fork(),” in 2019 Design, Automation and Test in
Europe Conference and Exhibition (DATE), 2019, pp.
1721–1726.

[19] J. Vennin, S. Meftali, and J.-L. Dekeyser,
“Understanding and extending SystemC user
thread package to IA-64 platform,” in Proceedings
of International Workshop on IP Based SoC Design,
vol. 66, 2004.

[20] COSEDA Technologies GmbH, “Coside 3.2: The
design environment for heterogeneous systems,”
https://www.coseda-tech.com/coside-overview.

https://www.accellera.org/downloads/standards/uvm
https://www.accellera.org/downloads/standards/uvm
https://www.coseda-tech.com/coside-overview

	Introduction
	Related Works
	Preliminaries
	SystemC
	Running Example
	QuickThreads

	Proposed Methodology
	Concept
	Overview of the Execution Flow

	Implementation of Checkpointing Methodology
	SystemC Module Parameters
	SystemC Module Process
	Checkpointing Illustration of the Running Example
	Store
	Restore

	Integration of Checkpoint Library with vp

	Case Study
	Digital fir Filter

	Limitation and Future Work
	Conclusion
	Acknowledgment
	Literature

