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Abstract—Despite decades of mitigation efforts, memory cor-
ruption bugs remain a dominant source of security vulnerabil-
ities. CHERI, a capability-based architecture, directly targets
this problem by replacing traditional pointers with Capabil-
ities that encode bounds, permissions, and tamper-protection
tags. However, CHERI represents a significant architectural
intervention that impacts not only the processors core, but
the entire Hardware/Software platform. System-level evaluation
methods, such as Virtual Prototypes (VPs), have shown to be
highly valuable for exploring, validating, and optimizing such
complex Hardware/Software systems.

This paper introduces the first open-source SystemC/TLM-
based CHERI-enhanced RISC-V VP. The VP comes with support
for Virtual Memory Management (VMM) and is capable of exe-
cuting complex software stacks, such as the general purpose and
memory-safe CheriBSD operating system. A verification using
TestRIG demonstrates the VP’s robustness, passing 2.15 million
test cases. A case study with CheriBSD and 10 representative,
demanding benchmark workloads highlights the VP’s capability
to simulate complex CHERI-enabled systems and to provide
valuable insights for Hardware/Software co-design.

The CHERI-enhanced VP, along with the Software used in
our case study is available as open-source on GitHub.

I. INTRODUCTION

Memory corruption bugs are one of the oldest problems
in computer security and are still a major issue today. Ac-
cording to the MITRE ranking, memory corruption bugs are
considered one of the top three most dangerous Software
(SW) vulnerabilities in 2024 [1]. Also, the Chromium project
reports that around 70% of their security bugs are memory
safety problems [2]. Although modern type-safe programming
languages, like Rust, attempt to address this problem, it is
economically unrealistic to expect that the billions of lines
of existing C and C++ code can be replaced in the short
or mid-term future. To address these persistent challenges,
alternative approaches are required that enhance the security
of existing memory-unsafe languages like C and C++ without
necessitating their wholesale replacement.

One such approach is Capability Hardware Enhanced RISC
Instructions (CHERI), a project started in 2010 by the Uni-
versity of Cambridge as part of the Clean Slate Trustworthy
Secure Research and Development (CTSRD) initiative [3].

CHERI is a HW/SW-semantics co-design project that extends
conventional Instruction Set Architectures (ISAs), compiler
and Operating Systems (OSs) with new architectural features
to enable fine-grained memory protection and highly scalable
SW compartmentalization [4]. A central concept of CHERI
is the replacement of conventional pointers by so called
Capabilities. While conventional pointers contain only the
address they point to, Capabilities, beside this, also encode
access permissions, address bounds and a Tag flag as pro-
tection against tampering. Each time a Capability is used to
access memory (instruction fetch, load, or store), its properties
are checked, and if the check fails, the access is rejected.
On the SW side, Capabilities are automatically generated and
handled by a CHERI-aware compiler. Explicit source code
modifications are only necessary in exceptional cases, like in
low-level system SW. One example of a practical use-case
for Capabilities is the protection against out-of-bound arrays
accesses in C. Capabilities pointing to an array contain the
bounds of the array, which are checked by Hardware (HW)
on each access, thus eliminating out-of-bound accesses – a
common source of buffer overflow attacks in C programs.
However, while Capabilities serve as the foundational building
blocks, many other concepts of CHERI are built on top of them
and also involve significant complexity.

Recently, the primary reference platform for CHERI was
shifted from the MIPS architecture to RISC-V [5], [6], a
relatively young, highly modular and open-standard ISA.
RISC-V specifies very compact and simple base ISAs (RV32I
for 32-bit and RV64I for 64-bit Integer) that can be extended
by a variety of optional standard extensions, for example
Multiplication/Division (M), Floating Point (F, D), Vector (V),
only to name a few. This scalability allows RISC-V to be
utilized across a wide range of applications, from compact
controllers to high-performance application processors. Its
openness and modularity make RISC-V a particularly suitable
foundation for novel approaches like CHERI.

However, unlike other RISC-V extensions, CHERI-RISC-V
represents a significant architectural intervention that impacts
not only the processor core but the entire HW/SW plat-



form. For instance, in the processor core, CHERI-RISC-V not
only introduces instructions with new functionality but also
modifies the behavior of existing instructions and the overall
instruction processing. On the HW platform side, components
such as caches, buses, and memory require adjustments to
support the additional Tag flag. On the SW side, compilers,
OSs, and low-level systems SW demand substantial attention.

One approach to tackle this complexity is the use of
Virtual Prototypes (VPs), as we will demonstrate in this pa-
per. VPs are executable system-level models of entire HW
platforms which can run unmodified production SW [7] and
enable early exploration, validation, and optimization of com-
plex HW and SW systems [8]. These models are industry-
proven and are typically implemented in SystemC/TLM, a
standardized class library for C++ (IEEE 1666) [9]–[11]. In
this paper, we consider the open-source, SystemC/TLM-based
RISC-V VP++ [12], which was selected for its extensive fea-
ture set [13]–[20]. The VP supports RISC-V RV32 and RV64
in both single- and multicore configurations, with optional sup-
port for Virtual Memory Management (VMM). Additionally,
RISC-V VP++ offers multiple ready-to-use HW platform con-
figurations, ranging from small microcontroller-based systems
for bare-metal SW to application processor-based systems
capable of running complex OSs like Linux [21].
Contributions:

1) We introduce the first open-source SystemC/TLM-
based VP with VMM support, fully implementing
CHERI-RISC-V as defined in version 9 of the CTSRD
CHERI specification [22]. The implementation of the
CHERI-enhanced VP is the result of a thorough
analysis of the 500+ pages specification, the formal
CHERI RISC-V Sail model [23], and the operation of
RISC-V VP++.

2) We discuss the process used for verification of the
CHERI-enhanced VP using TestRIG with Direct Instruc-
tion Injection (DII) [24] a framework for automated test-
ing of RISC-V implementations using Random Instruc-
tion Generation (RIG) and the RISC-V Formal Interface
(RVFI) standard [25]. Based on this, we demonstrate the
robustness of the VP with 2.15 million passed test cases.

3) In our case studies, we demonstrate the potential of
the CHERI-enhanced VP through practical evaluations.
Using CheriBSD [26], we show that complex OSs with
VMM can be successfully executed on the VP. Based on
this, to highlight the value for system-level evaluation, we
present results of detailed measurements from selected
benchmark workloads.

We like to mention, that there are currently significant ef-
forts underway to industrialize CHERI and create an officially
ratified RISC-V CHERI extension [27]. However, this process
is still ongoing. In this work, we focus on the stable CTSRD
CHERI specification in version 9.

The CHERI-enhanced VP, along with the SW used in our
case study is available on GitHub1.

1https://github.com/ics-jku/riscv-vp-plusplus

II. RELATED WORK

Our work addresses the limitations of current approaches
for CHERI-RISC-V system evaluation. Register Transfer Level
(RTL) models, while precise, are too slow and resource-
intensive for efficient system-level SW development and ex-
ploration.

Machine emulators like QEMU [28], [29] offer much higher
performance but lack the accuracy required for CHERI and
are not standardized (e.g., no SystemC/TLM support), limiting
their integration into industrial workflows. Similarly, while
gem5 is a widely used and flexible architecture simulator
with RISC-V support [30], no CHERI-RISC-V extension is
available for it, preventing its direct use for CHERI system-
level evaluation.

Formal models such as Sail [23], [31] offer precise se-
mantics but are not intended for system-level modeling and
cannot run complete software stacks or interact with realistic
peripheral models.

To the best of our knowledge, no commercially available
tool provides an open, accurate, and extensible SystemC/TLM-
based CHERI VP that supports VMM and is capable of
running full operating systems like CheriBSD.

With this work, we close that gap by introducing the
first open-source CHERI-enhanced RISC-V VP that combines
system-level performance and accuracy with industrially rele-
vant standards.

III. CENTRAL CONCEPTS OF CHERI

A core concept of CHERI is replacing traditional pointers
with Capabilities. Unlike regular pointers, which store only
an integer address, Capabilities include a Tag bit for tamper
protection, access permissions, and address bounds, along with
additional metadata like flags and object type. To minimize
overhead, bounds are compressed using a floating-point-like
technique, enabling Capabilities on CHERI-RISC-V RV64 to
be just 128-bits wide – only twice the size of a regular pointer.
Unlike other properties of a Capability, the Tag bit, responsible
for tamper protection, is handled independently from the
directly accessible portion of the Capability. Supporting Tag
bits requires platform-wide modifications, including caches,
buses, and memory.

Each time, a Capability is used to access the memory (fetch,
load, store), the operation has to be authorized by the HW.
The HW checks if (i) the Capability is valid (Tag bit is set),
(ii) the access is permitted according to the Capability access
permissions, and (iii) the address is within the Capability
bounds. If one of these checks fail, the memory access is
rejected by the HW. This process is used not only for data
accesses but also for protecting the control flow. For this,
CHERI extends the Program Counter (PC) to a Program
Counter Capability (PCC), which is used to authorize all
instructions fetches.

To illustrate the protection provided by Capabilities, List-
ing 1 shows a very simple C program containing a not uncom-
mon buffer overflow vulnerability. The program allocates an
array str with room for 10 characters on the stack and passes

https://github.com/ics-jku/riscv-vp-plusplus


1 void main(void) {
2 char str[10]; /* allocate str (10 characters) on the stack */
3 gets(str); /* read characters from stdin to str */
4 printf("%s\n", str); /* output the read characters */
5 }

Listing 1: Simple C program containing a buffer overflow vulnerability

Fig. 1: Architectural Overview of the CHERI-enhanced VP

the array as argument to the function gets. The function gets
reads an arbitrary number characters from the standard input
until a line end is detected and stores the read characters as
elements in the given str array. On a typical architecture, str
is a regular pointer. Feeding the program with more than 10
characters, leads to a buffer overflow of str, which can be
exploited by attackers to modify the programs memory space.
In contrast, on a Capability-based architecture like CHERI, as
soon as gets attempts to store more than 10 characters in str,
the HW detects the out-of-bounds access and triggers a trap,
allowing the OS to terminate the process. The buffer overflow,
and with this a potential attack is successfully prevented.

Notably, no modifications to the program code are required
to gain these protections – compiling with a CHERI-aware
compiler is sufficient.

While CHERI-RISC-V significantly modifies the ISA, it
remains capable of executing standard non-CHERI-aware
RISC-V software, referred to as Integer Pointer Mode in this
paper. Mode switching is managed via the F flag in the PCC:
when set, execution is in Capability Mode; when cleared, it is
in Integer Pointer Mode.

IV. ENHANCING RISC-V VP++ WITH CHERI

The architecture of the CHERI-enhanced VP is outlined
Fig. 1. The blue blocks show the components included in
the original RISC-V VP++. The added and modified com-
ponents presented in this paper are highlighted in green and
orange, respectively. The VP implements an interpreter-based
Instruction Set Simulator (ISS) for RV64 and also include
optional support for a Memory Management Unit (MMU) to
realize VMM. A Transaction Level Modeling (TLM)-based
bus links the ISSs, memory, and peripherals. The CLINT and
PLIC provide timer and interrupt functionality. Memory can be
accessed either via TLM transactions, like other peripherals,
or via Direct Memory Interface (DMI), where accesses are
realized directly via pointers provided by SystemC. The former

allows tracing of memory accesses on the TLM bus, while the
latter provides higher simulation performance.

In the following sections, we provide a structured
overview of the integration process of CHERI-RISC-V into
RISC-V VP++, focusing on the components highlighted in
green and orange in Fig. 1. For the integration process, we
primarily relied on the CHERI-RISC-V specification [22]. Any
ambiguities or missing details were resolved using the formal
CHERI RISC-V Sail model [23].

A. Capabilities

The first step in the integration process is the introduc-
tion of Capabilities, which are implemented according to
the CHERI-RISC-V specification, including respective data
structures, compression/decompression functions and various
helper methods. After that, all entities that can hold an address
(i.e. a pointer) are extended to Capabilities. This modifications
affects (i) the PC, (ii) all 32 general purpose registers, and
(iii) all Control and Status Registers (CSRs) that may hold an
address. The affected components are highlighted by the green
blocks on the left side of the ISS, shown in Fig. 1.

B. Special Capability Registers (SCRs)

As mentioned in Section III, CHERI-RISC-V continues
to support execution in Integer Pointer Mode. To distinguish
between CSRs in Integer Pointer Mode and their Capability-
extended variants in Capability Mode, the CSRs are referred
to as Special Capability Registers (SCRs) in Capability Mode.
For example, the MTVEC and STVEC (Trap-Vector Base-
Address Register) CSRs, which hold the addresses for trap
handling in machine and supervisor-mode, are extended to cor-
responding MTCC and STCC (Trap Code Capability) SCRs.

Furthermore, CHERI-RISC-V defines some special reg-
isters, that are only available as SCRs. These include for
example the previously mentioned Capability extended PC,
the PCC, and a Capability used for non-capability-aware load
and store operations, the Default Data Capability (DDC). The
SCRs is shown as green block left to the CSRs block in Fig. 1.
Overall, we extend 9 CSRs to SCRs and add 5 new SCRs,
including the PCC.

C. Instructions Processing (Decode/Interpret/Execute)

In this section, we examine the instruction processing,
represented by the orange block Decode/Interpret/Execute and
the green blocks Opcodes and Instruction Execution in Fig. 1.
The instruction processing flow is presented in Fig. 2. Similar,
as in Fig. 1, blue blocks show the components included
in the original RISC-V VP++, and the added and modified
components are highlighted in green and orange, respectively.

The instruction processing in RISC-V VP++ is structured
in four stages. First, a new instruction is fetched (a) from
the memory location pointed to by PC position. The read
instruction word is then decoded (b) using a decision tree
in which individual bits and bit fields of the instruction (the
encoding) are examined successively until an operation is
identified. As result, we get a unique opId from the opId Table



Fig. 2: Instruction Processing in the CHERI-enhanced VP

and the field values of the instructions (e.g. used registers,
immediate values, . . . ). Next, the to be executed operation
implementation is selected (c) using a case distinction on
the opId. The relevant fields are selected and passed to the
concrete operation implementation. Finally, the concrete oper-
ation implementation is executed (d), applying all associated
side effects, i.e., updates to registers, CSRs, memory and
peripherals. We now proceed to discuss the required modi-
fications to each of the four stages to enable the integration
of CHERI-RISC-V.

a) Instruction Fetching: To integrate CHERI into the
instruction fetch process, several modifications are required to
enforce its Capability-based security model. Similar to loads
and stores, fetches must also be authorized by a Capability – in
this case, by the Capability-extended PCC introduced in Sec-
tion IV-A. However, since both CHERI-RISC-V and RISC-V
support compressed 16-bit instructions, authorizations must be
performed on a 16-bit basis. Consequently, the fetch process
is divided in up to two stages. First, a Capability-authorized
fetch is performed for a 16-bit half-word using the PCC. If
this half-word is identified as a compressed instruction, it is
passed directly to decoding. Otherwise, an additional PCC-
authorized fetch is performed for the next higher 16-bit half-
word. The two half-words are then combined to form a full 32-
bit instruction word, which is subsequently passed to decoding.

b) Instruction Decoding: To support CHERI, the instruc-
tion decoder must be extended to handle the new instruc-
tions introduced by the CHERI-RISC-V. In total, 99 new
non-compressed instructions are added. To support the new
instructions in the decoder, we add two new components: (i)
the CHERI Encoding, which extends the existing Instruction
Encoding, and (ii) the CHERI opIds, which extends the
opId Table. Implementation efficiency is enhanced, and the
risk of errors is minimized by leveraging automated code
generation for both extensions. All 99 CHERI instruction use
existing RISC-V encoding formats (R-, I-type or S-type), and
most instructions also share a common opcode and are further
distinguished by additional fields in the instruction format.
This structure allows for an efficient extension of the existing
decoder decision tree by adding new opId-cases for the CHERI
instructions. In addition to the 99 non-compressed instruc-
tions, CHERI-RISC-V modifies the behavior of 21 compressed
instructions. When decoded in Integer Pointer Mode, these
instructions retain their original behavior, but when decoded

in Capability Mode (as determined by the PCC mode flag),
they perform CHERI-specific operations. This functionality is
implemented by introducing additional mode checks during
the decompression of compressed instructions in the decoder.

c) Operation Selection: As previously described, this
stage receives the opId and all field values of the instruction.
The operation selection is implemented as a case distinction
on the opId (C++ switch case). For each case, the relevant
field values are selected, and the execution of the operation is
delegated to the execution stage. To support CHERI-RISC-V,
the case distinction is extended with the new CHERI opIds.

d) Execution: In this final stage, the actual execution of
the selected operation (opId) takes place. To support CHERI,
this block is extended with implementations for the 99 new
CHERI-RISC-V instructions. Each implementation is based
on the CHERI specification, with formal CHERI RISC-V Sail
model serving as a reference for cases where the specification
is ambiguous. In addition to the 99 new instructions, indicated
by the green CHERI Instruction Execution block in Fig. 2,
CHERI also modifies the behavior of several existing instruc-
tions. This is indicated by the partially orange section in the
Execution block in Fig. 2. All integer load and store instruc-
tions are now mode-dependent, using the passed on Capability
in Capability Mode, or the DDC in Integer Pointer Mode.
Control-flow instructions, such as branches and jumps, are
also affected. In Capability Mode, the target address must be
authorized by the PCC and passed on Capabilities.

This concludes our discussion of orange block Decode/In-
terpret/Execute and the green blocks Opcodes and Instruction
Execution shown in Fig. 1.

D. Memory Interface and Memory Management Unit (MMU)
Major parts of the logic for RISC-V load/store instructions

are actually implemented in the Memory Interface (Mem IF)
of the VP, represented as the blue block on right left side
of the ISS in Fig. 1. For CHERI-RISC-V, we extend the
Mem IF with the new component Tagged Mem IF, shown as
green block above the Mem IF. This new component intro-
duces methods to support the newly added CHERI-RISC-V
Capability load/store instructions. Additionally, since CHERI
modifies the behavior of existing load/store instructions, the
register used as the address in the standard RISC-V ISA
must now be interpreted as a Capability. This Capability is
used to authorize the operation, requiring several checks to be
performed before each load/store operation.



Also the optional MMU, shown as orange block near the
memory interfaces, needs some modifications: (i) The MMU
is extended to support CHERI Tags, and (ii) the Page Table
Entries (PTEs) are extended by 5 new CHERI-RISC-V related
flags, to control the behavior of Capability stores (two flags)
and Capability loads (three flags) on a per-page basis.

E. Tagged Memory and Tags in SystemC/TLM Transactions
As already highlighted in the Section I, CHERI-RISC-V

not only affects the ISA of a processor, but has also effects
on other parts of the HW platform. In CHERI, each memory
location capable of holding a Capability is associated with
a 1-bit Tag that tracks the validity of the Capability. This
requires a so called tagged memory architecture where the Tag
bit is atomically bound to each Capability-aligned memory
word, ensuring that non-Capability operations, such as byte-
level stores, clear the Tag. To support this in our VP, we
implement a new Tagged Memory Module, which replaces
the memory module of the original VP and is shown as
green block on the left side of Fig. 1. The module tracks the
Tags using an array of Booleans, indexed by access addresses
divided by the size of a Capability.

As shown in the center of Fig. 1, the VP’s ISS, memory and
peripherals are connected as modules via a SystemC/TLM bus.
In TLM, bus communication is abstracted via transactions,
which are realized as function calls carrying a standardized
transaction object. This transaction object contains all infor-
mation related to the transaction, e.g., the type (read or write),
the target address and the payload data. However, a TLM
transaction object has no representation of a CHERI Tag.
To address this, we utilize the TLM extension mechanism
defined in the SystemC standard [9], which allows user-defined
objects to be attached to transaction objects. Based on this
mechanism, we implement a custom TLM extension to carry
the Tag, and extend the Tagged Mem IF and the Tagged
Memory Module. With this, these CHERI-aware modules
are now able to exchange Tags in addition to data over the
unmodified TLM bus. Meanwhile, modules that are unaware
of the Tag-extension simply ignore it and continue to function
as before, ensuring compatibility with existing SystemC/TLM
components.

V. VERIFICATION WITH TESTRIG
In this section, we give a brief overview on the verification

process used for our CHERI-enhanced VP including some
major results metrics.

The complexity of CHERI-RISC-V makes manual testing
infeasible, necessitating automated tools for thorough veri-
fication. For our verification we use TestRIG, which was
introduced together with the DII technique in [24]. TestRIG is
a framework for automated testing of RISC-V implementations
using Random Instruction Generation (RIG) and the RVFI
standard [25]. Orchestrated by the so called Verification Engine
(VEngine), generated instruction sequences are fed directly
into connected cores via DII, execution result traces are
extracted using the RVFI, and then, the results are compared
for differences.

To be able to use TestRIG in our verification process, the
CHERI-enhanced VP is further extended with support for
DII and RVFI. The VP is then integrated with a simulator
generated from the formal CHERI RISC-V Sail model, serving
as a reference platform in a CHERI TestRIG setup. This setup
was used iteratively throughout the development process of our
CHERI-enhanced VP, proving to be highly valuable by isolat-
ing numerous bugs and effectively demonstrating the practical
use of TestRIG. Some particularly challenging and interesting
findings included the detection of missing alignment checks
in specific execution paths and the identification of incorrect
handling of integer values in Capability registers. In final tests,
the presented state of our CHERI-enhanced VP successfully
passes 2.15 million test cases in approximately 30 hours,
executing a total number of ~1.85 billion instructions.

VI. CASE STUDY: CHERIBSD WITH BENCHMARKS

In this case study, we demonstrate the potential of
the CHERI-enhanced VP through practical evaluations with
CheriBSD, a CHERI-enabled variant of FreeBSD – a mature,
full-featured, and widely-deployed operating system. We show,
that the CHERI-enhanced VP is able to run complex CHERI-
enabled general purpose OSs with VMM and based-on appli-
cations. Furthermore, we illustrate that we can derive valuable
assessments for the design of CHERI-based HW/SW systems,
by comparing the execution of CheriBSD and 10 selected
benchmark workloads compiled without and with support for
CHERI on our VP.

To ensure comparability, the toolchains for both, the non-
CHERI and CHERI builds are created using cheribuild [32]
which is provided by the CTSRD project. These toolchains
are then used to build CheriBSD, as well as the necessary
CHERI-enabled low-level bootloader OpenSBI-CHERI [33],
both with and without CHERI support. At this point, we can
boot the CHERI enabled CheriBSD on our VP. On an AMD®

Ryzen 7 PRO 6850U 8-core processor running at 2.7 GHz,
the system boot – measured from the start of the simulation
to the point where the init process of CheriBSD was loaded
from a root file system on a RAM disk and starts its execution
– takes approximately 18 seconds. Examining the detailed
runtime statistics provided by the VP, we observe that by
this point, the VP has executed approximately 324 million
instructions and performed around 21 million data loads and
63 million data stores. Additionally, the Tagged Memory
Module contains 655k valid Tags at this stage, corresponding
to valid Capabilities. The system continues its boot process
and eventually provides a console. From this point onward,
the user can interact with the system (e.g. run programs) in
near real-time.

Next, we analyze the behavior of a selected set of bench-
mark workloads, each compiled with and without support for
CHERI. To account for any optimizations possibly not yet
ported to the CHERI LLVM compiler [34], and with this
improve comparability, we disable all compiler optimizations
(i.e. O0). The workloads are each executed on a CheriBSD
system without and with CHERI support, running on the exact



Fig. 3: Distribution of executed Instructions for Workloads with and without CHERI (normalized to their respective baselines)

same CHERI-enhanced VP model. We again leverage the
runtime statistics provided by the VP, this time to examine
the distribution of executed instructions for workloads with
and without CHERI. All runs are repeated three times, and the
median of the measurements (based on the number of executed
instructions) is selected as the final outcome. The results are
visualized in Fig. 3. The X-axis shows the workloads along
with the mean value across all workloads, divided into two
setups: without CHERI as the baseline, and with CHERI. The
selected workload set includes (a) the system boot process
of CheriBSD itself (as described above), (b) the well-known
Dhrystone [35] and Whetstone [36] benchmarks, and (c) 8
workloads (excluding core) from CoreMark®-PRO [37]. All
executed instructions are classified in (i) all integer related
instructions including privileged instructions (Integer in blue),
(ii) all floating-point related instructions (Float in orange),
and (iii) all newly introduced CHERI instructions (CHERI in
green). All instruction classes are further divided in load/s-
tore/atomic (Access in dark) and all other instructions (Others
in light). All shown values for a workload are normalized to
the respective number of executed instruction in the baseline.

As expected, the number of Float instructions remains
very consistent between CHERI and non-CHERI executions.
For Integer Access instructions, a decrease is observed in
most cases, except for the CheriBSD boot and zip test work-
loads. This reduction, however, is clearly outweighed by
the additional number of CHERI Access instructions. The
Integer Others category remains roughly the same, though
a slight increase is noticeable on average (MEAN). Over-
all, CHERI introduces significant overhead, with an average
increase of 1.47 across all workloads, reaching as high as
1.83 for zip test. It is also worth noting, that CoreMark®-PRO
actually consists of 9 workloads. However, the missing work-
load core, when built for CHERI-RISC-V, encounters a Tag
violation during execution, which is also reproducible on the
QEMU-CHERI emulator [29]. This suggests that core may
either be one of the cases requiring a manual port to CHERI

or that its implementation contains a latent bug exposed only
by CHERI – an interesting case that will be investigated in
future work.

Overall, the presented results indicate that, although CHERI
offloads significant aspects of memory protection to HW, it
also introduces notable overhead in SW. Further investigations
and combined efforts in improving both HW and SW are
necessary to address these challenges. This clearly highlights
the value of system-level approaches capable of simulating
complex CHERI-based HW/SW systems, such as our CHERI-
enhanced VP.

VII. CONCLUSIONS

In this paper, we introduced the first open-source
CHERI-RISC-V enhanced SystemC/TLM-based VP, enabling
system-level evaluation of CHERI-RISC-V-based HW/SW
systems. Our verification with TestRIG validated the VP’s
robustness, by passing 2.15 million test cases. Our case
study with CheriBSD and 10 well-established benchmark
workloads demonstrated the VP’s ability to simulate complex
CHERI-based systems. Notably, running CheriBSD exercises
the complete CHERI trust and protection chain, demonstrating
the correct interaction of instruction set features, memory
management, privilege control, and capability enforcement in
the VP. The VP measurements reveal an average instruction
overhead of 1.47 for CHERI-enabled workloads. These results
underscore the importance of system-level approaches, like our
CHERI-enhanced VP, in effectively simulating and analyzing
complex CHERI-based HW/SW systems.

For future work, we plan to enhance the verification of
CHERI-based implementations by adapting RVVTS [38], a test
framework that has proven successful for testing the complex
RISC-V vector extension.

The CHERI-enhanced VP, along with the Software used in
our case study is available on GitHub.
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