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Abstract. Quantified Boolean Formulas (QBFs) extend propositional
logic with existential and universal quantifiers, making their decision
problem PSPACE-hard. Recent advances in QBF solvers have estab-
lished QBFs as an attractive framework for encoding PSPACE-hard
problems across domains such as formal verification, synthesis, and sym-
bolic Al Despite progress in solving techniques, less attention has been
given to the infrastructure for constructing correct and efficient QBF en-
codings. For instance, it is often unclear whether two QBFs that encode
the same problem in different ways yield the same solutions. Traditional
QBF equivalence checking focuses only on free variables, yet in many
cases, the quantified variables must also be considered.

In this paper, we present QSOLE, the first fully automatic checker for
solution-based QBF equivalence. Based on a recently introduced ap-
proach, QSOLE decomposes equivalence checks into smaller entailment
computations and is capable of generating witnesses for detected inequiv-
alences, which can be used to debug encodings. Furthermore, it allows
for explicit exclusion of variables from equivalence checks enabling com-
parison of formulas using different local auxiliary variables.
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1 Introduction

Quantified Boolean formulas (QBFs) [1l4] extend propositional logic with exis-
tential and universal quantifiers, thereby representing PSPACE-complete prob-
lems. QBFs play a key role in areas such as formal verification, reactive synthesis
and planning [IT]. Solutions to QBFs are functions that capture the dependencies
between the different types of variables. These functions describe, for example,
winning strategies in encodings of two-player games or automatically generated
programs in encodings of synthesis problems.

Traditionally, QBF equivalence has been evaluated through satisfiability com-
parison over free variables [06]. Given two QBFs that are defined over the same
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set of free variables, it is checked if for all assignments of the free variables,
the two formulas have the same truth value. This is a rather restricted notion
of equivalence checking, because the quantified variables are not taken into ac-
count. In recent work [8] we introduced solution-based notions of equivalence
grounded in Skolem and Herbrand functions, a well-explored way of expressing
QBF solutions. With this, we obtain a more expressive notion of equivalence. If
two QBFs are solution equivalent, on the one hand, they evaluate to the same
truth value, on the other hand they also have the same set of solutions. If, for
example, the second formula should be an optimized encoding of the first for-
mula, it can be shown that the optimization did not change the set of solutions.
This is valuable for debugging and validating practical encodings. Moreover, two
formulas generated through completely different encodings can be compared to
ensure correctness of encoding techniques.

The first practical approach to compare individual solutions of two QBFs
was presented by Shaik et al. [I0]. This approach is an interactive approach, i.e.,
manual intervention is necessary. To the best of our knowledge, so far there is
no tool that offers automatic solution-based QBF equivalence checking.

In this work, we present QSOLE, an automatic checker for solution-based
QBF equivalence notions as defined in [§]. Our tool QSOLE is implemented
in C++, uses the QBF solver DEPQBF [7] as a reasoning backend and allows
for witness extraction of inequivalences using the SAT solver CADICAL [2]. We
propose a flexible QBF encoding that supports the exclusion of auxiliary vari-
ables from equivalence checks and introduce the first equivalence-specific solv-
ing techniques, including substitution-based encoding optimization for formulas
with shared clauses. To the best of our knowledge, QSOLE is the first practical
framework for automated reasoning about semantic QBF equivalence. Our tool
QSOLE is openly available at https://doi.org/10.5281/zenodo.17356608.

2 Preliminaries

A Boolean formula is built from a set of Boolean variables V' and the logical
connectives {—=,A,V,—, +>}. The set of variables occurring in a formula ¢ is
denoted by var(p). An assignment o : V! — {1,0} maps variables V' C V to 1
and 0. By [¢], we denote the formula obtained from ¢ by setting all variables
v € V' in to o(v) and simplifying the formula according to standard semantics.
An assignment o is a model of ¢ iff [¢p], = 1. If [¢], = 0, it is a counter-model.
A Boolean formula is in Congjunctive Normal Form (CNF) if it is a conjunction
of disjunctions (clauses), where negation applies only to Boolean variables.
Quantified Boolean Formulas (QBFs) [1/4] extend Boolean formulas with
quantifiers @ = {¥, 3} that bind variables in subformulas, which may themselves
contain quantifiers. A QBF Vo : @ is true iff both ([?];,—1}) and ([®]{,—0}) are
true. Dually, a QBF Jv : @ is true iff ([@];,—1}) or ([?]{v—0}) is true. Quantifica-
tion over multiple variables V = vy, ..., v, is abbreviated as QV = Qu; ... Qu,.
A sequence P = Qv ... Q,v, of quantifiers is called a prefir, and P denotes its
dual where all quantifiers are flipped. A QBF is in Prenex Conjunctive Normal
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Form (PCNF) if it has the structure P : ¢, where P is a prefix and ¢ (the
matriz) is in CNF. Variables bound in P are denoted by var(P). Free variables
free(®) = var(p) \ var(P) are not bound by a quantifier in a QBF & = P : ¢. A
QBF without free variables is closed.

Given a QBF & = Qjvy...Q,v, : ¢, consider an assignment tree whose
internal nodes correspond to variables v;, where edges assign truth values {1, 0},
and each path from the root to a leaf represents an assignment o with leaf label
[¢]s. A model of a true QBF is a subtree of the assignment tree such that
existential nodes have one child, universal nodes have two, and all leaves are 1.
Dually, a counter-model of a false QBF requires one child for universal nodes,
two for existential nodes, and all leaves to be 0. We denote the sets of models and
counter-models of @ as S3(P) and Sy(P) respectively. Classically, two QBFs &
and ¥ are said to be (satisfiability-)equivalent if they evaluate to the same truth
value under all (resp. some) assignment(s) to their common free variables [5]6].
Solution-based notions of entailment and equivalence have been introduced in [8]
and are defined as follows: Given two true QBFs with the same prefix P. Then
& Skolem-entails ¥, denoted by @ =sx ¥ iff S3(P) C S3(¥). Skolem equivalence
P < ¥ holds if S3(@) = S3(¥). In a dual manner, Herbrand entailment and
Herbrand equivalence is defined for false formulas. Solution equivalence @ <gq
¥ holds iff @ and ¥ are Skolem equivalent or Herbrand equivalent. Note that
Herbrand equivalence checking can be reduced to Skolem equivalence checking
by negating the formulas.

3 Solution-Based QBF Equivalence Checking

We introduce QSOLE, an automatic checker for solution-based notions of QBF
equivalence. It works for true and for false formulas in a similar manner. Our
tool takes two input formulas in QDIMACS format and can determine whether
they are Skolem entailed, Skolem equivalent, or solution equivalent. Additionally,
it requires a mandatory numeric parameter PCOUNT to denote the length of the
quantifier prefix used for comparison. To compute equivalence wrt. the full prefix
this value has to be set to |var(P)|. In the next section, we explain what happens
if not the full quantifier prefix is considered.

Figure [l illustrates how QSOLE checks whether two QBFs @ and ¥ are
solution equivalent. For this, it first evaluates the truth value of @ (purple). If
& evaluates to true, i.e., Sy(P) = @, Skolem entailment needs to checked in both
directions (blue part of Figure ). If & |=sx ¥ holds, it follows that ¥ is true as
well. Analogously, if @ is false (yellow), then QSOLE instead checks for Skolem
equivalence of the negated formulas =@ sk —¥ and —¥ =g =P (red). If any
Skolem entailment check fails during this process, @ <5, ¥ does not hold. Then
a witness can be generated that is part of the solution of one formula but not of
the other.

QSOLE computes Skolem entailment ¢ s ¥ checks based on the QBF
encoding presented in [§]. The Plaisted-Greenbaum transformation [9] is applied
to obtain a PCNF representation of this formula, which is subsequently solved
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Fig. 1: Solution equivalence @ <o ¥ check in QSOLE.

using the QBF solver DEPQBF. A counter-model to @ =gy ¥ represents a model
of @, which does not satisfy ¥, indicated by a propositional countermodel for ),
which we refer to as a witness. If the --models flag is set, QSOLE generates
witnesses for failed Skolem entailment checks. They are constructed from the
terminating assignment of DEPQBF using the SAT solver CADICAL.

We demonstrate this solving process on an example: Consider the two QBFs

S=P:p=VadbIc: (aVec)A(—-aV-c)A(bVe)A(—bV -c)
U =P:¢p=VadbIc: (aV -b)A(-aVb)A(aVc)

Suppose it is claimed that ¥ encodes the same problem as @, i.e., that @ <go ¥
holds. Figure [2 shows the input formulas @ (left) and ¥ (center) in QDIMACS
format. The quantified variables a, b, and ¢ correspond to QDIMACS variables
1, 2, and 3, respectively. The assignment tree (right) represents the propositional
models of @ and ¥ simultaneously. The leaves are labeled by ¢/ where ¢ (resp.,
1) represents the truth value of @ (resp., ¥) under the assignment on the path
to the root of the tree. The highlighted (yellow) subgraph marks a model of @,
which is not a model for ¥ as indicated by a propositional counter-model for v
(red). This refutes the claim that ¢ < &.

Listing [T] illustrates how QSOLE can be used to automatically show that the
two formulas do not have the same solutions. In a first call, it checks solution
equivalence (parameter --check psole). The prefix length is set to 3 to compare
over the full quantifier prefix P = Vadb3e. QSOLE first calculates the value of
@, which evaluates to true. Given this information, it proceeds with a Skolem
equivalence check for @ f=gx W. Since this check also succeeds, QSOLE has
to check ¥ =g @. However, this check fails, ultimately refuting the solution
equivalence. To generate a witness, we invoke QSOLE again with the option
--models. We only rerun the check ¥ [=sk @ (parameter --check skent) which
previously returned false. QSOLE reports the witness "v 1 2 3 0" assigning
all variables to 1. This corresponds directly to the counter-model (red) for ¢ in
the binary tree of Figure 2]
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Fig.2: & (left) and ¥ (center) in QDIMACS format next to assignment tree
(right) on variables V' = {a, b, ¢} with leaf labels ¢/¢ and model of ¥ (yellow)
containing counter-model for ¢ (red).

4 Auxiliary Variables

Some PCNF encodings, such as efficient normal form transformation [12J9] of
formulas, require that auxiliary variables are added to the formula. For example,
consider the QBF @ = Va3b3c : (aVe)A(—aV-e) AV ce)A(-bV—e) from before.
The variable ¢ indirectly enforces (a <> b) through (a ¢ ¢) A (b ¢ ¢). Suppose we
wanted to disregard the semantics of ¢ and only focus on the relation between a
and b enforced through it. Figure [3|illustrates this idea: The full assignment tree
for ¥ (left) is pruned after b (right), whereas leaves correspond to the evaluation
of the subformula that was eliminated. The outer leaves of the pruned tree
represent (a <+ b) and are, therefore, labeled with 1, whereas the inner leaves
denote a 4 b and are labeled with 0. The same relation between a and b is
also present in ¥ = Va3b3c: (a V. —b) A (ma VvV b) A (aV ¢). To verify this, we can
separate the outer prefix P = Va3b from the auxiliary variable ¢, which is treated
as local to each formula (with P; = 3¢ and P, = 3¢'), to obtain =P : P, : ¢
and ¥ = P : P, : 1) and compare them based on P. QSOLE allows restriction
to a common outer prefix with the parameter PCOUNT. In this case, we can set

> gsole phi.qgdimacs psi.qdimacs 3 --check psole --info

[QSOLE] [INF] Polarity check of f1 resulted in 10

[QSOLE] [INF] Skolem Entailment f1 |=SK f2 resulted in 10

[QSOLE] [INF] Skolem Entailment f2 |=SK f1 resulted in 20

[QSOLE] [INF] Polarity Solution Equivalence (f1 <->PSOL £2)
resulted in 20

> gsole psi.qgdimacs phi.gdimacs 3 --check skent --models

c f1 |=8K f2

vi1230

Listing 1: QSOLE check for @ <, ¥ with PCOUNT = 3 and witness generation
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Fig. 3: Left: Assignment tree of ¥. Right: Pruned assignment tree with P = Va3b.
Subformulas with prefix Jc are replaced with leaves indicating their truth value.

PCOUNT = 2 resulting in @ and ¥ being solution equivalent wrt. P = Va3b. We
confirm this with QSOLE in Listing [2]

> gsole phi.qdimacs psi.qdimacs 2 --check psole --info

[QSOLE] [INF] Polarity check of f1 resulted in 10

[QSOLE] [INF] Skolem Entailment f1 |=SK f2 resulted in 10

[QSOLE] [INF] Skolem Entailment f2 |=SK f1 resulted in 10

[QSOLE] [INF] Polarity Solution Equivalence (f1 <->PSOL £2)
resulted in 10

Listing 2: QSOLE check for @ <5, ¥ with PCOUNT = 2

The encoding used by QSOLE to compute whether ¢ =gx ¥ holds for some
QBFs @ = P : ¢ and ¥ = P : v requires the negation of . This introduces at
least one additional auxiliary variable per clause, leading to a large overhead. To
mitigate this, QSOLE can perform subsumption of clauses in ¢ with clauses of
@ before applying negation in the encoding. Since the Skolem entailment check
looks for a model of @ that includes a counter-model of 1, all clauses in ¢ must
be satisfied. Therefore, any clause in 1 that is subsumed by a clause in ¢ cannot
refute 1. Thus, any such clause can be removed from 1 for the check. This can
considerably reduce the number of auxiliary variables, particularly when ¢ and
1 share many clauses. This optimization is available in QSOLE via the flag
--subsumption.

5 Evaluation

We tested QSOLE on two sets of synthetic benchmarks derived from pseudo-
Boolean constraints: For “equals-k” constraints exactly k out of n variables must
be true. We used PySAT [3] to generate two different standard encodings, namely
seqcounter and kmtotalizer, and added a randomly generated quantifier pre-
fix containing u universal quantifiers over the common n variables. Auxiliary
variables are existentially quantified. This construction yields pairs of formulas
that are guaranteed to be solution equivalent wrt. their n common variables.
Analogously, we used “at-least-k” constraints (at least k of n variables must be
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Fig. 4: QSOLE Solution Equivalence checking on synthetic benchmarks equals-k
(blue) and atleast-k (red); x-axis: number of common variables; y-axis: time in
seconds.

true) to generate pairs of formulas that are not solution equivalent. Any model
for a larger bound k is also a model for a smaller bound, but not vice versa. This
holds inversely for counter-models in false formulas. This setup can be scaled
along several dimensions: total number of variables, the bounds k, the encoding
type, and both the ratio and ordering of universal vs. existential variables in the
prefix. However, the lift to QBF is conducted with random prefixes and these
benchmarks may, therefore, not be reliable performance indicators for concrete
QBF applications.

We computed solution equivalence for one test case per combination of k €
{8,10,12} and u € {8,10,12,14} with n € {13,...,19} for equals-k and n €
{13,...,25} for atleast-k. Quantifier prefixes were generated independently for
each test case. Our experiments were run on an AMD Ryzen Threadripper PRO
5955WX with 16-Cores and 248Gi RAM. shows the result grouped by
the number of common variables. The performance gap within atleast-k bench-
marks can be attributed to early returns in cases where the first Skolem entail-
ment check yields a refutation.

6 Conclusion and Future Work

In this paper, we introduced QSOLE, which automatically checks if two QBFs
have the same set of solutions. The approach is implemented for true and for
false formulas based on the encoding presented in [8]. We extended the encoding
to handle local auxiliary variables that are at the end of the quantifier prefix.
In future work, we plan to lift this restriction and allow for local variables at
arbitrary positions in the quantifier prefix. Furthermore, we plan to improve
on the user interface to facilitate the development and the debugging of QBF
encodings.
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Data Awvailability Statement The QSOLE artifact containing the tool imple-
mentation, benchmarks, and scripts required to reproduce the experiments pre-
sented in this paper is openly available at https://doi.org/10.5281/zenodo.
18590551.
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A Skolem Entailment Encoding

To compute whether Skolem entailment ¢ =g ¥ holds for two QBFs @ = P : ¢
and ¥ = P : ¢, QSOLE uses the formula from [8], which evaluates to true iff
® fg P, as a base:

A@,¥)=3X":P: | pA /\ Tz | =
zieX’

where X’ represents a set of fresh variables corresponding to all universally
quantified variables X in the common prefix P. QSOLE applies the Plaisted-
Greenbaum [9] transformation to introduce fresh sets of variables Y and Z. The
negation of each Y variable is implied by z < 2, whereas the Z are used to
negate ¢: Each z € Z implies the negation of a clause of . Finally, a variable
z5 implies that one z € Z is true resulting in the negation of ¥. We denote this
with the propositional subformulas

(= /\(xl<—>x;)%—\yl and §<zw—>\/z>/\ /\ z — —e.

zieX’ 2€Z c€Eclauses(v))

These formulas are conjoined with an additional clause over the Y variables and
Z- This clause enforces that either at least one y; € Y is assigned 1, which
requires z; ¢ x}, or that =) holds. QSOLE constructs the PCNF formula

A(@,W)=3X":P:3Y :3Z: [oACAEAN [ 25V ]y
yey
and invokes DEPQBF to solve it. If the formula evaluates to false, ¢ ok ¥
holds. Otherwise, QSOLE can produce a propositional model for —, which
is a part of a model of @. Specifically, it substitutes the X variables with the
corresponding assignments to X’ returned by DEPQBF (denoted by ox. x/),
and then uses CADICAL to compute a propositional model for

Hoar(P)\N X} : [Ploy o A¥)ox i

The result is a witness to refute Skolem entailment.
To check Skolem entailment wrt. an outer prefix P for formulas® =P : P, : ¢
and ¥ = P : Py : ¢, QSOLE uses the amended formula

A@,W)=3X":P: | (PL:p)A /\xl<—>x; — Py
zieX

resulting in the PCNF encoding

A@,W)=3X":P: P :P:3Y:3Z: [ ACAEN 25V \
yey
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